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Abstract— In this work, two cooperative navigation solutions
based on the extended Kalman filter are described. One of
these is a centralized solution and the other is fully decen-
tralized, taking full advantage of the benefits that come with
decentralization, such as scalability and robustness. Simulations
are performed for a formation of autonomous underwater
vehicles with a fixed measurement topology. The vehicles are
assumed to be equipped with sensors that allow them to
take measurements of their depth and bearing angles to their
neighbors. Two different topologies are considered, one acyclical
and one cyclical. The transient and steady-state errors of both
solutions are analyzed resorting to Monte Carlo simulations.
In particular, the mean error and the root-mean-squared-error
(RMSE) of the navigation estimates is presented.

I. INTRODUCTION

There has been increasing interest in the development
of robust autonomous underwater vehicle (AUV) systems
for quite some time. In many commercial, scientific, and
military applications, AUVs present many advantages over
their manned counterpart. Some of these applications include
scientific exploration, resource prospecting, archaeological
surveying and salvaging, oceanographic mapping, and plenty
of military applications, such as payload delivery, surveil-
lance and mine termination, which are, by nature, repetitive
or dangerous and thus more suitable for machines rather than
people.

In order to develop reliable AUV systems, regardless
of the mission at hand, a good navigation architecture is
necessary, so that the control problem, which is more mission
specific, can be independently tackled as well. In fact, most
of the control algorithms rely on relatively good localization
performance of the agents participating in the mission.
However, in underwater applications, due to the attenua-
tion of the conventional electromagnetic spectrum used for
wireless communication, satellite-based navigation systems
such as the GPS are unavailable. As such, different solutions
based on relative measurements and communication between
agents must be considered.
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Since centralized approaches often become impractical
due to communication restrictions, there is a need for de-
centralized alternatives, in which AUVs only communicate
locally and when necessary. These solutions are usually
cooperative, that is, the AUVs communicate between them-
selves and work together to improve their estimates. Many of
these cooperative techniques are based on Kalman filtering
approaches, using the correlation of the agents in the forma-
tion as a way to achieve the desired cooperative behavior.
The issue with this approach is that it becomes essential to
keep track of the cross-correlation between agents, otherwise
the Kalman filter may diverge [1], which is one of the
main difficulties in achieving a decentralized cooperative
localization solution of this type.

In this work, a general centralized approach to the problem
of cooperative navigation of AUVs based on the extended
Kalman filter (EKF) will be presented. Moreover, the de-
centralized version proposed in [2] will also be evaluated
against it. Finally, the effect of the communication topology
of the agents will also be studied, investigating whether the
presence of cycles, with additional information, is beneficial
to the performance of the whole system.

A. Related work

Early work that attempted to develop decentralized nav-
igation solutions based on Kalman filtering techniques did
so by reproducing the centralized solution at each vehicle,
relying on communication schemes between the AUVs to
distribute all the necessary data to each agent, such as in [3].
The proposed solution consists of having vehicles propagate
their dead reckoning and measurement information to other
AUVs through communication, and then having each agent
carry a Kalman filter that estimates the position of the whole
formation. While this approach is cooperative, by attempting
to mimic the behavior of the centralized Kalman filter, it
ends up requiring too much communication and does not
take advantage of the scaling capabilities of decentralized
solutions.

Some other early work on decentralized cooperative lo-
calization relied on bookkeeping strategies at each agent in
order to correctly estimate the cross-covariances between
AUVs. In [4], each agent maintains a set of filters, one for
each possible combination of measurements between agents.
Upon receiving a broadcast by its neighbors, each agent
updates its compatible filters with the received information
and then finds which filter among the ones in its database
provides the best estimate.
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Rather than attempting to build a centralized-equivalent
estimator, which either requires excessive communication
or complex bookkeeping strategies, some decentralized ap-
proaches instead attempt to approximate the centralized
Kalman estimator. As mentioned before, the main issue with
this kind of approach is the need for keeping track of the
cross-correlation terms between each local filter.

In [5], the authors present a decentralized solution based
on the covariance intersection algorithm to build a consistent
Kalman filter estimator, guaranteeing that its estimates do not
become overconfident. However, these estimates may also be
overly pessimistic, as stated in [2]. Due to the decentralized
nature of the proposed approach, the communication and
processing requirements scale linearly with the number of
neighboring AUVs at each agent, showing good scaling
capabilities.

While this work is focused on Kalman filtering ap-
proaches, several other solutions have been proposed in
the literature, including other probabilistic based techniques,
such as particle filtering solutions, see e.g. [6] and [7]. Other
approaches are based on writing globally convergent Kalman
observers with linear-time varying dynamics and restricting
the formation topology to guarantee global convergence to
the solution, such as in [8]. Finally, some iterative opti-
mization techniques for cooperative localization using range
measurements have also been suggested, see e.g. [9].

B. Notation

For clarity purposes, the notation used in this work is
defined here. Vectors x ∈ Rn and matrices A ∈ Rm×n are
represented using bold symbols, in lower and upper case,
respectively. The ith coordinate of a vector p is denoted as
pi. The identity matrix is written as In ∈ Rn×n and a zero
matrix as 0n ∈ Rn×n. If the zero matrix is not square, it is
represented as 0m×n. Additionally the transpose of a matrix
A is written as AT , the diagonal operator is represented
as diag(·), and ||x|| is the standard Euclidean norm of the
vector x.

II. PROBLEM STATEMENT

Consider a set of AUVs, numbered from 1 to N , where
each agent evolves according to{

ṗi(t) = vri(t) + vfi(t)

v̇fi(t) = 03

, (1)

where pi(t) ∈ R3 represents the AUV’s position in a local
inertial frame {I}, vri(t) ∈ R3 is its velocity relative to the
fluid it is operating in, expressed in inertial coordinates, and
vfi(t) ∈ R3 is the velocity of the fluid in inertial coordinates,
which can be different for each AUV, though it is assumed
to be constant. This is a valid assumption locally as long as
the AUVs do not move very fast. In practice, by appropriate
tuning of the filter parameters, it is possible to track slowly
time-varying quantities.

Some AUVs, called leaders, have direct access to measure-
ments of their position, acquired via GPS, for example. The
other agents, called followers, are assumed to be operating

Fig. 1: Example communication graph G.

in a GPS-denied environment and, as such, must perform
localization through measurements and communication with
other agents. In the setting considered here, the AUVs are
capable of measuring their own depth and are also able to
take bearing measurements about their neighbors. As such,
if at time tk an AUV i takes a measurement about an agent
j, this measurement is modeled as

θ(tk) = θ(pi(tk),pj(tk))

φ(tk) = φ(pi(tk),pj(tk))

z(tk) = pz
i (tk)

,

where θ and φ are the bearing angles measured by AUV i
and z is its depth. Whenever an AUV takes a measurement
about one of its neighbors, it is also assumed that they are
capable of communicating with each other.

The agents are assumed to travel through space with a
fixed measurement configuration. Let G := (V, E) be the
graph representing the measurement topology of the AUVs,
such that V := {1, . . . , N} is the set of nodes in G,
representing agents 1 to N , and E is the set of edges in
the graph. The edges represent information flow, that is,
there is a directed edge e = (i, j) ∈ E from node i to
node j if AUV j is capable of taking measurements about
AUV i. Finally, denote the set of nodes that AUV i can
take measurements about as the set of its neighbors, Ni.
An example of a measurement graph, G, is represented in
Fig. 1, where V = {1, 2, 3} and E = {(1, 2), (1, 3), (2, 3)}.
The leader, AUV 1, is represented in a shaded tone. The set
of neighbors of AUV 3, in this example, is N3 = {1, 2}.

III. CENTRALIZED EXTENDED KALMAN FILTER

In this section, a centralized extended Kalman filter
(CEKF) for cooperative localization is presented. Besides
assuming synchronicity between the measurements, in order
to be implemented, this algorithm must rely on some kind
of information distribution strategy. Either all agents have
access to all the information that has been generated, such as
dead-reckoning and measurement data, or some central unit
must have access to this information and is then responsible
for distributing the updated state estimates to all of the
agents.

A. Motion model

The kinematic model (1) is continuous and therefore not
suitable for direct use in the present navigation algorithm,



since bearing measurements are usually available at a slow
rate. By discretizing it, one obtains{

pi(tk+1) = pi(tk) + Tvfi(tk) + ui(k)

vfi(tk+1) = vfi(tk)
,

where

ui(k) :=

∫ tk+1

tk

vri(t)dt (2)

and T is the sampling time. Defining the state of each agent
as

xi(k) :=

[
pi(tk)
vfi(tk)

]
,

the motion model for each AUV is given by

xi(k + 1) = Aixi(k) + Biui(k),

where

Ai =

[
I3 T I3
03 I3

]
and Bi =

[
I3
03

]
.

In order to design a centralized Kalman estimator, consider
the state vector

x(k) :=

x1(k)
...

xN (k)

 ,
from which the centralized motion model is obtained as

x(k + 1) = Ax(k) + Bu(k),

where A = diag (A1, . . . ,AN ), B = diag (B1, . . . ,BN ),
and u :=

[
uT
1 (k) · · · uT

N (k)
]T

.

B. Observation model

For the sake of conciseness, the explicit time dependence
of the measurement and state vectors is dropped from here
onward when not necessary. Let i be the index of a leader
AUV, which has direct access to measurements of its posi-
tion, such that yi := pi(tk), where yi is the measurement
vector. The observation model for agent i, with respect to
the whole formation, is then given by

hi(x) = Jix,

with Ji =
[
· · · I3 03 · · ·

]
, where I3 occupies the

columns corresponding to the position of the measuring agent
in the complete state vector.

If, on the other hand, i is the index of a follower AUV,
its measurements, apart from depth, will be about other
agents. Denoting the AUVs that participate in a measurement
as participating agents and the AUVs that do not as non-
participating agents, the bearing measurement vector of the
measuring AUV with index i, to another AUV with index
j, can be written as a function of the state of participating
AUVs as

yb = hb(xi,xj)|t=tk ,

where hb(xi,xj) =
[
θ(xi,xj) φ(xi,xj)

]T
, and{

θ(xi,xj) = atan2
(
pz
j − pz

i , Lxy

)
φ(xi,xj) = atan2

(
py
j − py

i ,p
x
j − px

i

) ,

with Lxy =
√
(px

j − px
i )

2 + (py
j − py

i )
2. The Jacobian of

this observation model with respect to the whole formation,
denoted by Jb, is given by

Jb(x) =

[
. . .

∂hb

∂xi
(xi,xj) . . .

∂hb

∂xj
(xi,xj) . . .

]
=
[
· · · Jbi(xi,xj) · · · Jbj (xi,xj) · · ·

]
,

where the explicit expressions of Jbi(xi,xj) and Jbj (xi,xj)
are omitted due to space limitations. Here, Jbi occupies the
columns which correspond to the state of the agent with
index i and Jbj those of the agent with index j. Since an
AUV might take measurements about more than one agent
and is also able to take depth measurements, each follower
AUV’s observation model, hi, is a concatenation of bearing
measurements to other agents in its neighbor set and its depth
measurement. Its Jacobian, Ji, is similarly a concatenation
of the individual measurement model Jacobians with respect
to the whole formation. As an example, the measurement
vector of AUV 3 in the measurement graph depicted in Fig.
1 is given by

y3 =

hb(x3,x1)
hb(x3,x2)

z3

 ,
where z3 is the depth measurement captured by agent 3.
Similarly, its jacobian is given by

J3 =

Jb1(x3,x1) 02×6 Jb3(x3,x1)
02×6 Jb2(x3,x2) Jb3(x3,x2)
01×6 01×6 Cz

 ,
where Cz =

[
0 0 1 0 0 0

]
.

Consider the complete measurement vector, given by a
concatenation of all the individual AUV measurements,

y :=

y1

...
yN

 ,
such that y = h(x). Here, h(x) corresponds to the con-
catenation of the respective individual observation models
of AUVs 1 to N ,

h(x) :=

h1(x)
...

hN (x)

 ,
where hi(x) is the measurement model of AUV i with
respect to all the agents in the formation. The centralized
Jacobian is then given by

J(x) =

J1(x)
...

JN (x)

 .
Let x̂(k + 1|k) and x̂(k + 1|k + 1) be the estimates

of x at time k + 1, before and after the update step of
the Kalman filter, respectively. Additionally, let Σ(k + 1|k)
and Σ(k + 1|k + 1) be the corresponding state covariance



estimates. The prediction step, which corresponds to the
motion update equations, is given by{

x̂(k + 1|k) = Ax̂(k|k) + Bu(k)

Σ(k + 1|k) = AΣ(k|k)AT + Q
,

where A and B were defined in the previous section and
Q is the process noise covariance matrix, which can be
defined for each AUV, and then concatenated as Q =
diag(Q1, . . . ,QN ). The update equations, to be performed
upon receiving a measurement, are given by{

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(y − ŷ)

Σ(k + 1|k + 1) =
(
I6N −KĴ

)
Σ(k + 1|k) ,

where Ĵ = J(x̂(k + 1|k)) is the Jacobian of the centralized
measurement model evaluated at the current state estimate,
K = Σ(k+1|k)ĴT

(
ĴΣ(k + 1|k)ĴT + R

)−1

is the Kalman
gain, ŷ = h(x̂(k+1|k)) is the filter’s expected measurement
vector, and R is the measurement noise covariance matrix,
which can also be defined for each measurement indepen-
dently, analogously to Q.

IV. DECENTRALIZED EXTENDED KALMAN FILTER

In this section, an implementation of the solution presented
in [2] is described for depth and bearing measurements,
which will be labeled in this work as the decentralized
extended Kalman filter (DEKF). This asynchronous approach
is completely decentralized and relies only on local commu-
nication between neighboring agents.

A. Motion model

The first insight behind this solution is that the cross-
covariances between agents are only necessary when update
steps happen. Because of this, if each agent can correctly
update its cross-covariance to other agents without commu-
nicating with them, the prediction step of the Kalman filter
presents no issue.

Let the state of agent i be defined and denoted as xi(k) :=[
pT
i (tk) vT

fi
(tk)

]T
, and denote its filtered estimate and

covariance as x̂i and Σ̂ii, respectively. Note that the DEKF
approximates the CEKF, thus the covariances of each agent
and their cross-covariances to other agents will not be exact,
hence the chosen hat notation. Consider the decomposition
of the cross-covariance between agents i and j, Σ̂ij , such
that

Σ̂ij(k) = Φ̂ij(k)Φ̂
T
ji(k),

and let each agent carry its estimated belief, Bi := {x̂i, Σ̂ii},
and cross-covariance factor, Φ̂ij , between itself and other
agents it has knowledge of, i.e., each agent i carries Bi and
Φ̂ij for all j ∈ Ni.

The corresponding CEKF prediction equations for agent
i, which account for its motion, are given by

x̂i(k + 1|k) = Aix̂i(k|k) + Biui(k)

Σii(k + 1|k) = AiΣii(k|k)AT
i + Qi

Σij(k + 1|k) = AiΣij(k|k)
, (3)

leaving the remaining terms x̂j ,Σjj ,∀j 6= i, unchanged. So,
if AUV i updates its cross-covariance factor to another AUV
j through

Φ̂ij(k + 1|k) = AiΦ̂ij(k|k) ∀j 6= i (4)

when performing prediction steps, when they meet, their
reconstructed cross-covariance is given by

Σ̂ij(k + 1|k) = AiΦ̂ij(k|k)Φ̂ji(k|k)T

= AiΣ̂ij(k|k)
= Σij(k + 1|k),

if it holds that Σ̂ij(k|k) = Σij(k|k). In general, one has
Σ̂ij(k|k) 6= Σij(k|k) due to approximations in the update
step, however, what is important is that, since all terms are
available, the prediction step of the CEKF can be reproduced
exactly at each agent in a decentralized way without commu-
nication, thus resulting in no loss of estimation capabilities
with respect to this step. All AUVs then predict their beliefs
and cross-covariance factors to other agents according to (3)
and (4), substituting their estimated belief by x̂i and Σii.

B. Observation model

A major difference should now be noted between the cen-
tralized and decentralized versions of this filter. While all the
measurements are available simultaneously for computation
of the update step in the CEKF, the DEKF is asynchronous
and, as such, only one measurement vector is considered at
a time. In a centralized approach, this would be equivalent
to considering an observation model containing only one
measurement at a time and performing several updates at
each time step. Due to space limitations, the derivation of the
update equations for measurements taken by the agents is not
presented here, though they originate from the decomposition
of the CEKF update equations, similarly to what was done in
the previous section. The derivation of the update equations
can be found in the appendix of the original work [2].

Consider that a leader AUV with index i takes a measure-
ment of its position yi. Again, dropping the explicit time
dependence, the measurement model for this agent is given
by

h(xi) =
[
I3 03

]
xi = Cixi.

Since this equation only involves the measuring agent, the
estimated belief and cross-covariance factors to other agents
are updated according to

x̂i(k + 1|k + 1) = x̂i(k + 1|k) + Ki(yi − ŷi)

Σ̂ii(k + 1|k + 1) = (I6 −KiCi) Σ̂ii(k + 1|k)
Φ̂ij(k + 1|k + 1) = (I6 −KiCi) Φ̂ij(k + 1|k)

, (5)

where ŷi = h(x̂i) is the expected measurement vector, Ki

is the Kalman gain, given by

Ki = Σ̂ii(k + 1|k)CT
i

(
CiΣ̂ii(k + 1|k)CT

i + Ri

)−1

,

and Ri is the measurement noise covariance matrix. Note
that the last equation of (5) should be performed for all



agents that AUV i has knowledge of. In a centralized Kalman
filter, measurements taken by an agent also affect the state
of all agents that are correlated with it through previous
measurements. However, in order to prevent excessive com-
munication, the estimated beliefs of other agents are left
unchanged.

If, instead, it is the case that a follower AUV i takes a
bearing measurement about another AUV j and a depth mea-
surement about itself then, letting x̂a be the joint estimate
of the states xi and xj , and Σ̂aa its estimated covariance,
such that

x̂a :=

[
x̂i

x̂j

]
and Σ̂aa :=

[
Σ̂ii Σ̂ij

Σ̂ji Σ̂jj

]
.

Then, the update equations for the joint system are given by{
x̂a(k + 1|k + 1) = x̂a(k + 1|k) + Ka(yi − ŷi)

Σ̂aa(k + 1|k + 1) =
(
I6 −KaĴa

)
Σ̂aa(k + 1|k) . (6)

In the above, yi is the concatenation of the bearing measure-
ment to another AUV with the captured depth measurement,
ŷi is its predicted value, Ĵa =

[
Jfi(x̂i, x̂j) Jfj (x̂i, x̂j)

]
is the Jacobian matrix of the joint system’s measurement
model, evaluated at the current state estimate, with Jfi and
Jfj defined such that

Jfi(xi,xj) :=

[
Jbi(xi,xj)

ez

]
,

Jfj (xi,xj) :=

[
Jbj (xi,xj)

01×3

]
,

where ez :=
[
0 0 1

]
and Ka is the Kalman gain, given

by

Ka = Σ̂aa(k + 1|k)ĴT
a

(
ĴaΣ̂aa(k + 1|k)ĴT

a + Ri

)−1

.

These quantities can be computed locally at the measuring
agent, requiring only that AUV j transmits its estimated
belief, Bj , and its cross-covariance factor to agent i, Φ̂ji.
AUV i is then responsible for communicating to AUV j its
updated belief, obtained from x̂a(k + 1|k + 1) and Σ̂aa(k+
1|k + 1). In order not to double count information, the
cross-covariance between agents i and j must be distributed
correctly. Since the decomposition of the cross-covariance
between agents can be done in any way, it can be agreed
beforehand that, upon receiving updated estimates, agent j
sets its cross-covariance factor to AUV i as the identity
matrix, i.e. Φ̂ji(k + 1|k + 1) = I6, and AUV i sets

Φ̂ij(k + 1|k + 1) = Σ̂ij(k + 1|k + 1), (7)

where Σ̂ij can be obtained from the updated joint state co-
variance matrix Σ̂aa. This way, the cross-covariance between
these two agents is preserved without need for communicat-
ing to agent j a new cross-covariance factor, since

Φ̂ij(k + 1|k + 1)IT6 = Σ̂ij(k + 1|k + 1).

As before, in order to prevent communication between partic-
ipating and non-participating agents, the state and covariance
estimates of the latter are left unchanged.

The only terms that still need to tracked are the
cross-covariance factors between participating and non-
participating agents. This is the main contribution of the work
in [2] and, as such, only the main result is presented here,
though the interested reader can check the original work for
details. The last update equation performed by participating
agents is

Φ̂il(k+1|k+1) = Σ̂ii(k+1|k+1)Σ̂−1
ii (k+1|k)Φ̂il(k+1|k),

(8)
where i is the index of participating AUVs and l is the index
of any non-participating AUV. Note that both participating
agents should perform update (8).

To summarize, prediction steps are performed using the
first two equations of (3) and (4); the correction updates
performed by leader AUVs when they take a measurement
of their position are given by (5); and when agent i takes
a measurement about AUV j, these updates are done using
(6), (7) and (8), with AUV j setting Φ̂ji(k + 1|k + 1) = I6
upon receiving its updated belief and performing (8) locally
as well.

V. SIMULATION RESULTS

In this section, the simulation results of both approaches
are presented. The algorithms are compared in two different
settings, one where the measurement graph is acyclical, and
one where there are cycles present in the graph, which
provide additional information. A Monte Carlo analysis of
each setting was performed, whereby 500 runs of a certain
trajectory were simulated for each measurement topology. In
order to better compare the algorithms, the ith run of each
setting was affected by the same initial state estimation errors
and noise conditions.

A. Setup

The agents are assumed to be moving in a formation
such that all AUVs follow the same trajectory, offset by
their initial positions, detailed in Table I. Their trajectory
relative to their initial position, s(t) = pi(t)− pi(0), is
depicted in Fig. 2. The fluid velocity was set as constant
throughout the whole operating space such that vfi =[
0.1 −0.2 0

]T
m/s for all i ∈ V , where V is the set of

AUVs.
The leader AUVs are able to obtain position measure-

ments corrupted by zero mean white Gaussian noise, with
covariance matrix Σpos = diag

(
0.32I2, 0.1

2
)
. The depth

measurements of the follower AUVs are corrupted by zero
mean white Gaussian noise, with standard deviation of 0.2m,
and the measured bearing angles, θ and φ, are corrupted
by independent zero mean Gaussian noise, with standard
deviation of 0.03 rad. These are assumed to be available
every T = 2 s, whereas the relative velocity of each agent,
vri , is available at a rate of 50Hz and is corrupted by
zero mean white Gaussian noise, with covariance matrix
Σu = 0.012I3. The control signal of each agent, ui(k), is
obtained using the trapezoidal integration of vri in between
measurement time steps, approximating (2).



TABLE I: Initial positions of each AUV.

i px
i (0) (m) py

i (0) (m) pz
i (0) (m)

1 −50 −100 0
2 50 100 0
3 −110 −170 −190
4 −120 150 −210
5 100 −200 −230
6 120 190 −190
7 20 15 −350

As for the filter parameters, the states of each agent were
considered to be completely uncorrelated at time t = 0, i.e.,
all cross-covariances, both in the CEKF and DEKF solutions,
were set as the zero matrix, 06. Each agent’s initial covari-
ance matrix was set as Σ̂ii(0) = diag

(
202I3, 2

2I3
)
∀i ∈ V .

The process noise covariance matrix for each agent was
set as Qi = diag

(
0.12I3, 0.05

2I3
)
. For the position mea-

surements, the noise covariance matrix was set as Ri =
I3, whereas for the bearing measurements it was set as
Rb = 0.052I2, and for the depth measurements σd =
0.3 was considered. Finally, the initial estimate of each
AUV was sampled from a Gaussian distribution, with
mean identical to the true state of each AUV, and co-
variance matrix Σ0 = diag(I3, 0.1

2I3) for leader AUVs,
and Σ0 = diag(152I3, 1

2I3) for follower AUVs. Note that,
because the approaches are based on the EKF, global con-
vergence properties are not guaranteed, and fine tuning of
the filter parameters is required.

Both the CEKF and DEKF approaches were simulated
considering two different topologies, differing from each
other only in that one is acyclical and the other is not.
The measurement graphs for each setting, G1 and G2, are
presented in Figs. 3 and 4. A Monte Carlo analysis of
N = 500 runs was made, whereby both algorithms were
tested, in each topology, under the same noise conditions
and initial state estimation errors in each run.

In order to evaluate the performance of the estimators, the
root-mean-squared-error (RMSE) of the position and fluid
velocity estimates, obtained for each time instant from the
collection of Monte Carlo runs, was computed, such that

RMSE(x(k)) =

√∑N
n=1 ||x(k)− x̂n(k)||2

N
,

where x(k) is the concatenation of the position or fluid
velocity vectors of all AUVs at time k, and x̂n(k) is its CEKF
or DEKF estimate obtained in the nth Monte Carlo run.
Additionally, in order to investigate whether the estimators
are biased, the mean error of the estimated quantities, for
each time instant, was computed from the collection of
Monte Carlo runs, as given by

mean(x(k)) =
1

N

N∑
n=1

(x(k)− x̂n(k)) .

B. Sample run

For clarity purposes, only the results pertaining to AUVs 3,
4, and 7 are presented. Figs. 5 and 6 show the convergence
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Fig. 2: Nominal trajectories of each AUV, translated so they
start at the origin.

Fig. 3: Acyclical communication graph G1.

Fig. 4: Cyclical communication graph G2.
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(a) CEKF position estimate error.
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Fig. 5: Sample run position estimation errors.
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Fig. 6: Sample run fluid velocity estimation errors.

behavior of the position and fluid velocity errors of both
solutions for a sample run. As expected, the centralized filter
converges to the solution faster than the DEKF, as the latter
is missing measurement and cross-correlation information
to other agents. However, the transient response was found
to be heavily influenced by the initial conditions, with the
DEKF sometimes outperforming the CEKF. In the following
sections, Monte Carlo results are presented for the two
topologies that were considered.

C. Acyclical communication graph results

Figs. 7a and 7b show the estimated position and fluid
velocity RMSE for both algorithms, considering the acyclical
communication topology, G1. As expected, the localization
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Fig. 7: Algorithm comparison for G1.
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Fig. 8: Position coordinates means for G1.

estimates provided by the CEKF are better than those com-
puted by the decentralized algorithm. However, the fluid
velocity estimates provided by the DEKF are slightly more
accurate. This suggests that the filter was not correctly
tuned, namely, that measurements were being given too
much importance. However, because these are EKF-based
approaches, if the estimates do not converge to the true
solution fast enough, the filters might end up becoming over-
confident and converging to non-optimal solutions or even
diverge. In addition to the RMSE of the estimated quantities,
the mean errors for the position coordinates of AUV 7 are
also presented in Fig. 8, showing that both estimators are
unbiased.
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Fig. 9: Algorithm comparison for G2.

D. Cyclical communication graph results

Considering now the cyclical communication topology,
represented by G2, the RMSE results for CEKF and DEKF
are presented in Fig. 9. It is clear that, once again, the
centralized estimator provides a better navigation estimate
than the DEKF. And, once again, the DEKF’s fluid velocity
estimate is slightly better than CEKF’s, due to the same
reasons as before. Comparing the results presented in this
section with those presented in the previous section, the
position estimation has clearly benefited from the intro-
duction of cycles. However, the fluid velocity estimate has
degraded in both approaches due to the fact that there is more
measurement information and too much importance had to
be given to these to ensure convergence to the true solution.
Regardless, the total estimation error is decreased upon the
introduction of cycles, which, besides providing the forma-
tion with new measurement information, also increases the
coupling between the agents, allowing for a more cooperative
solution.

VI. CONCLUSION

In this work, two EKF-based approaches for the navigation
problem of an AUV formation using depth and bearing
measurements were analyzed via simulations and Monte
Carlo results were presented. As expected, the centralized
estimator provides better position estimates. Additionally, it
was found that the presence of cycles allowed for more
coupling between agents, which ends up being beneficial for
both the convergence behavior of the estimators, as well as
their steady-state position estimation performance. On the
other hand, this was observed to be detrimental to the fluid
velocity estimate of both solutions, which is due to the tuning
balance that had to be performed because the approaches
are EKF-based, and thus do not have global convergence
guarantees. This emphasizes the clear benefits of observers

with globally stable dynamics, which can be more easily
tuned, and, unlike EKF-based approaches, have no need for
relatively accurate initial state guesses, which would end up
increasing the time efficiency of missions, since there is no
need for an initial setup process.

Even though the CEKF provides a better localization
estimate, it is often impractical to implement in a real
system, especially for formations with many agents, due to its
scalability problems. The DEKF is a simple, completely de-
centralized alternative, which provides navigation estimates
similar to those of the CEKF and takes full advantage of the
benefits that come with decentralization, such as scalability
and robustness. Cycles improve the localization estimate of
the system due to the increased coupling between agents, im-
proving both the convergence and steady-state performance
of the estimators, and, as such, should be exploited for more
accurate localization estimates.
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