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ABSTRACT

This paper presents a novel framework for myocardial le-
sion classification in T1 maps. Late gadolinium enhance-
ment (LGE) imaging is the gold standard for detecting my-
ocardial lesions, however, it requires contrast injection, which
raises two main challenges: i) increased scan times and pa-
tient preparation, and ii) acute side effects in a certain class
of patients. It would therefore be desirable to use a less in-
vasive method, such as T1 mapping, however, this modality
does not always present noticeably increased T1 values in the
lesion. Taking into account the above challenges, we propose
a two stage framework: i) the approach is able to learn as-
sociations between T1 map and LGE image during a training
phase; (ii) in a test phase, only the T1 map is used, using the
previously learned associations. The associations are learned
following three siamese inference methodologies. Our exper-
imental results testify the usefulness of the proposed approach
on classification of the myocardium lesion in T1 maps.

Index Terms— CMR, T1, LGE, Siamese Network

1. INTRODUCTION

Late gadolinium enhancement imaging (LGE) in cardiac
magnetic resonance (CMR) relies on the injection of a
gadolinium based contrast agent (GBCA) that freely dis-
tributes in the extracellular space and presents increased
accumulation in regions with scar tissue [1]. Regions with
accumulated GBCA have shorter T1 relaxation times and pro-
duce hyper-intense signals. LGE imaging has been validated
and shown to be sensitive to myocardial lesion detection in
various types of cardiovascular diseases [2, 3, 4]. However,
the use of this modality is not advised in patients known
to have acute side effects to GBCA [5] or those with im-
paired kidney function [6]. Circumventing the need for LGE
would allow the diagnosis and study of cardiomyopathies in
a broader group of patients, and also reduce scan time and
associated costs in CMR.

Native (no contrast) T1 mapping could provide an ade-
quate candidate for tissue characterization without the need
for a contrast agent. This modality measures the spin-lattice
relaxation time, a fundamental tissue property sensitive to
multiple myocardial abnormalities [7, 8], however, its use in a
clinical setting is impeded by a lack of specificity and possible

confounding factors [7].
The main goal of this study is to assess if there is any in-

trinsic information in native T1 maps that correlates to LGE
images, and if it is possible to use that information to clas-
sify myocardial lesions in the absence of LGE. For this pur-
pose, a convolutional siamese network was used to learn from
both modalities. Since these types of networks have been
successfully used to learn similarity between two inputs in
problems such as facial recognition [9] and fake signature de-
tection [10], we hypothesized that it would be an adequate
approach to extract a representation that contains information
common to T1 maps and LGE images, so that it could be used
in a classifier network to detect scar tissue. The designed net-
work and two proposed variations were trained on pairs of
T1 maps and corresponding LGE images of healthy individu-
als and patients diagnosed with hypertrophic cardiomyopathy
(HCM). HCM is a common disorder characterized by hyper-
trophy and fibrosis in the left ventricle (LV), known to present
focal hyper-intensities in LGE [11, 12]. Changes in T1 maps
are more subtle but can be valuable to detect diffuse changes
and are becoming increasingly more used in the clinical set-
ting [7, 13]. In a subsequent validation phase, the trained net-
work was used to detect scar tissue using only the T1 map.

2. METHODS

A description of used data and its pre-processing is provided
in section 2.1 and details on model architecture in section 2.2.

2.1. Data and Pre-processing

T1 maps and LGE image pairs were acquired from 15 sub-
jects, two short-axis slices of the LV were selected from each
(medial and basal), resulting in 30 image pairs, out of which
17 presented hyper-intensities in LGE. Since LGE images are
typically acquired 10 minutes after the T1 maps, to reduce the
impact of eventual subject movement, an intra-subject image
registration was performed. Directly registering T1 maps to
LGE space did not result in a good alignment. Each T1 map
was hence transformed to LGE space, by first aligning bi-
nary myocardium masks, which were manually segmented.
A lesion mask was also obtained from the LGE image, iden-
tifying hyper-intense pixels compared to a healthy reference
region. Pixels with intensities higher than six-standard devi-
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(b) Siamese network architecture
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(c) Classification network architecture

Fig. 1. Proposed methodology for lesion classification from T1 map patches, by taking advantage of LGE information.

ations above the mean signal intensity of the healthy region
were labeled as lesion [14].

The data was divided into train and test sets (four image
pairs). For data augmentation, a sliding window was used
to obtain pairs of square patches centered on pixels inside
the myocardium mask (see Fig. 1 for an illustration). Dur-
ing this process, some patch pairs were also randomly flipped
to obtain new samples. Each patch pair was labeled as pos-
itive/negative if it contained at least 25% of the total lesion
present in the entire image plane from where the patch was
taken. A total of 920 training samples (371 positive, 549 neg-
ative) and 222 test samples (117 positive, 105 negative) were
obtained.

2.2. Network design

The network architecture used in this study consists of two
sub-networks: i) a siamese convolutional network inspired
by [15] and ii) a fully connected classifier network. The
siamese network has two identical branches, each branch
takes one type of input, T1 or LGE patches, and consists
mainly of four convolutional layers and two linear fully con-
nected layers. The branches of the siamese network have

shared weights that are updated simultaneously. In prac-
tice, this means that the two inputs are forwarded consec-
utively through a single network before back propagation.
Each branch produces a 128 size feature encoding and every
pairwise combination of feature vectors in a mini-batch are
compared with a normalized-temperature cross entropy loss
function. Concretely, for a given pair of T1 and LGE image
patches (IT1

i , ILGE
j ) in a mini-batch of size N , the pairing

loss is given by

LP (IT1
i , ILGE

j ) = −log
exp(sim(f(IT1

i ), f(ILGE
j ))/τ)∑N

k=1 exp(sim(f(IT1
i ), f(ILGE

k ))/τ)
yi

(1)
where f(IT1

i ), f(ILGE
j ) are the feature vectors produced by

each siamese branch and sim(x, y) is the cosine similarity be-
tween them, τ = 0.07 is the temperature hyper-parameter and
yi is the class for a given IT1

i , that indicates which is the cor-
responding ILGE

j (i.e. extracted from the same anatomical
region) in that batch. This loss function enables the network
to learn to discriminate matched pairs of T1 and LGE patches,
i.e., pairs of patches extracted from the same anatomical re-
gion of the same subject, from mismatched pairs.

The vector encoding produced by the T1 branch of the
siamese network is then passed to a classifier network, which



Classification Accuracy Classification Loss Pairing Loss
balanced positive negative

pure classifier 50 100 0 5.11 -
siamese 69.51 41.88 97.14 1.31 1.63
partial 78.96 59.83 98.1 0.91 1.82

decoupled 81.61 71.79 91.43 0.51 1.78

Table 1. Test set accuracies and losses

consists of three fully connected layers. The final output of
this subnet is passed to the binary cross entropy loss function

LC(I
T1
i ) = −log

exp(g(IT1
i ))∑K

k exp(g(IT1

i,k))
yi (2)

where g(IT1
i ) is the classification of the ith T1- image patch,

K = 2, and yi is the ground-truth label that indicates if a
given patch contains lesion. Note that this subnet does not
have a twin branch for LGE encoding and no weight sharing.

The total network (siamese plus classifier) aims to mini-
mize the total loss function

LT (I
T1
i , ILGE

j ) = LP (I
T1
i , ILGE

j ) + LC(I
T1
i ) (3)

With this approach, the network will produce a vector from
T1, that encodes features common to LGE. Thus, containing
enough information for scar tissue classification.

3. EXPERIMENTAL SETUP

In our experimental setup, we introduced two additional vari-
ations to the architecture described in Sec. 2.2, the three mod-
els are as follows: (i) full weight sharing, (ii) partial weight
sharing, and (iii) decoupled architectures.

In (i), all layers with learnable parameters in each branch
of the siamese subnet share their weights, as illustrated in or-
ange double arrows in Fig. 1 (a), referred to as siamese net-
work. In (ii), only half of the learnable layers have weight
sharing, shown in yellow arrows in Fig. 1 (a), and referred to
as partial network. In (iii) the network has no shared weights
at all, the decoupled network. These three networks were
compared against a naive approach: pure classifier, imple-
mented by taking the siamese network and dropping the LGE
branch, and thus, dropping the LP term from Eq. 3.

All networks were trained on mini-batches of size 32, for
300 epochs and learning rate lr = 1e−4.

4. RESULTS AND DISCUSSION

The classification accuracy is presented in Tab. 1. The naive
approach had zero predictive power and classified all samples
as positive due to overfitting. This increases our confidence
that the LGE is adding valuable information to the training
process. We initially hypothesized that the siamese network
with full weight sharing would be the best approach to extract
a feature vector for lesion classification. However, we ex-
perimentally observed that performance increased with less

weight sharing and that the fully decoupled network achieved
the best balanced accuracy. This finding is aligned to [16],
where it is argued that the decoupled network provides the
best results when the inputs come from different sensors,
while introducing weight sharing benefits inputs from the
same modality. While the T1 map and LGE are technically
acquired with the same sensor, the MRI scanner, they are still
separate modalities that present very different contrasts, and
the siamese network used in our work was originally intended
to pair grayscale images of signatures that have mostly very
similar contrasts. This could explain why decoupling im-
proved performance. This means that, with weight sharing,
the network is constrained to learn features that are common
to both T1 and LGE. On the other hand, having a network
without weight sharing allows to capture distinct features that
are specific to each of the modalities T1 and LGE.

5. CONCLUSION AND FUTURE WORK

We presented a siamese network framework to classify lesion
in T1 map patches, by taking advantage of the information
provided by LGE during training. Our findings showed that
the siamese approach outperforms the naive classifier and, by
experimenting with variations of the architecture, we found
that decoupling the weights improved performance, possibly
due to the dual modality nature of the problem, which benefits
from fully independent data streams. While the data sample
used in this study could be considered small, the achieved
classification accuracies motivate further work in this direc-
tion, for this type of problem. Future works should collect
a larger set of data and expand the proposed methodology
to integrate lesion segmentation besides the classification.
This will requires larger training dataset, that can be tackled
reducing the patch size so as to decrease the lesion location
uncertainty.
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