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ABSTRACT 

 

Melanoma is the most fatal form of skin cancer, making its 

research a hot topic worldwide. Despite the promising results 

achieved by recent methods, they often disregard one of the 

most important criteria considered by dermatologists: the 

intrapatient lesion context. In this work we address this 

limitation, leveraging the medical concept of the ugly 

duckling (UD) lesion, and translating it to both the deep 

learning and the anomaly detection fields. Considering this, 

we propose an integrated diagnosis at the image and patient 

levels. This model aggregates blocks of supervised trained 

networks, such as Convolutional Neural Networks and 

self‑supervised learning as is the case of Autoencoders. 

Overall, our results strongly support the hypothesis that the 

intrapatient context can enhance the diagnosis. The detection 

of melanoma at the image level improved by 7%, while the 

patient diagnosis improved by over 10% compared with 

models that did not incorporate the patient context. 

 

Index Terms— Deep Learning, Outlier Detection, 

Melanoma, Ugly Duckling, Dermoscopy 

 

 

1. INTRODUCTION 

 

The rapid development of metastatic disease is one key 

reason for melanoma being the most fatal form of skin cancer. 

It is crucial to detect melanomas in the early stages to increase 

the likelihood of a successful treatment [1]. One way to 

support clinicians is through the development of automatic 

diagnostic systems.   

  
Previous works have already proven the efficacy of deep 

neural networks (DNNs) for skin lesion classification using 

dermoscopy images [2], [3]. However, their output is often 

based, exclusively, on a single image input. Such approaches 

perform a greedy analysis of the patient, where each of its 

lesions is independently analyzed and it is assumed that no 

information can be gained from comparing them. During our 

experiments we observed that such assumptions can be 

misleading, resulting in poor diagnostic performances at the 

patient level. As an example, one of our models that achieved 

an area under the curve (AUC) above 87.0% at the image 

level, would miss 40% of the melanoma patients and 

misdiagnose approximately 45% of the benign patients, 

resulting in a high number of unnecessary excisions. These 

results raise the research community's awareness for the 

importance of incorporating a patient-level decision on the 

diagnostic systems. 

  
In fact, dermatologists follow several standard 

methodologies during a screening session, opposed to a 

single image diagnosis. One evidence accepted inside the 

community to differentiate melanomas from benign nevus is 

the ugly duckling (UD) – usually described as an odd lesion 

that looks different from the other patient’s lesions [4]. From 

a machine learning perspective, an UD can be seen as an 

outlier or anomaly that deviates from the normal phenotypic 

expression of a patient. The concept of UD has been recently 

explored by M. Mohseni et al. [5] and L. Soenksen et al. [6], 

who proposed multi-stage pipelines to detect outlier lesions 

using total body photography (TBP). TBPs are significantly 

different from dermoscopy as the first ones include large 

body parts and several lesions in the same image, which also 

implies less resolution. Both works approach the UD 

detection problem by computing anomaly scores for each 

lesion obtained from a segmentation process. 
To the best of our knowledge, the only model addressing 

the detection of UD in dermoscopy images was proposed by 

Z. Yu et al. [7]. This is an end-to-end approach that passes 

the images through a convolutional neural network (CNN) 

and collects the deep features. Then, a transformer encoder 

receives these features and models the dependency between 

different lesions from the same patient. Finally, these 

embeddings feed a classification network. While this 

approach showcases the potential of UD to improve 

melanoma diagnosis, the use of transformers constrains the 

number of images that can be used to capture the patient 

context, meaning that for patients with a high number of 

lesions a few must be discarded. 
  
In our work we aim to improve the melanoma skin cancer 

diagnosis by proposing a new strategy to incorporate the 

intrapatient context in DNNs. We propose an integrated 

diagnosis that comprises two main branches – an image 

diagnosis and an auxiliary patient diagnosis. In the end we 

merge them to output a diagnosis for each image that is 

influenced by the other lesions from the same patient. Briefly, 

the image diagnosis branch uses pretrained CNNs, and the 



patient diagnosis consists of a logistic regression (LR) that 

receives patient embeddings. Those are built with 

preprocessed features from the CNN and reconstruction 

errors from a Convolutional Autoencoder (CAE) and take 

inspiration from traditional outlier detection strategies. 

Contrary to [7], our formulation does not assume a fixed 

number of lesions per patient. We experimentally 

demonstrate the validity of our approach, including a final 

generalization analysis using the held-out test set of 

ISIC 2020. This is, to the best of our knowledge, the first 

demonstration that intrapatient context can improve the 

performance of melanoma diagnosis across datasets. 

  
The remain of the paper is organized as follows. The next 

section has the details regarding our experiments, focusing on 

the integrated diagnosis and the main reasonings for each 

block. Then, on section 3 we describe the experimental setup, 

which includes online data augmentation, dataset partition, 

and computational hardware. Section 4, reports and interprets 

the results obtained. Finally, in section 5, we highlight the 

major contribution of this work. 
 

2. METHODOLOGIES 

 

As declared before we are interested in optimizing the 

melanoma diagnosis given the characteristics of each patient. 

The idea is to search for the UD evidence, which can be 

interpreted as outlier samples when confronted with the 

patient’s patterns of normality, i.e., the patient phenotype. 

 

2.1. Dataset 

 

The dataset comes from the 2020 SIIM-ISIC Melanoma 

Classification Challenge [4]. It comprises 32,701 images 

from over 2,000 patients and correspondent metadata, 

including encrypted patient identification, age group, sex, 

lesion’s anatomic site, and lesion diagnosis. One main 

particularity of this dataset is the class imbalance. We 

considered two classes – the benign class with 98.2% of the 

total examples and the melanoma class with the 1.8% left. 

Also, the number of lesions per patient varies between two 

and 115. Furthermore, as the images come from various 

clinics, we created a pre-processing protocol to minimize 

disparities and standardize the input across the experiments. 

We apply the Shades of Gray algorithm [8] to correct the 

image’s color and resized the output to 300x300 pixels using 

padding to maintain the aspect ratio. We excluded the 425 

duplicated images listed in the challenge webpage [9]. 

 

2.2. Integrated Diagnosis 

 

The integrated diagnosis is composed by an upper path 

responsible for the single image diagnosis, and a lower path 

for the patient diagnosis. Then, both paths are concatenated 

to feed a fully connected layer that is responsible for 

weighing the contribution of each path in the final diagnosis.  

 

Fig. 2. Pipeline for the integrated diagnosis combining both the 

image and the patient diagnosis. 

 

 
 

Fig. 3. From feature vectors to patient embeddings. 

 

This pipeline is shown in Fig. 2. It is noteworthy that the final 

output scores already carry the intrapatient context. 

Upper Path: This path is responsible for processing each 

dermoscopy image independently and producing a 

preliminary image level diagnosis. It is composed by a 

standard CNN architecture with a global average pooling 

(GAP) layer between the last convolutional layer and the 

output one. The output of the GAP for each image of a patient 

𝑧𝑝
𝑛   ∈ ℝ𝐿 is also used by the lower path as described below. 

Lower Path: This path performs a patient level diagnosis 

based on two types of descriptors. The first one relies on the 

comparison between the feature vectors 𝑧𝑝
i  of the various 

images. Since we want to detect outliers (the UDs) in the 

images, we opted to compute Euclidean and cosine distances 

between the vectors of features and resume these high 

dimension distance matrices using the five statistical 

operations summarized in Fig. 3. The second descriptor 

leverages the recent advances with self-supervised learning 

(SSL) and trains a Convolutional Autoencoder (CAE). This 

CAE was optimized to reconstruct the dermoscopy images, 

minimizing the mean squared error (MSE). We believe this 

may be a great way of taking advantage from the dataset 

imbalance, as the CAE has less chances to learn from the 

melanoma examples. Consequently, we expect discrepancies 

in the reconstruction performance for each class. The CAE is 

applied to all images of a patient and the MSEs are computed. 

Finally, the errors are aggregated as in the case of the GAP 

vectors, using the five statistical operations in Fig. 3. The 

descriptor’s combination is called a patient embedding,  

ℎ𝑝 ∈ ℝ𝐸. The patient embedding is then fed to a LR that 

predicts if a patient has at least one melanoma. 
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3. EXPERIMENTAL SETUP 

 

3.1. Model Training 

 

At training time, we used a warm start initialization whenever 

possible. This means that we start by training each path 

independently and only then train the integrated model. For 

the upper path, we pretrain a CNN on the ISIC 2020 set, using 

a weighted binary cross-entropy (BCE) loss to predict a 

diagnosis for each image. We penalize errors in the benign 

class with a weight 𝑤𝑏 = 0.02, and 𝑤𝑚 = 0.98 for the 

melanoma class. The choice aims to reflect an approximation 

to the classes’ prior probability. This strategy prevents the 

converge to solutions in which the classifier is biased towards 

the major class. The LR was pretrained using patient 

embeddings collected from the previous described CNN as 

input. In this case we predict if a patient has at least one 

melanoma among its lesions. For that reason, we adjusted the 

BCE weights to 𝑤𝑏 = 0.2 and 𝑤𝑚 = 0.8. The integrated 

diagnosis is trained as follows. On each epoch, we train the 

upper path and the weights after the concatenation operation, 

while keeping the lower path with its weights frozen. 

Additionally, before the first epoch and on every 𝐾 ∈ ℕ 

epochs, we compute the new embeddings for each patient, 

with the features collected from the current upper path model, 

replicating the process shown in Fig. 3. After the embeddings 

update, we train the LR, exclusively, until notice convergence 

or reaching a maximum number of epochs. Then, in case the 

new patient diagnosis performs better than the previous, we 

update the general model with this best new model. This way 

we distribute the training process to alternately optimize both 

paths. Regarding the loss functions used, we kept the loss 

function from the warm training. The only modification made 

is related with the logits normalization before computing the 

losses. Similarly to the authors of [10] we normalize the logits 

to avoid overconfident diagnosis’ probabilities. The 

normalized logits, ℓ′, are obtained by the following operation,   
 

ℓ′ =
ℓ

𝑇 ∙ (‖ℓ‖2  +  𝜁)
  , (1) 

 

where ℓ represents the logits, in this case, vectors of two 

components, and 𝑇 the temperature constant that scales the 

normalized logits magnitude. In this work we use 𝑇 = 0.005 

as suggested in [10]. The constant 𝜁 = 10−7 was used to 

ensure numerical stability. 

One way to improve the model generalization to new data 

is by having a more diverse dataset. In our case, we applied a 

set of online transformations to the images at training time. 

Specifically, random horizontal and vertical flips, both with 

an independent probability of 50%, followed by a random 

erasing. This last transformation replaces a rectangle of the 

image with black color pixels. The frequency of occurrence, 

and the rectangles’ size and ratio were tuned as suggested in 

[11]. The only experiment that didn’t use this transformation 

 
1 Upon acceptance of the paper, the code will be released at github.com/antoniogamamendes.   

is the CAE for lesion reconstruction since we did not want it 

to learn so much noise. Additionally, when using the 

ImageNet initialization, we normalized each image channel 

with the mean and standard deviation of the ImageNet dataset 

as claimed in [12]. All experiments were performed on a 

computer equipped with an Intel(R) Core(TM) i7-7700 CPU, 

16GB RAM, and an NVIDIA GeForce GTX 1060 GPU, 6GB. 

 

3.2. Evaluation Strategy and Metrics  

 

We split the ISIC 2020 train set to have a set of unseen data. 

The partition was random, while simultaneously respecting 

the following criteria: i) the training and validation sets are 

disjointed with proportions of 80% and 20%, respectively; 

ii) all lesions from a patient need to be grouped, either in the 

training or the validation sets. In the end, both sets maintained 

the original proportions between classes. Furthermore, the 

ISIC 2020 challenge provides a test set, but the ground truth 

labels are not publicly available. So, the test set can only be 

used to assess the model’s performance through the challenge 

submission site [13]. We performed a final and unbiased 

evaluation of our models with this set. To evaluate the results, 

we computed the following metrics: i) specificity (SP);  

ii) sensitivity (SE); iii) balanced accuracy (BAC); and AUC. 

 
4. RESULTS 

 

We tested several combinations of popular CNN 

architectures for the upper path and the encoder of the CAE. 

We report the results for the best configurations, however 

additional models can be accessed in our GitHub1. For the 

trained CNN we picked the EfficientNet-b2. For the LR we 

opted for the embeddings resulting from the EfficientNet-b2, 

and the U-Net Resnet18 (CAE) reconstruction errors. 

Table 1 shows the results for our validation and ISIC test 

sets, both at the image and patient level. The baseline model 

corresponds to training only the upper path in Fig. 2. We also 

report the performance for two integrated models: in the first 

one only EfficientNet-b2 is used to build the patient 

embeddings to the lower path, while in the second we also 

consider the CAE reconstruction errors. The performance per 

patient is assessed by converting the results per image into a 

patient diagnosis as follows: if at least one of the images is 

diagnosed as melanoma, then the patient will be diagnosed 

accordingly. While we could have used the lower path for 

this, performing a final patient diagnosis based on the images 

is a reasonable assumption that matches the clinical practice 

and allows us to compare our results with the baseline. 

Overall, our results suggest a performance increase when 

the patient context is used in the diagnosis. The integrated 

diagnosis has a greater melanoma SE in both performances’ 

assessments, per image (~7%) and per patient (~10%). In 

fact, the biggest advantage of the integrated diagnosis is the 

ability to improve the intrapatient overall diagnosis. 



 

Fig. 5. Lesions from a 90 year old male patient. On the left, the 

baseline diagnosis gave the right diagnosis for one of the 

melanomas, producing a FP and a FN. As a result of the integrated 

diagnosis, the FN diagnosis has been corrected, however, the label 

for the first image remains incorrect. The ground truth label (text) 

and the predicted one (image contour – red melanoma and green 

benign) are reported. 
 

Furthermore, the integrated diagnosis benefits from 

combining the CAE reconstruction errors statistical 

operations in the patient embeddings.  As consequence, when 

comparing both integrated diagnosis, with and without the 

CAE, the AUC increased by 5%. Finally, the test set 

performance did not deviate too much from the validation set, 

which indicates developed the models did generalize well, at 

least for this particular dataset. Our scores are also in line with 

what is reported in the submission platform, where the AUC 

scores’ range for the test set is [0.472, 0.946]. It is important 

to stress that we do not perform additional steps to improve 

performance, such as test time augmentation or ensemble. To 

translate this numerical overview, we present from Fig. 5 to 

Fig. 7, three clinical examples of patients for whom 

integrating their context produced a better diagnosis outcome 

than the one achieved by the baseline diagnosis (without 

context). For simplicity, we choose some scenarios where 

the integrated diagnosis helps. Meaning that corrections were 

made in different directions (FN and FP samples).  

A direct comparison between our results and those 

reported in [7] is not possible, since different partitions of the 

 

Fig. 6. Nine lesions from a 55 year old male patient. In this case, all 

lesions were benign, but the baseline diagnosis produced a FP. The 

mistake was corrected in the integrated diagnosis that ended up 

giving a full correct diagnosis for all the patient’s lesions. The 

ground truth label (text) and the predicted one (image contour – red 

melanoma and green benign) are reported. 
 

 

Fig. 7. Nine lesions from a 35 year old woman. Despite being able 

to detect only melanoma, the baseline diagnosis also produced two 

FP diagnoses. However, the patient context helped the integrated 

diagnosis discard one of the mistakes. The FP not corrected may be 

a difficult assessment due to the significant colorization difference 

to the other lesions. The ground truth label (text) and the predicted 

one (image contour – red melanoma and green benign) are reported. 

 

ISIC 2020 are used for training and validation, and they do 

not assess the performance on the test set. Nevertheless, we 

are able to achieve similar improvements in melanoma SE  

(~6% for the full model in [7] vs ~7% in this work) without 

constraining the number of images per patient. Additionally, 

we achieve greater improvements in the diagnosis at the 

patient level (~10% in our case, vs ~2% in [7]). 

 

5. CONCLUSIONS 

 

This work addressed the problem of melanoma diagnosis in 

scenarios where multiple dermoscopy images for the same 

patient are available. To address this challenge, we proposed 

an integrated diagnosis system that combines a diagnosis at 

the image and patient levels. The integrated system did 

successfully show a positive effect in combining several 

images from the same patient to improve the overall 

diagnosis. The detection of melanoma at the image level 

improved 7%, while the patient diagnosis improved by more 

than 10%, compared to the baseline models which did not 

include the patient context. These results open the door to 

further research on the use of patient context to improve the 

performance, safety, and trustworthiness of automatic 

diagnosis systems.  

Table 1. Results evaluated per image and per patient considering the 

baseline diagnosis and the integrated diagnosis (without and with 

the CAE reconstruction errors). The best BAC’s are in bold. 
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