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Abstract. The paper details a set of experiments to assess the percep-
tion of basic behaviors for social robots. These include (i) the blinking
of the eyes, (ii) the shape of the mouth, (iii) the way the whole body
moves, (iv) the motion of the arms, and (v) a collection of non-verbal
sounds. The goals are (i) to validate behaviors that can be useful for so-
cial robots with simple anthropomorphic features, and (ii) to explore the
perception of the audiences selected to interact with the robot, namely
how long do they last and the perceived emotions, i.e., the extent to
which small behaviours are perceived by people observing the robot. On-
line questionnaires containing media displaying a Monarch MBot robot
undertaking several actions are used to assess people’s perception. In-
equality indicators (Gini Index, pq-means, and Hoyes Index) are used as
analysis indicators, in addition to classical statistical tests.

Keywords: Social Robot, Social Behaviours, Gini Index, Likert Ques-
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1 Introduction

The research on the field has pointed to numerous aspects, namely acceptance
of the robots by people. The uncanny valley paradigm, though not universally
accepted, already established a link between the appearance of a robot and the
emotional response of people observing it.

The paper presents a collection of experiments aim at understanding how
people perceive small physical differences between behaviors thought relevant
for social purposes and how important they are for acceptance of social robots.
The robot considered is a Mbot, developed within the European project FP7
Monarch, to interact with children. in a hospital environment1 (a omnidirec-
tional platform with 1-dof arms and neck and simple led-based facial features).
The good acceptance of this robot in previous experiments and its basic an-
thropomorphic features make it interesting for this kind of study. Furthermore,
a major part of the populations involved are not new to the robot and hence
novelty effects are minimized.

The experiments in the paper aim at demonstrating the importance of small
or short-duration behavioural features to the perception of people observing the
robot in social contexts.
1 In the text the robot is named Casper, after the name given by the children at the
hospital.
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The paper is organized as follows. Section 2 presents an overview of the state
of the art. Section 3 to 7 detail the Likert questionnaires2 used to assess people’s
perception and respective analysis. Section 8 discusses the results obtained and
points to future developments.

2 Brief overview of Behaviours for Social Robots

Social robots can be utilitarian (or service robots) or affective social robots (or
socially assistive robots), [2]. They are often endowed with anthropomorphic
features to facilitate integration and acceptance in human environments, e.g.,
having a robot moving its arms during motion facilitates the recognition by
humans as walking [4].

The effect of gait speed in the upper body kinematics and intersegmental
coordination between upper and lower body in healthy individuals was studied
in [15], including shoulder, elbow, thoracic, and pelvic movements for 20 healthy
subjects walking at six speeds ranging from extremely slow to very fast. As speed
increases, there’s a significant increase in range of motion (RoM); the extremely
slow walking speed has a peak-to-peak difference of roughly 10◦ , whereas the
very fast walking speed has a difference of about 40◦.

The behaviour of robotic eyes has been recognized as relevant and useful in
the field of social robotics [1], e.g., to relay social cues, for example during a con-
versation, or to convey the psychological state of the person (or robot) exhibiting
the behavior [13]. Although complex eye behavior includes gaze, saccades, and
blinking, the Mbot has static LEDs for eyes and hence it is only capable of mim-
icking blinks. It is generally acknowledged that blinking patterns vary greatly
depending on several factors including the person itself, the environment, and
the task at hand [14]. The work in [8] reported that both spontaneous eyeblink
rate (SEBR) and inter-eyeblink interval (IEBI) change substantially depending
on the task the subject is doing. Facial expressions are an important medium
for communicating emotions between people [12]. The MBot’s facial features are
limited. Aside from the robot’s eye color, the only configurable feature of the
robot’s face is its mouth LED matrix.

Mouth movements and shapes for the Mbot were shown in [5] and reported
that having a mouth the robot is perceived as more life-like and less sad. Ad-
ditionally, users prefer the human-like mouth, which was rated as friendliest, as
opposed to the wavelike mouth. Using a virtual environment, [9] studied users’
recognition of eight different emotions displayed by the MBot.

In general, the literature agrees that basic emotions “should be discrete,
have a fixed set of neural and bodily expressed components, and a fixed feel-
ing or motivational component that has been selected for through longstanding
interactions with ecologically valid stimuli” [17].

2 Five-point scales are used in all questionnaires.
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3 Questionnaires basics

The participants in the online surveys were not required to interact directly with
the robot. Media contents displaying the adequate features were included on the
questionnaires.

The questionnaires were shared, in person, where people were approached
and asked to answer a quick set of questions to evaluate a given behavior being
performed by a social robot. Access was granted through QR codes and also
distributed through social media, direct messaging, and group chats.

The university environment resulted in most of the answers being from people
in the 18 to 24 years old age group.

Evidence that participants’ engagement in a questionnaire dropping signif-
icantly as the median completion time of the questionnaire increased has been
reported in [3]. Therefore, the duration of all questionnaires was kept under five
minutes.

Demographic or classification questions were left to the end of the question-
naire to reduce the effect of attention fading [3].

3.1 An argument against standard HRI questionnaires

The trait-specific questions do not follow any HRI questionnaire standards such
as the Godspeed or the RoSAS. These were not used since they tend to be
extensive and poorly adapted to audiences that quickly shift attention if the
duration exceeds a short period.

The semantic complexity of the Godspeed and the RoSAS is also a relevant
aspect. Some of the questionnaires presented had children audiences. [18] justify
children’s (namely girls from the ages of five to eight years old) inability to
recognize shame and contempt with the fact that they are unable to conceive
the complexity of these emotions and understand the verbal labels given to them.
The Godspeed and RoSAS use terms such as “quiescent”, “compassionate”, and
“organic” which may be difficult for children to understand. Finally, as referred
in [19], it is still common within the field of HRI to use custom surveys to assess
users’ subjective perceptions of a robot.

4 Survey 1: Arm movements for a social robot

This questionnaire was designed to assess users’ perceptions of the walking arm
movement trait. Two variations of arm movement are proposed. A slower one,
with a smaller RoM, which will be referred to as “small arm movement”. A faster
one, with a larger RoM which will be referred to as “large arm movement”.

This questionnaire had 202 participants, with a balanced gender representa-
tion (51/49%) and ages 18-34 being representing 64% of the participants.

For the trait-specific questions, the users were presented with three videos
(one without arm movements and two with the different arm movements) show-
ing the robot navigating between two goals in an indoors lab. The question-
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naire contained a single question: “How naturalistic was the robot’s arm move-
ment?”. This question was shown in the questionnaire a total of 3 times, once for
each movement type. This feature was created to anthropomorphize the MBot’s
“walking” style by modulating a human-like arm movement that rises in ampli-
tude and frequency proportionate to walking speed [15].

Hypothesis under test are the following. (H1) The users will consider the
robot performing either “small arm movement” or “large arm movement” to be
more naturalistic than when there is no arm movement; (H2) The “large arm
movement” was designed to be more noticeable since the “small arm movement”
was considered imperceptible; the users will consider the “large arm movement”
more natural than the “small arm movement”.

Table 1 shows the corresponding descriptive statistics. There is a clear user
preference for robotic arm movement, as opposed to no arm movement and also
that there is a slight preference for the large over the small arm movement.

Table 1. Descriptive statistics for “no arm movement” (No), “small arm movement”
(Small) and “large arm movement” (Large).

Statistic No Small Large

Mean 2.324 3.58 3.88
Mean rank 1.35 2.18 2.46

Mode 2 4 4
Median 4 2 4

Standard deviation 1.188 0.934 1.022

Although there is some debate over the use of parametric methods to analyze
Likert scale data (see [16]) the interpretation of this data as ordinal, implying
the use of nonparametric methods, is acceptable [7]. Therefore, nonparametric
statistical methods were also used to interpret the Likert scales data.

A Friedman test was used to prove that there is a relevant difference in par-
ticipants’ opinions about the three arm movements (the samples are dependent
since they were drawn from the same group of people).

The null hypothesis is that there is no statistically relevant difference between
the three samples, i.e. there is no difference in perceived robotic arm movement
naturalness between the three arm movement types. A common level of risk,
α = 0.05, was selected [7]. Friedman test was significant (Fr(2) = 158.029, p <
0.001), meaning that the null hypothesis can be rejected.

The Wilcoxon signed ranks and the Sign tests were used for the three compar-
isons (no movement versus small movement, small movement versus big move-
ment, and no movement versus big movement). However, it is also relevant to
quantify the magnitude of the difference between groups, which can be achieved
by calculating the effect size, ES (see [7]). ES, ranges from 0 to 1 and grows
with the difference between groups, can be classified as small, medium and large
when values are approximately 0.1, 0.3 and 0.5, respectively [7], [6].
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Table 2 shows the results. The null hypotheses was that there was no sta-
tistically relevant difference between the two compared samples, i.e. there is no
difference in perceived robotic arm movement naturalness between the two arm
movement types. The risk level is set to α = 0.05/3 ≈ 0.0167, by applying the
Bonferroni procedure. All three comparisons (for both tests) are statistically
significant with p-values below the established α, which means that the null
hypotheses can be rejected.

Table 2. Wilcoxon signed ranks and Sign tests. The z-scores were computed based on
negative ranks for both tests, thus negative values indicate that the first rank in the
calculation is higher than the second one.

Wilcoxon signed ranks Sign test
Small - No Large - Small Large - No Small - No Large - Small Large - No

z-score −9.497 −3.337 −9.914 −8.869 −3.705 −10.628
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
ES 0.668 0.235 0.698 0.624 0.261 0.748

The results indicate that participants clearly noticed a difference between
the three movements. This is confirmed by the z-scores and ES values. There
are large ES values, i.e. bigger than 0.5, with corresponding highly negative
z-scores for comparisons “Small-No” and “Large-No”. Since these z-scores were
computed based on negative ranks, this means that the ratings given to small
and large arm movements were significantly higher than ratings given to no arm
movement.

Comparing the large and small arm movement samples there is a slight pref-
erence for the large arm movement. This is indicated by the negative z-scores
and the small to medium effect size of 0.261.

Therefore, the arm movement has a clear impact on perceived robotic natu-
ralness. Furthermore, robotic arm movement positively impacts perceived robotic
naturalness. Different arm amplitudes and frequencies of movement are noticed
by users. H1 and H2 were both confirmed.

5 Survey 2: Facial expressions for a social robot

This questionnaire was designed to assess the perceptions of people of the blink-
ing pattern and the mouth shapes traits. For the first trait, an eyeblink design
pattern was designed based on human eyeblink data obtained from literature
from the medical field. The pattern can be described by the values in Table 3.

For the second trait, several mouth shapes were designed to convey Ekman’s
seven emotions. These are displayed in Figure 1.

This questionnaire had 153 participants with a balanced gender (41/59%)
and the age range 18-24 representing 45% of the total. In the eyeblink pattern
section, the participants were shown a video of the robot performing the new
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Table 3. Implementation details for each type of blink: Single and double. For the
double blink, the contact time was also used as open time. Times in seconds.

Blink type Sequence Opening-closing time Contact time Total blink time

Single closing-closed-opening (1x) 0.25 0.35 0.85
Double closing-closed-opening-open (2x) 0.15 0.175 1.3

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Fig. 1. Sketches of mouth shapes for the robot and the corresponding Ekman emotion.
(a) Disgust, (b) Anger, (c) Anger, (d) Surprise, (e) Contempt, (f) Sadness, (g) Fear,
(h) Happiness, (i) Surprise, (j) Contempt

blink pattern and were asked three questions. In the mouth shapes section the
participants were shown images of the robot using the different mouth shapes
and were requested to make it correspond to one of Ekman’s seven emotions.

Regarding Casper’s eye blinking, the questionnaire contained the questions
(i) “How [natural] was Casper’s blinking?”, (ii) “What’s your opinion on Casper’s
blinking speed?”, (iii) “Did Casper always blink in the same way?”.

For the Casper mouth shapes a single question was used, “What is Casper
feeling?”.

The second question was meant to confirm that participants found the robot’s
blinking speed adequate since it was designed to match a person’s. The third
question aimed to assess if participants noticed both blink types, the single and
double blinks in Table 3. The following hypotheses were tested. (H3) The users
will consider the blinking speed to be adequate, i.e. with mean, median and mode
statistics of approximately three. (H4) The users will notice the two different
blink types considered. (H5) The users will consider the eyeblink pattern to be
natural, i.e. with mean, median and mode statistics higher than three.

On the mouth shape, the goal was to test hypothesis (H6) Users will consider
that the robot is feeling the emotion that was intended for a given mouth shape.
Mean, median, mode, and standard deviation statistics for the first two questions
on eye blinking are (3.54, 4, 4, 0.946) and (2.88, 3, 3, 0.802), respectively.

Most participants (52% of them) thought that blinking speed was adequate,
i.e. classified speed as a three. This was an expected result since the blinking
speed for the robot was modulated according to medical research performed on
humans. Concerning the different blink types, almost all participants (85% of
them) acknowledged that the robot did not blink in the same way, hence recog-
nizing the different blink types. Although most of the participants thought the
blinking speed to be adequate and acknowledged the different blink types, the
results also show that were still some participants (40% of them) that rated the
eyeblink pattern naturalness with a three or less. However, 58% of the partic-
ipants considered the eyeblink pattern to have a score equal or above four in
terms of naturalness.
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5.1 Sparsity measures

In the context of Social Robotics sparsity measures are not commonly used to
analyse experiment data. The frequent use of questionnaires do acquire per-
ception data originates sequences that can be organized in several forms. For
example, (i) the answers in each sample can be concatenated to analyse possible
bias, or (ii) answers to a specific question of all samples can be concatenated
to identify trends among the population (relative to that answer), or (iii) all
answers of all samples can be concatenated. The sparsity in such sequences can
be an indicator of how answers are distributed.

A sparse dataset can be defined as one in which a small number of coeffi-
cients contain a large proportion of the energy [11]. The concept of sparsity is
used in many engineering domains, including machine learning and signal pro-
cessing, but it is also employed in other fields such as economics, for example, to
evaluate income inequality [11], [10]. In the context of the present thesis, spar-
sity coefficients are proposed to analyze the concordance of participants’ answers
when faced with a categorical scale.

The performance of 16 different measures of sparsity, based on their fulfill-
ment of six properties, is presented in [11]. Of these, only the Gini Index (GI)
and pq-mean (with p < 1, q > 1) fulfill all six properties. The Hoyer index does
not fulfill the Cloning property3. The Hoyer index is used since the Cloning
property is not considered relevant for the proposed application.

5.2 Emotive mouth shapes

In this section the sparsity measures above are used to quantify the concordance
of participants’ answers when presented with the categorical scale of Ekman’s
emotions. Sparsity measures are presented as an alternative to regular descrip-
tive statistics, such as median, mode and standard deviation, which are not
appropriate since the data is categorical and the messages’ order in the x-axis is
random.

Table 4 shows the Gini, pq-mean (p = 1, q = 3) and Hoyer indexes produced
by the emotive mouth shape questions.

Table 4. MBot’s emotion for different mouth shapes. The values must be interpreted
accounting for the range of values allowed for each index.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Gini 0.53 0.398 0.407 0.788 0.717 0.697 0.59 0.835 0.835 0.639
pq-means -0.606 -0.859 -0.643 -0.310 -0.337 -0.397 -0.5 -0.284 -0.284 -0.387
Hoyer 0.471 0.351 0.362 0.921 0.862 0.782 0.591 0.975 0.975 0.763

3 If two populations have identical wealth distributions, the sparsity of wealth in one
population will remain the same when the two are combined [11].
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In what concerns the “Facial expressions for a social robot” questionnaire,
H3 was confirmed. The design of a robotic eyeblink pattern based on human
eyeblink information seems to be appropriate. The mean, median, and mode
values obtained for the question on Casper’s blinking speed are around 3, mean-
ing that users think that it was neither too slow nor too fast. H4 was confirmed
as approximately 85% of participants noticed that the robot did not always blink
in the same way. This suggests that participants noticed the two blink types.
H5 was confirmed. Median and mode values for the question on the blinking
naturalness were equal to four, however, the mean value was very close to three.
This suggests that, although the robot blinked at an adequate speed and with an
irregular pattern, it is hard to consider a robot blinking natural. Based on these
results and on [9], small circular mouth shapes are accurately recognized as sur-
prise. Additionally, bigger but still round mouth shapes are also recognized by
most as surprise, however, they seem to also be interpreted as portraying more
negative emotions such as fear. Also, downward concave curves are accurately
interpreted as sadness and upward concave curves are accurately interpreted as
happiness.

To accurately portray happiness, mouth shape 4h may be used by the MBot.
To accurately portray surprise, mouth shapes 4d and 4i may be used by the
MBot. To accurately portray sadness, mouth shapes 4e and 4f may be used by
the MBot. To accurately portray contempt, mouth shape 4j may be used by the
MBot. No mouth shapes are suggested to accurately represent fear, disgust and
anger.

H6 was only confirmed for mouth shapes 4d, 4f, 4h, 4i and 4j. When the robot
was using these mouth shapes the users interpreted that the robot was feeling the
intended emotion with relative agreement, i.e., GI > 0.6, pq-mean < −0.4 and
Hoyer > 0.7. Otherwise, for mouth shapes 4a, 4b, 4c, 4e, and 4g the hypothesis
was not confirmed.

6 Survey 3: Movement for a social robot

This questionnaire was designed to assess users’ perceptions about trajectory
smoothness and head movement.

For the first trait, the local planner’s configuration parameters were adjusted
so that the robot drew straighter paths rather than S-shaped ones resulting in
a navigation that was perceived as more natural.

For the second trait, the robot used a leg detector to acquire a person’s
location and “look” at the person through the actuation of the neck motor. The
other objective of the questionnaire was to assess how much the robot could
rotate its head so that it is not considered eerie. Two values were tested for the
maximum amplitude of rotation of the robot’s head: 60◦ and 90◦.

The questionnaire had 124 participants, with fully balanced gender (50/50%)
and the age range 18-24 representing the largest portion of the population (32%).
In the questionnaire the participants were shown two videos of the robot navigat-
ing between two goals in a mobile robotics lab environment. In the first video, the
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robot was using the new configuration of the local planner (generating straighter
paths) and in the second it was using the manufacturer’s configuration (generat-
ing more S-shaped paths). After each video participants were asked to rate the
naturalness of the robot’s movement. A final question assesses whether or not
users had found a difference between the movements.

The participants were also shown two videos of the MBot passing by a person
standing still. In the first video, the robot looks for a longer time at the man since
it can rotate its head up to 90◦. In the second video, the robot can rotate its head
up to 60◦, which causes it to look at the man for a smaller period. After viewing
the videos, the participants were asked to answer two questions. Test hypotheses
for the smooth navigation trait were as follows. (H7) Users will consider that
the robot’s navigation style with the new local planner parametrization values
is more natural than the robot’s navigation style with the old parametrization.
(H8) Users will notice a difference between the navigation styles in the two
videos.

Test hypothesis for the head movement (H9) users will consider the robot to
be more familiar with the person in video 2 in which the maximum neck RoM
is 6o◦. (H10) Users will notice a difference between the head movements in the
two videos.

The mean, median, mode, and standard deviation statistics obtained are
(2.83, 3, 2, 1.17) for the manufacturer’s parametrization and (3.73, 4, 4, 1.01) for
the new parametrization. The mean, median, mode and sample distributions
show that there is a user preference for the improved navigation style. Moreover,
85% of the answers noticed a difference in navigation style between the two
parametrizations.

The Wilcoxon signed ranks and Sign tests are shown in Table 5. The null
hypothesis was that there is no statistically relevant difference between the two
compared samples, i.e. there is no difference in perceived robotic navigation
naturalness between the two navigation styles. α = 0.05, a commonly accepted
value for the level of risk [7]; The comparisons with Wilcoxon and Sign tests are
statistically significant with p-values below the established α, which means that
the null hypothesis can be rejected.

Table 5. The z-scores were computed based on positive ranks for both tests, thus
negative values indicate that the second rank in the calculation is higher than the first
one.

Manufact. - Improved navigation
Wilcoxon signed rank Sign test

z-score -6.635 -6.076
p-value < 0.001 < 0.001
ES 0.596 0.546

From Table 5, there were statistically significant differences between the con-
ditions, confirmed by both tests. This suggests that the sample distributions are
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statistically different from one another. The results indicate that participants
noticed a difference between the two navigation styles. The aforementioned pref-
erence for the improved navigation style over the manufacturer’s is confirmed by
the z-scores and ESs values. There are large ES values, i.e. bigger than 0.5, with
corresponding highly negative z-scores. These z-scores were computed based on
positive ranks, hence the ratings given to the improved navigation style were
significantly higher than the ratings given to the manufacturer’s one.

The results obtained for the two trait-specific questions for the look at people
trait with 69% agreeing that in video 1 Casper was more familiar with the person,
and 87% recognizing differences in the head movement between the two videos.

The conclusions from the “Movements for a social robot” questionnaire can
be summed up as follows. H7 was confirmed. Both descriptive and nonparamet-
ric inferential statistics used, indicate that users find the new navigation style,
which favors straight paths, more natural than the manufacturer’s, which favors
S-shaped ones (even when not faced with obstacles). H8 was confirmed. Most
questionnaire participants (85% of them) found a difference in the robot’s move-
ment between the two videos. H9 was not confirmed. Most users found that the
robot was more familiar with the person in video 1 in which the maximum neck
RoM is 90◦. It is inconclusive whether the 60◦ of the 90◦ RoM should be used to
increase robotic anthropomorphism; H10 was confirmed since 87% of the partici-
pants considered that the robot’s head movement was different in the two videos.
However, as previously discussed, this may not be due to the different RoMs but
rather the different head movements that were performed by the robot when it
wasn’t looking at the person.

7 Survey 4: Perception of nonverbal sounds

The questionnaire on the sounds for a social robot was designed to assess users’
perceptions of (meaningful) nonverbal sounds. R2D2-like sounds4 were used.
meant to convey simple messages that would make sense for a robot to use during
interactions. The chosen messages were “Goodbye”, “Hello”, “Low battery”,
“No” and “Yes”.

The questionnaire had 116 participants, with a balanced gender (59/41%)
and 18-24 and 25-34 being the most represented age ranges (33% and 20%,
respectively).

The participants were shown videos including the sounds and asked what
the robot was saying. The options provided were the five messages that were
intended for the sounds. The questionnaire included a single question, namely
“On the videos with sound (a)...(f), what is Casper saying?”, repeated a total
of six times.

The sounds were displayed to the participants without any context or cues,
hence it is expected that the participants do not fully agree about their meanings.

Regarding the sounds trait, the hypothesis is, (H11) Users will consider that
the robot saying the intended messages for a given sound.

4 Credits: https://github.com/koide3/ros2d2
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Table 6 shows the Gini, pq-mean (p = 1, q = 3) and Hoyer indexes corre-
sponding to the samples produced by the six “What is Casper saying?” ques-
tions. Similarly to the mouth shape and Ekman’s emotions, sparsity measures
are presented as an alternative to regular descriptive statistics which are not
appropriate since the data is categorical and the messages’ order in the x-axis is
random.

Table 6. Meaning of sounds. The sparsity values must be interpreted taking into
account the total ranges computed for the sample size.

(a) “Low battery” (b) “Hello” (c) “No” (d) “Goodbye” (e) “Hello” (f) “Yes”

Gini 0.617 0.579 0.579 0.290 0.369 0.414
pq-means -0.460 -0.494 -0.494 -0.799 -0.76 -0.692
Hoyer 0.741 0.676 0.676 0.214 0.307 0.369

The results show thatH11 was only confirmed for sounds 6a, 6b, and 6c. Upon
hearing these sounds the users interpreted the intended message with relative
agreement, i.e. GI > 0.57, pq-mean < −0.5 and Hoyer > 0.67. Otherwise, for
sounds 6d, 6e, and 6f the hypothesis was not confirmed.

8 Conclusions

The paper presented a detailed study on the design of basic social behaviours
for a specific robot5. The methodology used is applicable to other studies as
well. The use of sparsity measures when faced with a categorical scale is also
proposed. Additionally, the study provides useful guidance for the design of
anthropomorphic behaviors for social robots.

The results show that users are able to discriminate small differences in
robotic behaviours. The parametrization of navigation functions was shown to
have effect in the social skills of the robot. This raises the interesting possibility
of considering an optimization problem over the space of parameters of the nav-
igation system which is to be covered in future work together with real world
experiments.
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