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a b s t r a c t

This paper addresses the problem of leader–follower formation control in three dimensional space
by exploring persistence of excitation (PE) of the desired formation. Using only bearing and relative
velocity measurements, distributed control laws are derived for a group of agents with double-
integrator dynamics. The key contribution is that the exponential stabilization of the actual formation
to the desired one in terms of shape and scale is guaranteed as long as the PE conditions on the
desired formation are satisfied. The approach generalizes stability results provided in prior work for
leader–first follower (LFF) structures which are based on bearing rigidity and constraint consistence
under a specific graph topology to ensure the exponential stabilization of the actual formation to a
desired static geometric pattern up to a scale factor. Simulations results are provided to illustrate the
performance of the proposed control method.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The formation control problem has been extensively studied
ver the last decades both by the robotics and the control com-
unities. The main categories of solutions can be classified as

ollows (Oh et al., 2015): (i) position-based formation control, Ren
and Atkins (2007), (ii) displacement-based formation control, Ren
et al. (2005), (iii) distance-based formation control, Anderson
et al. (2007), and more recently (iv) bearing-based formation
control, Basiri et al. (2010). This latter category has received
growing attention due to its minimal requirements on the sensing
ability of each agent. Early works on bearing-based formation
control were limited to planar formations and were mainly fo-
cused on controlling the subtended bearing angles which are
measured in each agent’s local coordinate frame (see Basiri et al.,
2010 and Bishop, 2011). The main body of work however builds
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on concepts of bearing rigidity theory, which investigates the
conditions for which a static geometric pattern of a formation
is uniquely determined by the corresponding bearing measure-
ments. Bearing rigidity theory in two-dimensional space (also
termed parallel rigidity) is explored in Eren et al. (2003) and Ser-
vatius and Whiteley (1999). More recently, it has been extended
to an arbitrary dimensional space along with a formation control
solution based on bearing measurements in Zhao and Zelazo
(2016), when the graph is undirected. Under the assumption that
the desired formation is infinitesimally bearing rigid, the resulting
bearing controller guarantees convergence to the target forma-
tion up to a scaling factor and translation vector. In the more
challenging context of directed graphs, achieving stabilization of
a formation requires not only bearing rigidity, as in the case of
undirected graphs, but also constraint consistence, which is the
ability to maintain consistence between constraints induced by
the desired bearing measurements (termed bearing persistence,
in Zhao & Zelazo, 2015). In Eren (2012), the conditions for di-
rected bearing rigidity of a digraph in two-dimensional space
are stated and a bearing control law for nonholomonic agents
is proposed. In Trinh et al. (2019), bearing control laws that
asymptotically stabilize leader–first follower (LFF) formations to
the desired formations up to a translation (the leader’s position)
and a scaling factor have been proposed. Since bearing rigidity
of a static formation is invariant to scale, the measure of at least
one distance between two agent is required to guarantee the con-
vergence of formations in terms of shape and scale. For instance,
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Fig. 1. Examples of leader–follower formations. The formations in (a) and (b)
are not bearing rigid and in (c) is bearing rigid but not constraint consistent.
The asymptotic stability of these three formations cannot be guaranteed using
bearing controllers relying only on bearing rigidity theory and constraint con-
sistence (Zhao & Zelazo, 2015). It is however guaranteed in this paper under the
proposed PE condition.

in Schiano et al. (2016) a controller based on bearing rigidity of
directed bearing frameworks defined in R3

× S1 complemented
with the measure of at least one distance between two agent is
proposed.

In this paper, we consider the problem of controlling a leader–
follower formation (i.e. a formation under a directed acyclic graph
that has a spanning tree, see Fig. 1) using only bearing and rela-
tive velocity measurements. We particularly focus on the problem
of stabilizing the formation’s geometric pattern to a desired one
by exploiting persistence of excitation (PE) of the bearings of
the desired formation. Note that this PE condition can be en-
forced a priori and has no dependence on the initial conditions
of system. The concept of persistence of excitation (PE) is a well-
known concept in adaptive control and identification of linear
systems. It has been recently exploited for position estimation
from bearing and biased velocity measures in Hamel and Samson
(2017) and Le Bras et al. (2017). This paper generalizes prior work
reported in Tang et al. (2020), that proposes a kinematic bear-
ing leader–follower formation control law. The main distinctions
with respect to Tang et al. (2020) are: (i) the explicit treatment
f leader–follower formation with double-integrator dynamics
nd, (ii) the introduction of a generalized rigidity concept: relaxed
earing rigidity, which makes the connection between bearing PE
nd bearing rigidity theory. The key contribution is to show that
he required classical conditions on the graph topology (bearing
igidity and constraint consistence) used to guarantee stabiliza-
ion of the formation to a desired shape up to a scale are relaxed
ere in a natural manner by exploiting PE of the bearing infor-
ation generated by the desired formation. The proposed control
pproach draws inspiration from the work in Trinh et al. (2019),
hich presents a first-order bearing formation control law, con-
idering a LFF graph topology. A distinctive feature of the present
ork is the shift of focus from static formations to time-varying

ormations. The approach relies on the simplicity of controllers
hat guarantee exponential stability of the formation towards the
esired one in terms of shape and scale when the bearing PE
onditions are fulfilled.
The body of the paper is organized as follows. Section 2

resents mathematical background on graph theory and intro-
uces the definition of bearing PE together with conditions for
earing PE. Section 3 describes the concepts of bearing PE leader–
ollower formation and relaxed bearing rigidity. Section 4 pro-
oses a bearing-based controller and shows that exponential
tabilization of the formation is achieved under the bearing PE
onditions. Section 5 illustrates the performance of the proposed
ontrol strategy on a relaxed rigid formation. The paper concludes
ith some final comments in Section 6.

. Preliminaries

Let S2
:= {y ∈ R3

: ∥y∥ = 1} denote the 2-Sphere and
.∥ the Euclidean norm. The operator [.]× represents the skew-

symmetric matrix associated to any argument in R3. For any
 t

2

positive symmetric matrix of dimension n × n, λmax(.)(λmin(.))
epresents the maximum (minimum) eigenvalue of its matrix
rgument. Let I be the identity matrix of dimension 3 × 3. For
ny y ∈ S2, we can define the projection operator πy

y := I − yy⊤
≥ 0,

which is such that, for any vector x ∈ R3, πyx provides the projec-
tion of x on the plane orthogonal to y. Note that πy = −[y]×[y]×.

2.1. Graph theory

Consider a system of n (n ≥ 2) connected agents. The under-
lying interaction topology can be modeled as a digraph (directed
graph) G := (V, E), where V = {1, 2, . . . , n} is the set of vertices
and E ⊆ V × V is the set of directed edges. In this work, the
graph is interpreted as sensing graph, meaning that if the ordered
pair (i, j) ∈ E then agent i can access or sense information
about agent j, which is called a neighbor of agent i. Note that
in a communication graph the information flow would be in the
opposite direction. The set of neighbors of agent i is denoted by
Ni := {j ∈ V|(i, j) ∈ E}. Define mi = |Ni|, where |.| denotes
the cardinality of a set. A directed path is a finite sequence of
distinct vertices ν1, ν2, . . . , νk−1, νk, such that (νi−1, νi), 2 ≤ i ≤ k
belongs to E . A directed cycle is a directed path with the same
start and end vertices, i.e. ν1 = νk. A digraph G is called an
acyclic digraph if it has no directed cycle. The digraph G is called
a directed tree with a root vertex i, i ∈ V , if for any vertex
j ̸= i, j ∈ V , there exists only one directed path connecting j to i.
Note that a directed tree is acyclic. We say that G has a directed
spanning tree, if there exists a subgraph of G that is a directed
tree and contains all the vertices of G.

2.2. Persistence of excitation on bearings

Definition 1. A positive semi-definite matrix Σ(t) ∈ Rn×n, is
called persistently exciting (PE) if there exist T > 0 and µ > 0
such that for all t > 0

1
T

∫ t+T

t
Σ(τ )dτ ≥ µI. (1)

Definition 2. A direction y(t) ∈ S2 is called persistently exciting
(PE) if the matrix πy(t) satisfies the PE condition according to
Definition 1.

Lemma 1. Let Q :=
∑l

i=1 πyi . The matrix Q is persistently exciting,
f one of the following conditions is satisfied:

(1) there is at least one PE direction yi,
(2) there are at least two uniformly non-collinear directions yi

and yj, i, j ∈ {1, . . . , l}, i ̸= j. That is: ∃ϵ1 > 0, ∀t ≥ 0
such that |yi(t)⊤yj(t)| ≤ 1 − ϵ1.

roof. The proof is given in Le Bras et al. (2017, Lemma 3).

. Bearing PE leader–follower formation and relaxed bearing
igidity

efinition 3. A digraph G = (V, E) has a leader–follower
tructure if it is acyclic and has a directed spanning tree. It has a
inimal leader–follower structure if each follower i (i ∈ V, i ̸= 1)
as only one neighbor.

The leader–follower structure defined above is more general
han the leader–first follower structure (LFF) considered in Trinh
t al. (2019), for which each follower has two neighbors except
he first follower which is only connected to the leader. In our
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Fig. 2. Possible connections of a leader–follower structure when n = 5. The
olid line represents the unique neighbor of the first follower (agent 2) which
s the leader (agent 1). The dashed lines represent all possible connections of
he followers 2, 3, and 4.

etting, the leader is the root vertex which has no neighbors and
ach of the other followers has at least one neighbor. Without loss
f generality, the agents are numbered (or can be renumbered)
uch that agent 1 is the leader, i.e. N1 = ∅, agent 2 is the first
ollower with N2 = {1}, and for each agent i ≥ 3 the set of
neighbors satisfies Ni ⊆ {1, . . . , i − 1}. An example of a possible
-agent leader–follower graph is shown in Fig. 2.
Given a digraph G, let pi ∈ R3 denote the position and vi ∈ R3

the velocity of each agent i ∈ V , both expressed in an inertial
frame common to all agents, such that ṗi = vi. The stacked vector
p = [p⊤

1 , . . . , p⊤
n ]

⊤
∈ R3n is called a configuration of G and the

digraph G together with the configuration p define a formation
G(p) in the 3-dimensional space. Defining the relative position
vectors

pij := pj − pi, i, j ∈ V, i ̸= j (2)

and as long as ∥pij∥ ̸= 0, the bearing of agent j relative to agent i
s given by the unit vector

ij := pij/∥pij∥ ∈ S2. (3)

Similarly to pij, define vij := vj−vi as the relative velocity between
agent i and j.

Definition 4. A leader–follower formation G(p(t)) is called
bearing persistently exciting, if ∀i ∈ V , the matrices

∑
j∈Ni

πgij(t)
satisfy the PE condition.

The following Theorem shows that a leader–follower forma-
tion can be uniquely determined if it is bearing PE.

Theorem 1. Consider a leader–follower formation. Assume that
the leader’s position p1(t), its velocity v1(t), the bearing vectors
{gij(t)}(i,j)∈E , and the corresponding relative velocity vectors
{vij(t)}(i,j)∈E (equivalently vi(t)) are well-defined, known, and
bounded. Let p̂1 ≜ p1 and p̂i denote the estimate of pi, for i =

, . . . , n with the following dynamics:

˙̂
i = vi − K

∑
j∈Ni

πgij (p̂i − p̂j), ∀i ≥ 2, (4)

with arbitrary initial conditions and K a positive definite matrix.
Assume that the leader–follower formation is bearing persistently
exciting. Then p̂i converges uniformly globally exponentially (UGE)
to the unique pi.

Proof. Consider the error variables p̃i := p̂i − pi defined for
= 2, . . . , n and the corresponding dynamics obtained from (4).
or i = 2, we have N2 = {1} and it is straightforward to verify
hat the dynamics of p̃2 is given by

˙̃
2 = −Kπg21 p̃2 (5)

nd that p̃2 = 0 is UGE stable under the PE condition (by direct

pplication of Le Bras et al., 2017, Lemma 4). For i = 3 and

3

N3 = {1}, the proof is exactly the same as for agent 2. For
N3 = {2} or {1, 2}, the dynamics of p̃3 can be written as

˙̃p3 = −K
∑
j∈N3

πg3j p̃3 + Kπg32 p̃2 (6)

which together with (5) forms a cascaded system with p̃2 as input
o (6). Using the fact that p̃2 = 0 is UGE stable and system (6)
s continuously differentiable and globally Lipschitz in (p̃3, p̃2), it
follows (by direct application of Le Bras et al., 2017, Proposition
1) that p̃3 = 0 is also UGE stable. In the general case, we can write

˙̃pi = −K
∑
j∈Ni

πgij p̃i + K
∑

j∈Ni\{1}

πgij p̃j, (7)

for i = 2, . . . , n and the proof of that p̃i = 0 is UGE stable can be
obtained in a similar way.

Remark 1. For the static case where vij = 0, ∀(i, j) ∈ E , we
obviously conclude that g21 is not PE. In that case, if each agent
i (i ≥ 3) has two neighbors 1 ≤ j ̸= k < i with gij ̸=

±gik, the leader–follower formation becomes exactly the same as
the bearing rigid desired LFF formation described in Trinh et al.
(2019) and uniqueness of the formation can still be guaranteed
if, for instance, the distance d21 = ∥p1 − p2∥ is provided. Under
the proposed controller, which will be defined in the next section,
the formation will converge to the desired shape up to a scaling
factor as discussed in Trinh et al. (2019).

Note that under the condition of Theorem 1, the shape and the
size of the bearing PE leader–follower formation may be time-
varying. This includes similarity transformations (a combination
of rigid transformation and scaling) involving a time-varying ro-
tation. In this case, it is straightforward to show that for any
bearing formation the bearing measurements are invariant to
translation and scaling but change with rotation such that gij(t) =

R(t)⊤gij(0), ∀(i, j) ∈ E (with R(t) ∈ SO(3) the rotation part
f the similarity transformation). This implies that there exist
imilarity transformations in which R(t) is time-varying such that
he leader–follower formation G(p(t)) is bearing PE.

efinition 5. A leader–follower formation G(p(t)) is called re-
axed bearing rigid if it is bearing PE and subjected to a similarity
ransformation.

orollary 1. If the formation is relaxed bearing rigid, then the result
f Theorem 1 applies.

roof. The proof is analogous to the proof of Theorem 1. It is
mitted here for the sake of brevity.

. Bearing formation control

Consider the formation G(p), where each agent i ∈ V is more
realistically modeled as double integrator with the following
dynamics:{

ṗi = vi

v̇i = ui
(8)

where ui ∈ R3 is the acceleration control input expressed in the
inertial frame. Let p∗

i (t), v
∗

i (t) and u∗

i (t) ∈ R3 denote the desired
position, velocity, and acceleration of agent i, respectively, and
define the desired relative position vectors p∗

ij and bearings g∗

ij ,
according to (2) and (3), respectively.

We assume that the n-agent system satisfies the following
assumptions.
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ssumption 1. The desired acceleration u∗

i (t) and the desired
elative velocity v∗

ij (t) are bounded for all t > 0, the resulting
esired bearings g∗

ij (t) are well-defined for all t > 0 and the
desired formation is bearing PE.

Assumption 2. The sensing topology of the group is described
by a digraph G(V, E) that satisfies the leader–follower structure
defined in Definition 3. Each agent i ≥ 2 can measure the relative
velocity vij and relative bearing vectors gij to its neighbors j ∈ Ni.

ssumption 3. As the formation evolves in time, no inter-agent
ollisions and occlusions occur. In particular, we assume that the
earing information gij(t), (i, j) ∈ E is all the time well-defined.

With all these ingredients, we can define the bearing forma-
tion control problem as follows.

Problem 1. Consider the system (8) and the formation G(p).
Under Assumptions 1–3, design stabilizing distributed control
laws based on bearing and relative velocity measurements that
guarantee exponential stabilization of the formation in terms of
shape and scale to the desired one.

For any agent i (i ≥ 2) and any agent j in its neighbor (j ∈ Ni),
we define the relative position error p̃ij := pij−p∗

ij and the relative
velocity error ṽij := ˙̃pij = (vj − vi) − (v∗

j − v∗

i ) along with the
following dynamics:{

˙̃pij = ṽij

˙̃vij = uj − u∗

j − (ui − u∗

i ).
(9)

Consider the following control law for each agent i ∈ V

ui =

∑
j∈Ni

(−kpiπgijp
∗

ij + kdi ṽij) + u∗

i , (10)

where kdi and kpi are positive gains that satisfy kdi > 1
mi

and

pi < 4
mi

−
4

k2di
m3

i
(recall that mi = |Ni|). For i ∈ V\{1}, define

ew variables x̃ij := (p̃⊤

ij , ṽ
⊤

ij )
⊤, j ∈ Ni and the following matrices

o be used later in the stability analysis:

i(gi) =

⎡⎣ 0 −I
kpi

∑
l∈Ni

πgil kdimiI

⎤⎦ ,

Pi :=
1
2

[
I 1

kdimi
I

1
kdimi

I I

]
> 0, (11)

i(gi) =

∑
j∈Ni

⎡⎣ kpi
kdimi

πgij
kpi
2 πgij

kpi
2 πgij (kdi −

1
kdim

2
i
)I

⎤⎦ ≥ 0, and

Σi =

⎡⎣∑
j∈Ni

π∗

gij 0

0 I

⎤⎦ ≥ 0, (12)

where the matrices argument gi stands for the concatenation of
all bearing vectors gij, ∀j ∈ Ni.

4.1. Stability and convergence of the first follower

Lemma 2. Consider a n-agent (n ≥ 2) system with a leader–
follower interaction topology as specified in Definition 3. For the
first follower (i = 2), consider the error dynamics (9) along with
the control law (10). If Assumptions 1–3 are satisfied, then the
equilibrium point x̃21 = (p̃⊤

21, ṽ
⊤

21)
⊤

= 0 is exponentially stable (ES).
4

Proof. Recalling (9) and (10), the closed-loop system for the state
x̃21 is expressed as
˙̃x21 = −A2(g2(t))x̃21. (13)

Consider the following Lyapunov function candidate:

L21 = x̃⊤

21P2x̃21. (14)

Taking its time-derivative yields

L̇21 = −x̃⊤

21Q2x̃21. (15)

Since Q2 is positive-semidefinite, one concludes that the state x̃21
is bounded. By direct application of Lemma 4 (see Appendix), it
is straightforward to verify that

˙L21 = −x̃⊤

21Q2x̃21 ≤ −γ2x̃⊤

21Σ2x̃21 ≤ 0, (16)

where γ2 can be deduced from the proof of Lemma 4:

γ2 =
kp2 (kd2 − kp2k

2
d2

/4 − 1)

kd2 (kp2 + kd2 − 1)
minα2

2(t) > 0

with minα2
2(t) = min ∥p∗

21(t)∥
2

∥p21(t)∥2
. Now, since L21 is decreasing, one

can verify that

minα2
2(t) ≥

min ∥p∗

21(t)∥
2

(
√

λmax(P2)
λmin(P2)

∥x̃21(0)∥ + max ∥p∗

21(t)∥)2
.

From (12) along with the PE condition of g∗

21, one ensures that
condition (1) of Theorem 3 in the Appendix is satisfied. By a
direct application of Lemma 5 (see Appendix) one can conclude
that condition (2) of Theorem 3 is also satisfied. This in turn
implies that x̃21 = 0 is ES.

Remark 2. Note that in the above lemma, Assumption 3 relies
on the evolution of state variables. This assumption serves here
to show that if there is no collision or occlusion, the bearings are
well-defined and the proposed control design yields the desired
convergence properties (Lemma 2 and even in the following
results: Lemma 3 and Theorem 2). Trying to more specifically
characterize the set of initial conditions for which the system’s
solutions avoid collision and occlusion is out of the scope of the
paper.

4.2. Stability and convergence of the second follower

Lemma 3. Consider a n-agent (n ≥ 3) system with a leader–
follower interaction topology as specified in Definition 3. For the
second follower (i = 3), consider the error dynamics (9) along with
the control law (10). If Assumptions 1–3 are satisfied and Lemma 2
is valid, then the equilibrium point x̃3j = (p̃⊤

3j, ṽ
⊤

3j )
⊤

= 0, ∀j ∈ N3
is ES.

Proof. According to the leader–follower structure described in
Definition 3, the second follower (agent 3) can have three possible
sets of neighbors: N3 = {1}, N3 = {2} and N3 = {1, 2}.
Case (i): N3 = {1}, the proof is identical to the proof of Lemma 2.
Case (ii): N3 = {2} or N3 = {1, 2}. Since x̃31 = x̃32 + x̃21, the
closed-loop system for the states x̃3j, j ∈ N3 is expressed as

˙̃x3j = −A3(g3(t))x̃3j + B21(g3(t), g2(t))x̃21 (17)

where A3 is defined in (11) and B21 is a bounded function. We can
interpret (17) as a cascaded system that has x̃21 as input to the
unforced system
˙̃x3j = −A3(g3(t))x̃3j. (18)

ow the proof becomes analogous to the proof of Lemma 2.
y a direct application of Theorem 3, one concludes that the



Z. Tang, R. Cunha, T. Hamel et al. Automatica 128 (2021) 109567

e
S

e
∀

P

i
r
a
k
j
v
c
b

[

[

v

a
t
o
h
c
p
b
c

6

l
a
p
f
d
c
t
a

A

0
T
b
U
H
t
b
F

A

L
b

quilibrium x̃3j = 0, j ∈ N3 of the unforced system (18) is ES.
ince the matrix valued function B21 is bounded and x̃21 = 0 is

ES, this implies that the equilibrium point x̃3j = 0, j ∈ N3 is ES
for the system (17).

4.3. The n-agent system

Theorem 2. Consider a n-agent (n ≥ 2) system with a leader–
follower interaction topology as specified in Definition 3. For all
agents i ∈ V\{1}, consider the system (9) along with the pro-
posed control law (10). If Assumptions 1–3 are satisfied, then the
quilibrium point x̃ij = (p̃⊤

ij , ṽ
⊤

ij )
⊤

= 0 is ES, ∀i ∈ V\{1} and
j ∈ Ni.

roof. We will prove the convergence of x̃ij = 0 by mathematical
induction. Firstly, for i = 2 and i = 3 the conclusion that x̃ij = 0
s ES ∀j ∈ Ni follows directly from Lemma 2 and Lemma 3,
espectively. Secondly, we suppose that x̃kj = 0 is ES, ∀j ∈ Nk
nd ∀4 ≤ k ≤ i − 1 then, we show that it is also true for
= i. Using the fact that ∀q ∈ Ni, one has x̃iq = x̃ij + x̃jq with
∈ Ni, j ̸= q and x̃jq can be expressed in terms of the error
ariables x̃km, 2 ≤ k ≤ i − 1, m ∈ Nk because the graph is
onnected, the closed-loop system for the states x̃ij, j ∈ Ni can
e represented as

˙̃xij = − Ai(gi(t))x̃ij +
∑

2≤k≤i−1, m∈Nk

Bkm(gi(t), gk(t))x̃km (19)

where Ai is defined in (11) and Bkm is a bounded matrix val-
ued function. Thus system (19) can be considered as a cascaded
system with x̃km, 2 ≤ k ≤ i − 1, m ∈ Nk perturbing the
unforced system ˙̃xij = −Ai(gi(t))x̃ij. From there and analogously to
Lemmas 2 and 3, one concludes that x̃ij = 0 is ES for the unforced
system. Because the error variables x̃km = 0 are ES and Bkm is
bounded, x̃ij = 0 is also ES for system (19). Then, by mathematical
induction, it follows that the claim is true for all i ∈ V\{1}, which
concludes the proof.

It is worth to notice that the exponential stabilization of the
equilibrium (p̃⊤

ij , ṽ
⊤

ij ) = 0, ∀(i, j) ∈ E implies the exponential
stabilization of the formation to the desired one in terms of shape
and scale only. This is inherent to the problem at hand since
only relative measurements are involved in the control design.
However, by exploiting the cascade structure of the formation
dynamics, it is straightforward to verify that the exponential
stabilization of the formation in the configuration space (that is
pi → p∗

i ) can be directly deduced if the leader has access to its
own position.

5. Simulation results

In this section, we consider a four-agent system defined in R3,
V = {1, 2, 3, 4}, with a minimal leader–follower graph formed
by a single directed path, that is, each follower has only one
neighbor such that Ni = {i − 1}, i ∈ V\{1}. For the sake
of simplicity, the leader (agent 1) is static at position p1 =

[0 0 0]⊤. According to Assumption 1, the desired trajectories
for the followers are chosen such that p∗

i (t) = R(t)⊤p∗

i (0), with

R(t) =

⎡⎣cos( t
2.5 ) − sin( t

2.5 ) 0
sin( t

2.5 ) cos( t
2.5 ) 0

0 0 1

⎤⎦, p∗

2(0) = [0 1 0]⊤, p∗

3(0) =

√
3
2

1
2 0]⊤ and p∗

4(0) = [
1
2

√
3
2 1]⊤, which form a pyramid in

R3 that rotates about z-axis (see Fig. 3). Note that the desired
formation is not bearing rigid but relaxed bearing rigid. The initial
conditions are p2(0) = [−1 2 1]⊤, v2(0) = [0 1 0]⊤, p3(0) =

−2 − 1 − 1]⊤, v3(0) = [1 0 0]⊤, p4(0) = [−0.5 − 0.5 1]⊤ and
(0) = [1 0 − 1]⊤. The controller gains are chosen as follows
4

5

Fig. 3. Evolutions of error states (left hand side) and 3-D trajectories (right
hand side) for a pyramid formation under a minimal leader–follower structure:
the colored solid lines represent the agents’ trajectories, the dashed red lines
represent the desired trajectories and the black solid lines represent the
connections between agents. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

kpi = 3 and kdi = 10, ∀i ∈ V\{1}, to ensure a fast convergence
rate according to Theorem 3 while ensuring that inequalities
kdi > 1 and kpi < 4 −

4
k2di

are satisfied. The left hand side of

Fig. 3 shows the time evolution of the error states ∥x̃21∥, ∥x̃32∥
nd ∥x̃43∥, respectively. It also confirms the result of Proposition 4
hat due to the cascade structure of the system the convergence
f x̃21(t) is the fastest and of x̃43(t) is the slowest one. The right
and side of Fig. 3 shows the 3-D time evolution of the formation
onverging to the desired one. It also validates the fact that the
roposed control law stabilizes the formation without requiring
earing rigidity (additional simulation results with animations
an be found in https://youtu.be/fwv4Q_3xCWw).

. Conclusion

This paper studies bearing formation control problem of a
eader–follower structure under time-varying desired formation
nd introduces the new concept of relaxed bearing rigidity. The
roposed controller ensures, a (local) exponential stability of the
ormation as long as the bearing PE conditions are met on the
esired formation. Simulation results are provided to validate the
ontrol strategy. Future work will be dedicated to the incorpora-
ion of collision avoidance to bypass Assumption 3 and to ensure
t least semi-global exponential stability.
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ppendix. Technical lemmas and theorem

emma 4. Let x1(t), x∗

1(t) ∈ R3/{0} and x2(t), x∗

2(t) ∈ R3 be
ounded functions of time and x1(t) and x∗

1(t) are such that y1 =

x1
∥x1∥

, y∗

1 =
x∗1

∥x∗1∥
are well defined. Define x̃ = [(x1 − x∗

1)
⊤, (x2 −

x∗

2)
⊤
]
⊤

∈ R6, and the matrix-valued functions

Γ (t) =

[
c3πy1 c2πy1

]

c2πy1 c1I

https://youtu.be/fwv4Q_3xCWw


Z. Tang, R. Cunha, T. Hamel et al. Automatica 128 (2021) 109567

w

γ

P

N

γ

λ

T

x

w
s
L
L
p
p
x
(
(

x

w

x

S
ρ

U

B

b
σ

L

P
I
u
a
a

P
(
g

here c1, c2, and c3 are positive constants. If c1c3 > c22 > ϵ1 with

ϵ1 > 0, then x̃⊤Γ (t)x̃ ≥ γ x̃⊤Σ(t)x̃, with Σ(t) =

[
πy∗1(t)

0
0 I

]
and

a positive constant.

roof. Since y∗⊤

1 πy1y
∗

1 = y⊤

1 πy∗1
y1, it is straightforward to verify

that x̃Γ x̃ = x̃Γ ′x̃ with

Γ ′(t) =

[
α2c3πy∗1

−αc2[y∗

1]×[y1]×
−αc2[y1]×[y∗

1]× c1I

]
, α =

∥x∗

1∥

∥x1∥
.

ote that Γ ′
= S⊤ΛMΛS, where S =

[
[y∗

1]× 0
0 I

]
, Λ =

[
αI 0
0 I

]
and M =

[
c3I c2[y1]×

−c2[y1]× c1I

]
. Due to the fact that c1c3 >

c22 > ϵ1, M ≥ λM I > 0 with λM =
c3c1−c22
c3+c1

. Thus one has

Γ ′
≥ λMS⊤Λ2S. Now using the fact that α(t) =

∥x∗1(t)∥
∥x1(t)∥

≥

min ∥x∗1(t)∥
max{∥x1(t)−x∗1(t)∥+∥x∗1(t)∥}

, we can conclude that x̃⊤Γ x̃ = x̃⊤Γ ′x̃ ≥

x̃⊤Σ(t)x̃ with Σ(t) =

[
πy∗1(t)

0
0 I

]
and γ = λM minα2(t) ≥

M
min ∥x∗1(t)∥

2

max(∥x1(t)−x∗1(t)∥+∥x∗1(t)∥)
2 > 0.

Lemma 5. Let yi ∈ S2, i = 1, . . . ,m and define the matrix-valued
functions

A =

⎡⎢⎣ 0 −I

c4
m∑
i=1

πyi c5I

⎤⎥⎦ and Q =

⎡⎢⎣ c3
m∑
i=1

πyi c2
m∑
i=1

πyi

c2
∑m

i=1 πyi mc1I

⎤⎥⎦
where c1, c2, c3, c4 and c5 are positive constants, such that c3c5 > c24 .
There exists c > 0 such that cQ − A⊤A ≥ 0.

Proof. Define Hi =

[
πyi 0
0 I

]
, H =

∑m
i=1 Hi =

[∑m
i=1 πyi 0
0 mI

]
,

lQ = λmin(
[
c3 c2
c2 c1

]
), and lA = λmax(

[
c24 c5c4
c5c4 c25 + 1

]
). Since

Q =
∑m

i=1 Hi

[
c3 c2
c2 c1

]
Hi ≥ lQ

∑m
i=1 H

2
i = lQ

∑m
i=1 Hi = lQH

and A⊤A = H
[

c24 c5c4
c5c4 c25 + 1

]
H ≤ lAH2, we can conclude that

cQ − A⊤A ≥ 0 if clQ − lAλmax(H) ≥ 0, which holds if c ≥
lA
lQ
m.

heorem 3. Consider the following system

˙(t) = f (x(t), t), x ∈ Rn (A.1)

ith f (x(t), t) a piecewise continuous and locally Lipschitz function
uch that f (0, t) = 0. Assume there exists a function Lx(t) =

(t, x(t)) ∈ R+, such that λ1∥x(t)∥2
≤ Lx(t) ≤ λ2∥x(t)∥2 and

˙x(t) ≤ −γ x(t)⊤Σ(t)x(t), where Σ(t) ∈ Rn×n is an upper bounded
ositive semi-definite function (∥Σ(t)∥ ≤ λΣ ), with λ1, λ2, λΣ

ositive constants and γ (x(0)) a positive function of the initial state
(0). If
1) Σ(t) satisfies the PE condition in Definition 1 and,
2) L̇x(t) ≤ −

1
c ∥f (x, t)∥

2
≤ 0, c > 0,

then the origin of (A.1) is exponentially stable (ES), and verifies:
(t) ≤

√
λ2

λ1(1−σ )x(0) exp(−
σ
2T t) with σ =

1
1+ρ

1
1+ρcT2γ λΣ

and ρ =

λ2
µTγ

.

Proof. The proof follows the arguments used in Lorıa and Pante-
ley (2002, Lemma 5). Taking integral of L̇ (t) ≤ −γ x(t)⊤Σ(t)x(t),
x

6

we get

Lx(t + T ) − Lx(t) ≤ −γ

∫ t+T

t
∥Σ

1
2 (τ )x(τ )∥2dτ (A.2)

here, according to (A.1), x(τ ) can be rewritten as

(τ ) = x(t) +

∫ τ

t
f (x(s), s)ds. (A.3)

ubstituting (A.3) in (A.2) and using ∥a+b∥2
≥ [ρ/(1+ρ)]∥a∥2

−

∥b∥2 and Schwartz inequality, one obtains

Lx(t + T ) − Lx(t) ≤ −
γ ρ

1 + ρ

∫ t+T

t
∥Σ

1
2 (τ )x(t)∥2dτ

+ ργλΣT
∫ t+T

t

∫ τ

t
∥f (x(s), s)∥2dsdτ .

(A.4)

sing the PE condition of matrix Σ(t) and the fact L̇x(t) ≤

−
1
c ∥f (x, t)∥

2, it yields

Lx(t + T ) − Lx(t) ≤ −
µTγ ρ

1 + ρ
∥x(t)∥2

− cργλΣT
∫ t+T

t

∫ τ

t
L̇(s)dsdτ .

(A.5)

By changing the order of integration in (A.5), one gets

Lx(t + T ) ≤ (1 − σ )Lx(t), σ :=
ρµTγ

(1 + ρ)(1 + ρcT 2γ λΣ )λ2
.

y choosing ρ =
λ2

µTγ
, one has σ =

1
1+ρ

1
1+ρcT2γ λΣ

< 1. For any
t ≥ 0, let N be the smallest positive integer such that t ≤ NT .
Since Lx(t) ≤ Lx((N − 1)T ) ≤ (1 − σ )Lx((N − 2)T ), Lx(t) can be
ounded by a staircase geometric series such that Lx(t) ≤ (1 −

)N−1Lx(0) and hence the exponential convergence follows from
x(t) ≤

exp(−bNT )
1−σ

Lx(0) ≤
exp(−bt)

1−σ
Lx(0) with b =

1
T ln( 1

1−σ
) > σ

T .

roposition 4. Consider the cascaded system defined in Theorem 2.
f Assumptions 1–3 are satisfied and the convergence rate of the
nforced system ˙̃xij = −A(gi(t))x̃ij is greater than bi, for each
gent i ∈ V\{1} and j ∈ Ni. Then the convergence rate for each
gent i ∈ V\{1, 2} of the cascaded system is greater than ci =

1
2 min{ci−1, bi}, with c2 = b2, which is a lower bound obtained when
the leader–follower structure is minimal and has a single directed
path. Additionally, if bi = b, the convergence rate for each agent
i ∈ V\{1, 2} in the cascaded system is greater than b

2i−2 .

roof. Using the same argument used in the proof of Khalil
1992, Theorem 4.9) and by mathematical induction, the conver-
ence rate for each agent i ∈ V\{1, 2} in the cascaded form is

greater than ci =
1
2 min{ci−1, bi}. When bi = b, the conclusion

follows by iterative substitution of ci−1 in the expression for ci.
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