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Abstract—There are many challenges on tracking fishes from
videos taken from single cameras outside fish tanks, such as
frequent occlusion of the targets, the presence of schools, high
visual similarities between different individuals, even from differ-
ent species, sudden changes in motions, and very different light
conditions. This paper presents our solution system that detects
and tracks fish of different species in tanks in the Oceanario
de Lisboa. We make a thorough evaluation of several state-of-
the-art detectors in those types of scenarios and improve on
previous work addressing detection-tracking-classification on the
same scenario. Here we show how the tracking methodology was
improved, replacing greedy data association and better tuning of
the components. Additionally, we introduce a new step of contrast
equalisation to mitigate the challenging illumination conditions
of the main tank scenario.

I. INTRODUCTION

This paper focuses on tracking fishes in videos recorded
by a single static camera positioned outside the glass walls
of the tanks in the Oceandrio de Lisboa, an oceanarium that
recreates real-life underwater conditions of different maritime
habitats. Video based tracking systems can help automate mon-
itoring fishes in tanks, e.g for real-time anomalous behaviour
detection. There are many challenges in this task such as the
frequent occlusion of the targets, the presence of schools, high
visual similarities between different individuals, even from
different species, sudden changes in motions, and very dif-
ferent light conditions. Some work has been done in tracking
fish in the wild using underwater cameras. For instance the
Fish4Knowledge project reported relevant research in topics
such as detection, tracking and classification of species [7], [9],
[8] in large datasets of videos recorded from multiple underwa-
ter locations. However, in an aquarium setting the amount of
fish per water volume is typically higher than in open waters,
which poses additional challenges to the detection and tracking
technology due to frequent crossings and occlusions. The work
reported here describes our system that detects and tracks fish
of different species in tanks. In particular, we targeted two
tanks with very different characteristics: the main tank and the
coral reef tank (see Fig. 1). In a previous work [2] we have
addressed this problem in a detection-tracking-classification
pipeline. Here, we improve that method in several aspects.
First, we make a thorough evaluation of several state-of-the-
art detectors in those types of scenarios. Second, some parts
of the tracking methodology were improved, like replacing
greedy data association and better tuning of the components.
Additionally, we introduce a new step of contrast equalisation
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Fig. 1. Example of the tracking results in the two considered scenarios. Top:
the main tank. Bottom: the coral reef tank. In green is displayed the ground
truth trajectory and in red the estimated trajectory. Note the differences in
image content (color diversity, contrast, distance to the observed fish) and
fish behaviour (faster and more uncertain motions in the coral reef tank).

to mitigate the challenging illumination conditions of the main
tank scenario (see Fig. 1) . New datasets were manually built
in each environment from video sequences of 5 minutes each.

II. METHODS

The tracking system is composed of three main modules
(see Fig. 2): contrast equalisation, detection and tracking .

A contrast equalisation method is used to improve image
quality in the main tank videos. The approach used was
inspired by the one in [4], as it seemed suitable to apply to our
conditions. We convert the frame from its original color space
RGB to CIELAB and apply the CLAHE operation to the L
channel, that represents the lightness of the color. After the



Fig. 3. Result of applying the contrast equalisation technique to a frame from
the video of the main tank. Top: original; bottom: after equalisation.

transformation, we convert the frame back to RGB to be used
in the following modules. Fig 3 shows the result of applying
this technique to one of the frames.

The object detection module locates the fish in each frame.
We evaluate two types of detectors: background subtrac-
tion (AGMM [13], KNN [14], Sigma-Delta [5], ViBE [1],
PBAS [3], Lobster [10], PAWCS [11], SubSENSE [12] and
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Fig. 4. The bounding boxes (in pink) predicted by YOLO detector.

GSOC') and one deep learning detector (YOLO [6]). The
background subtraction algorithms output a segmented frame
where the pixels are classified as either background or fore-
ground. After that, a Connected Components algorithm is
applied to combine neighbouring foreground pixels into a
detected object, and then the bounding boxes of each object are
obtained. The best overall background subtraction algorithm
for our environments, according to our tests, discussed in the
following chapter, was the GSOC. The deep learning detector
directly outputs the list of the detected objects as bounding
boxes. An example of the bounding boxes predicted by YOLO
is shown in Fig. 4.

The final module is related to the tracking step. We pair each
object d; from the list of detected objects with an existing
track T} Tracking is performed through data association
using colour and position features. The color similarity S,
is computed according to

Se(Ty,d;) =1 — D(Hy, , Hy,) M

Thttps://github.com/opencv/opencv_contrib



where D is the distance between the two histograms, HTk and
Hyg,, that is computed according to

D(Hy  Hy) = |1—

)
where NN is the number of bins. For the position similarity
Sp, the center of the bounding boxes is considered, and is
calculated as

\/(Tkm —dj,)? + (T, — d5,)?
‘Dmaz

Sp(T,d;) =1— 3)
where D,,, .. is the maximum Euclidean distance between two
pixels in the frame. After the association step, a verification of
the results is performed in order to prevent the tracked objects
to be matched with detected objects that are too distant or very
different in color. To achieve this, a color threshold (¢;p,-) and a
position threshold (p;p,) are used to regulate the associations,
discarding the ones that exceed those limits. As this module
is highly dependent on the results from the detection module,
we need to account for possible missed objects. Therefore, the
system allows the tracks to not have a corresponding detection
in every frame.

We have performed improvements to related work in three
main aspects: (i) a colour history descriptor to make the
tracking more robust to appearance variation, (ii) temporary
track management to add and remove new tracks with added
robustness, and (iii) movement prediction with custom models
of measurement and process noises learned from the data
in each scenario. Regarding the first improvement, the color
history is achieved by computing an average between the color
histogram of the full track (/4 ) and the histogram of the
detection (Hy; ), according to

Hi =(1—9) H '+ Hq, 4)
In a second improvement, we distinguish between temporary
and permanent tracks. Every track that is created, is first
classified as temporary. Only after a few consecutive suc-
cessful associations it may change to a permanent track. The
association step is divided in two phases: first we associate
the permanent tracks to detected objects, and then we perform
a second association step between the temporary tracks and
the remaining detected objects. In Fig. 5 we can see an
example where temporary tracks improve the tracking quality.
The last improvement was carried out through movement
prediction using the Kalman Filter. The algorithm was tuned
for each tank separately given the distinct kinds of fishes
that exhibit different motion behaviours. To better approximate
the models, the trajectories that had been manually selected
for the evaluation were used to compute the Kalman Filter
parameters. These parameters included the covariance matrices
of the measurement noise and process noise. In Fig. 6, we
can see an example of how movement prediction can help the
tracking.

III. EXPERIMENTAL RESULTS

In a first experiment we compare the different background
subtraction techniques (Fig. 7). A background subtraction
dataset was built by selecting frames from videos of both tanks
and manually labelling the pixels as foreground/background,
as seen in Fig. 8. To evaluate the algorithms we use the
processing speed and the Fj-score metric. The Fj-score is
computed from the Precision (P) and Recall (R) values based
on the number of True Positives, False Positives and False
Negatives obtained from each pixel classification as either
background or foreground, according to

PR
P+ R

We can see that the algorithm with the best F}-Score is
FgSegNet but looking at the processing speed, we notice that
it is very slow. GSOC scored a bit lower for both videos
but achieved higher processing speeds. We can also see that
all algorithms performed worse in the main tank, which was
expected, due to blur, the presence of schools, and more color
homogeneity.

Because background subtraction algorithms may take some
time to estimate the background model, the beginning of
the videos may have many detection errors. To mitigate this
problem, we run a second test, where we first use the entire
video to build the background model and then evaluate the
performance of each algorithm on a second pass through the
video. This will give a better assessment of the long term
performance of the methods. The results of the two-pass
experiment are presented in Fig. 9. In both tanks, having a
prior background model, helped improve the score of the top
scoring algorithms.

Finally, we evaluated the influence of contrast equalisation
in the detection results. This was done only for the main tank,
which presents the most challenging conditions. Results are
presented in Fig. 10. Overall, GSOC was one of the best
algorithms with a good trade-off between speed and Fj-Score
in most of the tests.

For the tracking evaluation, a dataset was built by manually
selecting the trajectories of the fish throughout the videos. The
selected targets include multiple fish species with different
types of trajectories that differ in speed, direction and length.
The dataset structure is presented in Table I. It was split into
two groups: validation and test. First, the validation dataset
was used to tune the parameters and select the tracking features
to be used with each detector for both tanks. Then, the
system is tested against the test dataset using the configurations
obtained in the validation step. The tracking configuration
is presented in Table II. In Fig. 11, we can see the full
tracking pipeline results in the test dataset, both using the
chosen background segmentation detector (GSOC) and a deep
learning based detector (YOLO). Overall, the best tracking
results were achieved by using the GSOC in the coral reef
tank and by YOLO in the main tank.

In terms of computational speed, the system was able to
achieve processing speeds of around 14 FPS on a machine
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Fig. 5. Example of the use of temporary tracks in the coral reef tank. In the top row, without temporary tracks, the track #1 lost its target as another newly
created track got the association. In the bottom row, using the temporary tracks (shown in red), the original track was able to keep tracing the original target.

Fig. 6. Example of using Kalman Filter in the main tank for movement prediction for the track #1. The red star is the position considered for the position
similarity. In the top row, without using movement prediction, when detection fails the position remains the same in the following frames, allowing incorrect

associations afterwards. In the bottom row, using movement prediction, the position keeps being updated until it eventually detects the fish and recovers the
original target.
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Fig. 7. F1i-score of the background subtraction algorithms in the coral reef tank (left) and the main tank (right).

1
0.8 M
06— [l -
o B - _
=} B
mflJ —
=
0.4
0.2
Fig. 8. Example of a manually labelled frame from the background subtraction
dataset.
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TABLE I ViBE GSOC KNN Lobster MOG2 PAWCS Sigma SubSENSE
Delta
TRACKING DATASET. 1
-
Tank | Trajectories Min.Length | Max.Length Usage
(frames) (frames) 0.8
Main 15 152 827 Validation
Coral reef 17 58 1687 Validation
Main 4 197 385 Test
Coral reef 4 192 264 Test " 0.6 -
£ o _
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equipped with an Intel Core i7-8750H @ 2.20GHz CPU and
an NVIDIA GeForce GTX 1050 Ti GPU.
IV. CONCLUSIONS 0.2
We have presented a video based fish tracking system that
was applied to video sequences captured at the Oceandrio de 0

Lisboa. We have performed a detailed evaluation of several
state-of-the-art detectors in the same type of scenarios. We
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were able to improve the results of previous work by a thor-
ough choice of the detection algorithms, contrast equalisation,
and novel tracking features. There are still some limitations in

Fig. 9. Fl-score comparison for two-pass variants for the coral reef tank on
the top and for the main tank on the bottom.
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Fig. 10. Fl-score of contrast equalisation for the main tank.
TABLE 11
THE BEST CONFIGURATIONS ACHIEVED USING BOTH DETECTORS FOR
EACH TANK.
Baseline
Tank  Detector Dthr | Cthr
Main  GSOC 65 0.2
Main  Yolo 80 0.3
Coral GSOC 65 0.3
Coral  Yolo 65 0.2
Features
Tank  Detector Color Hist.(y) | Temp.Tracks | Mov.Prediction
Main  GSOC 0.2 Yes Yes
Main  Yolo 0.9 Yes No
Coral GSOC 0.2 Yes Yes
Coral  Yolo 0.2 Yes No

the ability to handle big fish schools swimming around in the
main tank and the tracking of very small fish in the coral reef
tank, or far away fish in the main tank.
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Fig. 11. Precision and Success plots for the system implementations with each object detection technique for the testing dataset in the coral reef tank; Top:
coral reef tank; Bottom: main tank; Left: as a function of location error; Right: as a function of overlap.



