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Abstract. As humans, we have a remarkable capacity for reading the
characteristics of objects only by observing how another person carries
them. Indeed, how we perform our actions naturally embeds informa-
tion on the item features. Collaborative robots can achieve the same
ability by modulating the strategy used to transport objects with their
end-effector. A contribution in this sense would promote spontaneous
interactions by making an implicit yet effective communication chan-
nel available. This work investigates if humans correctly perceive the
implicit information shared by a robotic manipulator through its move-
ments during a dyadic collaboration task. Exploiting a generative ap-
proach, we designed robot actions to convey virtual properties of the
transported objects, particularly to inform the partner if any caution is
required to handle the carried item. We found that carefulness is cor-
rectly interpreted when observed through the robot movements. In the
experiment, we used identical empty plastic cups; nevertheless, partici-
pants approached them differently depending on the attitude shown by
the robot: humans change how they reach for the object, being more
careful whenever the robot does the same. This emerging form of motor
contagion is entirely spontaneous and happens even if the task does not
require it.
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1 Introduction

Humans routinely engage in joint actions and coordinate their movements with
others, e.g. working together, playing a team sport, or merely moving objects.
These tasks involve a collaborative process to coordinate attention, communi-
cation, and actions to achieve a common goal. During this process, humans
observe the behavior of their partners to anticipate their actions and plan their
own accordingly. Verbal communication is not the only means to express inten-
tions. Since verbalizing every step of the interaction would be time-consuming
and cognitively expensive, humans also exploit their bodies and movements to
exchange information. While executing an intended action, we also implicitly
communicate to others our goal, its urgency, and the required effort. This abil-
ity is referred to as non-verbal communication (i.e., non-verbal cues), and it can
be expressed with our body: from turning the head or torso to a simple eye
movement.

In ordinary life, humans are very proficient at monitoring different compo-
nents of other people’s kinematics, which they leverage to disclose hidden qual-
ities of a handled item. For instance, studies on human non-verbal cues found
that joints kinematics and dynamics of hand manipulation are crucial features
to estimate the weight of a manipulated object [1,19,23] or predicting action
duration [9].
Given the importance of implicit cues in human-human communication, we be-
lieve it should be taken into account also in the robotic field. A robot meant
to interact with humans, able to exploit the same communication channels as
the partner, would guarantee a natural and less cumbersome experience. Indeed,
numerous channels of communication may be employed to convey information
between robots and people (such as synthetic speech, light-based, digital display,
mixed or augmented reality [7,18,16]). However, a valuable alternative that does
not require any training or explicit instruction is mediated by movement, and it
should be sought whenever feasible. The impact of legibility and predictability of
robot motion in human-robot interaction has been extensively studied by Dra-
gan et. al [4], where especially the trajectory of the movements was modulated
to convey information associated to the robot next task or goal. When designing
a robot movement, other factors such as the velocity or the curvature can be
taken into account, for instance to make the emotional attitude of the action
more legible [24]. Human non-verbal cues from eyes, head, and arm movements
encode the intention driving the action; when such cues are embedded onto a
robot, they similarly allow to read the robot’s intention [6]. Regarding object
manipulation, object affordances was popularized in robotics and linked to (i)
the action associated with the object, (ii) a physical property, or (iii) the type
of behavior required to manipulate the object [21,11]. Specifically, works on af-
fordance reasoning examine the object’s properties [26,10,28], e.g., how to infer
the water level in cups [17], although trying to directly detect such property
from the object appearance, making it only possible with transparent cups and
glasses.
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To overcome the need to understand the properties of objects from their ap-
pearance alone, it is relevant to quantify the effect their features have on the
kinematics of the action during manipulation. In our previous works, we focused
on carefulness associated to human motion and we exploited human kinematics
to infer the impact of cup water content on human motion, irrespective of the
cup’s transparency [5,13]. Indeed, it has been shown that humans alter their be-
havior, adapting to the properties of the object they transport, such as weight,
fragility, or content. Additionally, depending on the type of cup, these behav-
iors may be more predominant or less, which may indicate that the difficulty of
the manipulation impacts the human motion [20]. Knowing from the mentioned
studies that humans reveal some object properties through movements, in this
work, we investigate if it is possible to modulate the movements adopted by a
robot end-effector during the transport of an object to communicate some of
its hidden properties. In a previous study [14], we assessed the communicative
potential of movements on different humanoid robots, by asking participants to
explicitly judge the robotic motion’s carefulness after observing it in videos; we
also investigated which possible object features may induce a careful manipula-
tion, since carefulness definition is not univocal. This study proposes a dyadic
interaction with a new robotic manipulator in a realistic collaborative context.
We used Generative Adversarial Networks (GANs) to synthesize and design the
robot movements to convey a particular style feature associated with object ma-
nipulation: carefulness [8]. By using a generative approach, we can consistently
produce novel but meaningful robot actions. Other strategies, such as dynamic
motion primitives [22], transformer GANs [15] or variational autoencoders [3]
may be applied to synthesize artificial kinematics data; however, our goal is not
a comparison with other state of the arts methods: the main novelty is rep-
resented by how we apply synthetic data to generate communicative robots’
actions. In this study, we first explore (H1) whether the attitude conveyed by
the robot’s movements is perceived as expected, i.e., if the carefulness (or its
absence) is correctly expressed by our controller; in this sense, we hypothesize
(H1.1) that participants would properly classify if the observed action was care-
ful or not. We also verify (H2), if a robot transporting objects and expressing
the appropriate human-like behavior can invoke motor adaptation in the human
response. We assume (H2.1) that, if a contagion emerges, careful actions from
the robot would elicit slower movements in the human, and vice versa.

2 Materials and Methods

The objective of our study is to assess whether the generated robot’s movements
are informative of the properties of the transported object. Moreover, we evalu-
ate if the robot behavior affects how humans perform their tasks.
We will now explain how we synthesized the required velocity profiles and con-
trolled a Kinova Gen3 robot with 7 degrees of freedom to execute them; then,
we will describe the experimental setup and design.
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2.1 Generation of robot movements

To have the robot communicate through its movements the object properties,
the robot’s end-effector follows the velocity profiles generated by the Genera-
tive Adversarial Networks (GANs) model. Our interest is in generating move-
ments to convey whether the transported object requires caution and care to
be transported (careful movement) or it is safe to move without any particular
concern (not careful movement). Previous studies assessed this kind of object
manipulation and showed a marked difference in the kinematics of the human
hand associated with the two classes of motions [5,13]. The velocity profile in
the case for careful movements are characterized by lower maximum velocity,
a prolonged deceleration phase, and longer duration, compared to not careful
movements. The modulation allows for the distinction of careful and not careful
movements [5,12].

Fig. 1: Velocity profiles generated by the GANs associated to Not Careful (NC)
and Careful (C) transportation of objects. These velocity profiles were used to
control the robot during the human-robot experiment.

GAN To define meaningful movements associated with the properties of the
carried object, we decided to modulate the velocity profile adopted by the robot
end-effector. We used GANs to synthesize novel velocity profiles using an ap-
proach already tested [8]. The details on the Time-GAN model [27] and its
training are described in [8]. The original data used to feed the GANs consisted
of hand velocity profiles recorded with a Motion Capture System during the
transport of glasses, either empty or containing water, at two possible weight
levels. The trajectories followed by participants during the manipulations were
designed to grant a good degree of variability. After training, each generative
model can produce novel yet meaningful velocity profiles belonging to the dis-
tribution of the human data used during the training. This approach provides
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new and unlimited synthetic data, always falling into the desired class of motion
(careful or not), avoiding a trivial copy of the human velocity profiles. Moreover,
learning the velocity norm is useful in generalization terms since the same pat-
tern of motion can be applied to multiple spatial trajectories.
For this specific study, from the trained GANs, we synthesized ten velocity pro-
files for each of the two classes to be replicated by the Kinova robot. A repre-
sentation of the generated data is available in Figure 1.

Robot Controller The Kinova Gen3 robot is controlled using ROS and the
package kortex_ros1. Such package provides a velocity controller in Cartesian
space, which moves the end-effector at 40 Hz in linear (m/s) and angular (rad/s)
velocities. Attached to the end-effector is the Robotiq 85 two-finger gripper2 used
to grasp the cups. This work applies two high-level controllers: (i) a velocity PI
controller and (ii) a velocity GAN controller. The first controller is responsible
for picking the cups from the table, and the second is for transporting and hand-
ing over the cups to the participant. The former generates a constant velocity
profile throughout the trials, while the latter follows one of the 20 GAN velocity
profiles selected (10 careful and 10 not careful) during the experiment. For each
GAN motion trajectory, the velocity profile is decomposed into the 3D Cartesian
velocity coordinates by setting the current location and final location (handover
point) at each time step. The handover location was fixed in advance to avoid any
variability that could influence participants during the experiment. The position
of the participant’s wrist was tracked with the motion capture system, while
the position of the gripper is computed by the robot’s forward kinematics given
the known joint angles and the location of the robot base also tracked with the
motion capture system. More details on the sensors are provided in Section 2.2.
The handover release moment was obtained by applying a threshold: the robot
opened the gripper to release the cup whenever the distance between the grip-
per and the participant’s wrist was below a fixed value. This simple design was
enough to grant a smooth and reactive handover required for our experiment.

2.2 Setup, sensors and experiment design

Participants were asked to sort the items handled by the Kinova Gen3 robot by
positioning them on the appropriate areas marked on the table where they were
seated. We designed the experiment for the participants to focus on the robot
behavior and not on the characteristics of the items. For this reason, we used
identical plastic cups: in the instructions, we explained that we were simulating
a cocktail bar scenario, where the robot and the human had to collaborate in
sorting the glasses between those full to be served to the clients, and the used
and empty ones, to be washed; in such context, the cups were meant to be either
1 Official repository of the Kinova Gen3 ROS package:

https://github.com/Kinovarobotics/ros_kortex
2 Official website of the gripper: https://robotiq.com/products/2f85-140-adaptive-

robot-gripper

https://github.com/Kinovarobotics/ros_kortex
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
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(a) Setup frontal view (b) Setup lateral view

Fig. 2: Setup: when interacting with the Kinova Gen3 robot, participants seated
at a table. Once grasped the cup from the robot gripper, they had to put it down
on one of the three areas delimited on the table. The motion capture markers
used to analyse the human kinematics are visible on the participants’ right wrist.

full of a liquid or empty: however, we explained to the participants that due to
the danger of having a robot transporting water, all the cups were empty. This
granted that participants could not rely on any visual cue or the actual object
features to decide where to place the cup. In every trial, the Kinova robot grasped
a cup from the table next to it (see Figure 2b) and transported it towards the
participant, following either a careful (or not) velocity profile generated by the
GANs (associated respectively, to the transport of a full or empty glass). The
task for the participants was then to grasp the cup from the robot gripper and
place it in the appropriate area on the table: on the “To be served” area, on
the right, if they thought that the cup was actually meant to be full, or on the
“To be washed” area, in case they assumed the cup was indeed empty. A third
area, in the middle, was available to place the cups whose virtual content was
not clear to the participant to avoid forcing them into making a decision. They
were not informed about the modulation of the robot transport movements and,
since the cups were all the same, they had to rely on the robot behavior to make
their decision3.
We used Optitrack4 motion capture system, with an acquisition frequency of 120
Hz, to track the position of the participant wrist and shoulder.
Twelve healthy participants, all members of Instituto Superior Técnico, volun-
tarily took part in the experiment. Each evaluated 20 robot movements, where
the sequence of careful and not careful modulation was randomized once and
then maintained for every participant. The interactions were organized as five

3 Sample video of the human-robot interaction:
https://www.youtube.com/watch?v=HVahS-0tn6g

4 Optitrack website: https://optitrack.com/cameras/flex-13/

https://www.youtube.com/watch?v=HVahS-0tn6g
https://optitrack.com/cameras/flex-13/
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blocks of a sequence of four trials. At the end of each block, the experimenter
put the cups on the table next to the robot. This resulted in a total of 240
movements evaluated, equally balanced between careful or not robot behavior.

3 Results

Fig. 3: Perception of robot’s movements: Percentage of correct interpretation of
the robot’s transportation movements during the experiment. When the robot
performed careful movements, in blue, they were correctly perceived 90% of the
times. NC motions required more trials to be consistently classified. The dark
bars represent the percentage of correct classification of the movement from the
participant, the transparent bars the percentage of wrong attribution; finally,
the light gray bars with a wavy pattern, the percentage of “Unknown” answers
in each trial.

One of the aims of this study was to verify whether modulating the robot end-
effector velocity to express carefulness can inform participants about the virtual
content of the manipulated glasses. Figure 3 shows the participants’ accuracy
in evaluating, for each trial, if the observed transportation motion was meant
to be associated with a delicate object, i.e., careful robot movement, or not.
We represented with a dark bar the percentage of correct answers given by the
participants, i.e., when they correctly interpreted the robot’s attitude. Consider-
ing the total number of evaluated trials (240), 189 were correctly classified with
no indecision, resulting in an accuracy of 78.75%. The transparent colored bars
represent the misclassified movements. For instance, when we generated a robot
action modulated to communicate a not careful attitude, while participants asso-
ciated it with the transport of a full cup. As it can be noticed, misunderstanding
a not careful action for a careful one was the most frequent occurrence, especially
in the first trials. In detail, 90% of the careful robot movements were perceived
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as such, whereas 75% of the not careful ones were correctly interpreted. Finally,
the grey bars with a wavy pattern represent those trials where participants pre-
ferred not to make a choice and placed the cup on the neutral area on the table.
Also, these occurrences, which happened in 9 trials out of 240, decrease as the
experiment progresses.
Another aspect we were interested in investigating is if the two attitudes shown

Fig. 4: Velocity reaching movement: profiles adopted by one participant when
reaching for the cup in the robot gripper. It is noticeable a modulation of both
the duration and the maximum velocity depending on the style of the movement
adopted by the robot: not careful (NC) or careful (C). The colormap is associated
to the trial numbers, in order.

by the robot had any effect on how participants performed their tasks. An ex-
ploratory inspection of the hand velocity data encouraged us to deepen this
intuition: Figure 4 reports an example of the velocity adopted by one partic-
ipant when reaching for the cup in the robot gripper. There is a noticeable
modulation in the participant’s movements that correlates with the attitude
shown by the robot. When the robot handled the cup with a careful attitude,
also the participant reached for it with slower and prolonged action compared
to the not careful situation. To assess this modulation quantitatively in human
actions, we considered the duration and median velocity of the movements as
relevant features. To perform statistical analyses on the acquired data, we used
Jamovi software5, in particular the GAMLj module6 for mixed models. Figure
5a shows the mean durations of the participants reaching movements toward

5 Jamovi software website: https://www.jamovi.org
6 General analyses for linear models Jamovi module: https://gamlj.github.io/

https://www.jamovi.org
https://optitrack.com/cameras/flex-13/
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(a) Reaching duration (b) Reaching median velocity

Fig. 5: Reaching movement: in (5a) mean duration of the participants reaching
movements towards the robot’s gripper. When the robot performs a Careful
(C) transportation movement, participants are significantly slower in reaching
for the cup. Also the median velocity adopted in the reaching movements (5b)
is modulated by how the robot moved when transporting the cup. The mean
values for each participant are represented in a different color. The thick black
lines represent the mean over the twelve participants, with the standard error.
The star indicates a significant difference with p < 0.001.

the robot gripper. We ran a mixed model assuming the duration of the par-
ticipants’ reaching movements as the dependent variable, the carefulness in the
robot movement as a factor, and the subjects as cluster variables. The effect of
condition resulted significant (C−NC, estimate = 0.443, SE = 0.055, t = 8.00,
p < 0.001), indicating that when the robot end-effector was following a care-
ful velocity profile, the subsequent human reaching action was longer, with an
extended duration estimate of 0.443 seconds. A second mixed model was used
to evaluate the median velocity adopted by the participants when reaching the
robot gripper (see Figure 5b), using this time the median velocity as dependent
variable: when the robot was careful, participants significantly diminished their
median velocity, with an estimated reduction in speed of 0.055m/s (C − NC,
estimate = 0.055, SE = 0.012, t = −4.60, p < 0.001). These findings prove
that the modulation of the robot movements affected how participants moved to
reach and take the cup from the robot. This happened even when there was no
reason to adapt to the object properties since we consider a reaching movement
and all the cups had exactly the same characteristics. We also verified, for both
the duration and the median velocity of the reaching movements, if there was an
interaction with the participants’ accuracy in evaluating the robot’s behavior in
every trial. We used the accuracy in their classification as an additional factor
in the mixed model, but we found no interaction with how they performed the
reaching duration or velocity. The modulation in response to the robot attitude
also occurred when participants did not recognize it explicitly.
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4 Discussion

In our study, we exploited a generative approach to produce robot movements
that could implicitly communicate if a handled object required or not carefulness
to be transported. To avoid influencing the choice, all the items transported by
the Kinova robot were identical (empty plastic cups). The participants had to
decide if they were supposed to be virtually full or empty, without any particu-
lar hint or instruction on how to proceed. Firstly, we assessed (H1) whether our
controller can express caution in the gestures or its absence. According to the
results shown in Figure 3, our hypothesis (H1.1) was verified: we notice that the
careful robot actions have been perceived as such since the first trials of the ex-
periment. Regarding the not careful actions, there is a learning trend in how they
were perceived during the experiment. In the first trials, they were sometimes
mistaken for actions associated with transporting a full cup. As the experiment
progressed, the difference between the two modulations became more evident,
with an accuracy in the participants’ choices above 80%. Reflecting on the orig-
inal dataset of human movements used to train the GANs associated with the
transport of full and empty cups [13], we can observe that a not careful attitude
is the standard in our actions. Indeed, when no particular circumstances are
forcing us, for instance when picking and placing an ordinary object, we tend
to move in a “neutral” way, and we can shortly describe our approach as not
careful. On the contrary, a strong kinematics modulation appears when we are
paying attention to not spill the contents of a glass [5,12]. This careful kinemat-
ics shaping is what we truly modeled in the communicative robot’s movements,
and it is rewarding that careful movements were perceived correctly from the
beginning.
This study also allows us to evaluate (H2), the effect that the implicit modula-
tion of the robot actions has on the interaction. Even though participants knew
from the beginning that the plastic cups were all the same and all empty, there
was a modulation in how they approached the robot gripper, confirming our
second hypothesis (H2.1). We gave an overview of this phenomenon in Figure
4 and a quantitative assessment in Figure 5. If the robot manifested a careful
attitude, adopting a lower magnitude in the velocity profile and a longer dura-
tion of the movement (see Figure 1 for reference), also the reaching movement
of the humans was significantly slower. Interestingly, this also happened when
participants had trouble explicitly recognizing the motion style and classifying
the cup: the contagion in how they performed the reaching task was still present.
This result emphasizes how important it is to modulate the actions of robots ap-
propriately, with a view towards collaborative interaction. Indeed, we proved a
motor contagion from the robot to the human, even if there was no need for the
participants to directly associate with the task and adapt their motor strategy.
We observed natural coordination emerging from such a simple task, where the
pace of the human spontaneously adapted to the robot one, mimicking, even
unconsciously, the attitude observed. Human-robot motor contagion on velocity
was already observed whenever the robot velocity profile is biologically plausible
[2,25]. In our approach, the reasonableness of the velocity profiles was granted us-
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ing a generative network trained on human examples. The findings in our study
extend the existing evidence of motor contagion in Human-Robot Interaction,
proving that robotics arms can also leverage it to convey appropriate ways of
handling fragile objects.

5 Conclusion

In this study, we showed how a generative approach could be used to generate
meaningful and communicative robot actions that a human partner can success-
fully interpret to infer some properties of the involved objects. This modulation
on the robot side also led to a motor contagion in how the human performed its
actions and synchronized with the pace of the robot; through motion alone, it
was possible to open a channel of communication between the two agents, with
measurable effects on the interaction.
Finally, it should be noted that we obtained these results by modulating the
movements of a 7 degrees of freedom robotic manipulator, not a humanoid robot.
Nevertheless, even though its kinematics was far from the one of a human arm, it
was possible to achieve the desired communication intent by simply modulating
the end-effector control. This proves the power of the proposed approach and
its potential scalability in other contexts and with other robots, also industrial
ones, where implicit communication through motion could improve the efficiency
and safety of a joint collaborative task.
In future works, we plan to exploit the same controller and have the robot actu-
ally manipulate full and empty cups to assess how the movement’s modulation
affects trust, perceived competency, and efficiency in a dyadic interaction, while
facing a challenging task.
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