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Abstract—Landing an Unmanned Aerial Vehicle (UAV) aboard
a patrol boat is a challenging task due to the unpredictable ship
movement, being its automation essential. Automated solutions
rely on the UAV pose estimation, usually obtained from onboard
sensors. Given the onboard sensors’ limitations and the power
consumption, we propose an off-board pose estimation method.
By relying on RGB images captured from a camera at the ship
deck, our method directly estimates the UAV pose with respect
to the landing site, removing the dependency on any additional
sensors. We propose a model-based pose tracking method with
a Rao-Blackwellized Particle Filter (RBPF), that models the
translational motion of the UAV approximating the translation by
a set of hypotheses and a distinct rotational distribution for each
translation hypothesis using a autoencoder network trained for
our UAV model. This allows to reduce the sample search space
from 6D to 3D. Furthermore, we propose a particle weighting
process combining the contributions from the rotation likelihood
distribution and a detector-based likelihood. The training of the
neural networks and the validation of the proposed method
is made on a graphically realistic simulator. The results show
that our weighting process has benefits when compared to the
baseline and other state-of-the-art approaches. Furthermore, our
approach successfully handles objects with geometric symmetries.

Index Terms—Autonomous UAV landing, pose tracking,
YOLO, symmetries, visual servoing

I. INTRODUCTION

Portugal has an Exclusive Economic Zone (EEZ) whose
area is eighteen times greater than its land territory. In this
area, the country has the right to explore the natural resources
and exercises its jurisdiction [1]. Moreover, it is defined a
Search and Rescue Region (SSR), three times greater than the
Portuguese EEZ, where the country should perform Search and
Rescue (SAR) operations. The patrolling of such a vast area,
currently executed using patrol boats, can be handled using
UAVs, allowing to save energy and human resources.

One of the most critical UAV operations during an offshore
mission is its landing on the retention system at the patrol boat,
shown in Figure 1. Given the ship motion and oscillations,
performing the UAV landing procedure is a challenging task.
Landing piloting errors represent the most common human-
caused UAV accident [2], and thereby, this procedure automa-
tion is required.

Automated landing control systems rely on the UAV pose
estimation, commonly obtained from onboard sensors. How-
ever, besides the power consumption, there are several limita-
tions regarding onboard sensors, such as the error propagation
of inertial sensors and the signal jamming of the Global

Fig. 1: The UAV retention system at the landing site. This
image was adapted from [25].

Navigation Satellite System (GNSS). Thereby, in this article,
we propose an off-board pose estimation method relying only
on RGB images captured from a camera located at the ship
deck. This allows us to directly estimate the pose regarding
the landing site, removing the dependency from any additional
onboard sensors. Furthermore, by performing the pose tracking
from the ship, we can use higher computational power and
better cameras.

Our approach relies on the UAV geometrical model to
perform the pose estimation. However, the UAV geometrical
shape has different symmetries, as shown in Figure 2, and
the projection of different poses can produce images with
similar appearances. Furthermore, the UAV landing procedure
can occur at different day times and with different atmo-
spheric conditions. Therefore, our method should be robust
to symmetries, different illumination conditions, and different
background scenarios.

Fig. 2: The UAV under symmetrical rotations. While the UAV
on the left image moves towards the camera, the UAV on the
right image moves away from the camera.

The method presented in this article is based on the ap-
proach proposed by Deng et al [3]. The baseline method
estimates object poses by performing a Rao-Blackwellized
Particle Filter (RBPF) [4] iteration for each new frame.
The translation posterior distribution is represented by a set



of hypotheses, being the rotation distribution dependent on
those hypotheses. The rotation distribution is represented by
discretizing the Euler rotation space over 5 degree-sized bins,
allowing to track multiple plausible rotation hypotheses si-
multaneously. The method observes the rotation distribution
by encoding the UAV appearance in the input image and
comparing it with pre-computed encodings for each discretized
rotation. In this way, given that rotations with similar ap-
pearance have similar encodings, the observation outputs high
density for each plausible rotation. Our innovation regards
the particle weighting process. The baseline method calculate
the particle weights by marginalizing the rotation distribution.
In alternative, we estimate the weights by combining the
rotation marginalization with a likelihood distribution based
on the YOLO [6] object detection network. By not applying
any translation observation at a regular iteration, the baseline
method can’t recover when there is a tracking loss, being in
an open loop with respect to the object position. Each of
the components of the weighting process gives a different
contribution to the overall result.

The main contributions of this work are:
• A new particle weighting process combining detection

and the rotation distribution;
• The study of the contribution of each weight component

to the overall result;
• State-of-the-art results when comparing with the previous

approach, from [5].
The remaining of this article has the following structure. In

Section II, we overview the works related to our problem. Af-
terward, in Section III, we summarize the proposed approach.
Section IV provides the experimental results on different
datasets. Finally, in Section V, we provide the concluding
remarks and discuss directions for future research.

II. RELATED WORK

In this section, we will address the related work focusing
on the UAV pose estimation (Sub-section II-A), object pose
detection (Sub-section II-B), and object pose tracking (Sub-
section II-C).

A. UAV pose estimation

Most UAV pose estimation techniques rely on cameras and
sensors aboard the vehicle, although this further constrains
the flight autonomy. Other works propose ground-based pose
estimation techniques. Many ground-based techniques, such as
[7], rely on markers aboard the vehicle. The markers are usu-
ally emitters/reflectors on the Infrared (IR) spectrum, whose
light is captured by IR cameras. Other techniques are deployed
using RGB cameras and rely on object features or region-
based statistical models of the foreground and background.
One example is the method of Jin et al [8], who estimates
a quadcopter pose by performing a Perspective-n-Point (PnP)
algorithm over keypoints regressed from a relational graph
network. The pose estimation accuracy is usually constrained
by the UAV distance to the camera, particularly when using
monocular camera configurations. This issue can be mitigated

by applying a stereo or multiple-camera framework. Rozantsev
et al [9] estimates a quadcopter pose using images captured
from multiple RGB cameras. The authors propose a new
Bundle Adjustment (BA) formulation regularized by the UAV
flight dynamics model. Many approaches are deployed on
some temporal filtering technique, whether it is a Kalman filter
[7]–[9] or a particle filter technique [5]. On a previous work,
[5] estimates a fixed-wing UAV pose from images captured
by a monocular RGB camera, using a particle filter. The main
contributions of [5] are the use of directional statistics in
tracking and the creation of the Unscented Bingham-Gauss
Filter (UBiGaF).

B. Object pose detection

Pose detection encloses the pose estimation methods that
depend only on the current frame to perform the estimation.
Many pose detection techniques, such as [10], are depen-
dent on the depth information from RGBD cameras. Other
techniques apply the depth information when available, using
it to refine the initial pose estimation through the Iterative
Closest Point (ICP) algorithm. However, RGBD cameras are
not suitable to be applied in open environments, such as the
one our approach is deployed on. Many pose detection meth-
ods obtain coarse pose estimations by performing template
matching [10], [11]. Template matching techniques compare
features from the input images with pre-computed features.
Most of the time, the coarse pose estimations are then refined,
either using the ICP [10]–[13] algorithm or by aligning the
object edges [12]. Recently, deep learning-based methods
have become predominant. Whereas some methods directly
regress the pose hypotheses [12], others form a pipeline of
different sub-networks to regress pose parameters [13], [14].
Alternatively, some Convolution Neural Networks (CNNs)
architectures produce features, as keypoints, subsequently used
to compute the pose estimation [15]. The most common
limitation of these pose detection techniques is the defective
handling of symmetrical rotations.

C. Object pose tracking

Pose tracking comprises the pose estimation techniques
that use information obtained on the current and previous
frames to perform the estimation. Most of the pose tracking
approaches propose energy function optimization techniques.
The energy function tries to approximate the appearance of
the last estimated pose by the appearance of the actual frame.
The object’s appearance can be coded through different kinds
of features. Tjaden et al [16] propose an energy function
optimization technique relying on global color histograms to
model the background and foreground. In alternative, Zhong
et al [17] proposed an energy function relying on two kinds of
features. While the object contour regions were modeled using
local color histograms, the object interior was modeled by the
color gradients. Zhong et al [18] combine energy function
optimization with deep learning networks. By applying an
autoencoder to produce foreground/background masks, the
method gains robustness to object occlusions. Meanwhile,



Manhardt et al [19] proposes a deep learning method aiming
to optimize the pose estimation by regressing pose updates.
In contrast, some tracking techniques estimate the pose using
temporal filtering techniques. One example is the approach
of Deng et al [3], who estimates object poses using an
RBPF framework. Its differentiating factor is estimating the
rotation likelihood through an autoencoder, leading to greater
robustness to symmetrical objects. However, by not applying
any translation detector at a regular iteration, the method is
susceptible to diverge in presence of non-linear movements.

III. PROPOSED APPROACH

We base our method on the approach of Deng et al [3],
that consists in a Rao-Blackwelised Particle Filter, for which
we contribute with a novel likelihood function for particle
weighing. This section begins with an overview of the Rao-
Blackwellized Particle Filter (RBPF), the particle composition,
and the rotation distribution representation. Then, in Sub-
section III-B, we define the rotation distribution. Sub-section
III-B2 describes the translation observation technique. Finally,
Sub-section III-D describes the particle filter processing.

A. RBPF overview

The Rao-Blackwellized Particle Filter (RBPF) is an efficient
particle filtering technique that divides the state space into two
groups of variables. In our case, we divide the state space
in the translation state variables, T , and the rotation state
variables, R. Under this decomposition, we have a posterior
probability distribution of the type P (T0:k, R0:k|Z0:k), with
Z0:k representing the set of observations until iteration k. The
posterior probability distribution can be decomposed by using
the chain rule,

P (T0:k, R0:k|Z0:k) = P (R0:k|T0:k, Z0:k)P (T0:k|Z0:k), (1)

with P (R0:k|T0:k, Z0:k) representing the rotation probability
distribution dependent on the translation and observation, and
P (T0:k|Z0:k) being the posterior probability distribution of the
translation.

The RBPF gains its efficiency from the assumption that the
distribution P (R0:k|T0:k, Z0:k) is analytically tractable. Using
the mentioned assumption, only a subset of the state space is
approximated by the particle filter, and the number of particles
is reduced. Therefore, under the RBPF assumption, equation
(1) becomes,

P (T0:k, R0:k|Z0:k) ≈
N∑
i=1

wi
k σT i

0:k
(T0:k)P (R0:k|T i

0:k, Z0:k),

(2)
where N is the number of particles, wi

k is the weight of the
ith particle in iteration k, σT i

0:k
(T0:k) is the Dirac delta located

in T i
0:k, and P (R0:k|T i

0:k, Z0:k) is the rotation distribution
dependent on the ith translation hypothesis and the set of
observations. In this way, based on [3], we define the particles
as

χk =
{
T i
k, P (R0:k|T i

0:k, Z0:k), wi
k

}N
i=1

(3)

and we represent the distribution P (R0:k|T i
0:k, Z0:k) as a three-

dimensional tensor in which the dimensions are the Euler an-
gles a ordered as roll (α), pitch (β), and yaw (γ). To represent
all rotations, the roll and yaw angles range in the interval
[−180◦, 180◦] and the pitch angle range in [−90◦, 90◦]. By
discretizing the distribution over 5-degree bins, the resulting
tensor has a dimension of 72× 37× 72 bins.

B. Rotation distribution

As previously mentioned, we consider the distribution
P (R0:k|T i

0:k, Z0:k) to be analytically tractable. Using Bayes
rule and the Markov assumption on state transitions, we can
rewrite P (R0:k|T i

0:k, Z0:k) as

P (R0:k|T i
0:k, Z0:k) ∝ P (Zk|Rk, T

i
k)P (Rk|Rk−1)P (R0:k−1|T i

0:k−1, Z0:k−1),
(4)

where: P (Rk|Rk−1) is the rotation motion prior, defined in
III-B1; P (Zk|Rk, T

i
k) is the observation likelihood distribu-

tion, defined in III-B2; and P (R0:k−1|T i
0:k−1, Z0:k−1) is the

rotation distribution from the previous iteration.
1) Rotation motion prior: Based on [3], we consider the

rotation motion to be locally static. Thereby, the rotation
motion prior is defined as

P (Rk|Rk−1) = N (Rk−1,ΣR), (5)

where ΣR is the rotation covariance matrix. As such, the
rotation proposal distribution is given by the convolution of
P (R0:k−1|T i

0:k−1, Z0:k−1) with a Gaussian kernel KR

P (Rk|Rk−1)P (R0:k−1|T i
0:k−1, Z0:k−1) = P (R0:k−1|T i

0:k−1, Z0:k−1) ∗KR. (6)

2) Observation likelihood: For a given rotation, the UAV
appearance can be represented by features obtained by diverse
methods. In this article, we adopt the same solution as [3], rep-
resenting object rotations using the encoding features obtained
from a trained autoencoder.

As depicted in Figure 3, both the autoencoder input and
output are 128×128 pixel RGB images. The network training
objective is to reconstruct the UAV’s appearance at the input
image removing the background. Figure 4 exemplifies three
network input, target, and output images. The encoding is a
network by-product, obtained from the encoder sub-network.
Being invariant to illumination and background changes, the
network’s encoding is used as a feature describing the UAV
rotation. We synthesized the training images with the sim-
ulator of [5], which projects the UAV geometrical model
on a background image. Given the considered deployment
scenario of this work, we created a sea-related background
database representing different day-times and different degrees
of cloudiness. We rendered every training image under the
same canonical translation,

To = [0, 0, zo], (7)

where zo = 10 meters. In order to be used as input of the
autoencoder, every training image was cropped under a Region
of Interest (ROI) with a canonical length So. The canonical
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Fig. 3: The autoencoder’s structure depiction. Bellow each block is defined its dimension.

(a) Autoencoder input.

(b) Autoencoder target.

(c) Autoencoder output.

Fig. 4: Correspondent examples of the autoencoder input,
target, and output images.

length was defined such that the UAV projection of every
rotation fits inside the canonical ROI [3].

Based on [3], the observation likelihood distribution is
estimated by comparing the encoding of the UAV appearance
on the input image with the set of encodings from the code-
book. The codebook holds pre-calculated encodings obtained
by processing synthetic images rendered using discretization
of rotations described in III-A. To obtain the input image
encoding, we begin by cropping an ROI. Given the translation

hypothesis T i
k, the ROI center coordinates are calculated as

uik = fx
xi
k

zi
k

+ px and vik = fy
yi
k

zi
k

+ py where [uik, u
i
k]T is

the ROI’s center coordinates, [xik, y
i
k, z

i
k]T is the translation

hypothesis T i
k, and fx, fy , px, and py are the camera intrinsic

parameters. The ROI dimensions are obtained from the scale
factor

Si
k =

zo So

zik
, (8)

where Si
k represents the ROI length. After rescaling the ROI

it is used as an input of the encoder sub-network, producing
the input image encoding.

Following [3], two encodings are compared by calculating
their cosine similarity. Calculating the cosine similarity be-
tween the input image encoding and the codebook, we obtain
a similarity tensor. The observation likelihood distribution is
calculated as the normalization of the similarity tensor. By
doing so, rotations with high similarity receive a high density,
and the rotations with low similarities receive a density value
near zero. Specifically, the observation likelihood distribution
is calculated as

P (Zk|T i
k, Rk) = N

(
CSmax

k − CS(Zk|T i
k, Rk), σ2

CS

)
, (9)

where: CS(·) is the cosine similarity; σCS is the observation
likelihood normalization standard deviation; and CSmax

k is the
maximum value over all the cosine similarities evaluated at
iteration k.

The observation likelihood is also sensible to the translation
T i
k. Erroneous translations hypotheses produce ROIs not cen-

tered in the UAV or with a wrong scale. Since the autoencoder
was trained using a canonical ROI, the similarity tensor is
sensible to translation errors.

C. Translation Observation

To obtain a likelihood distribution based on the UAV
detection, a translation observation technique is needed. This



observation will be useful to the detection component of the
particle weighting process, in III-D3. We base our translation
observation on the parameters from ROIs estimated with the
YOLO object detector [6]. The network was trained by [5] on a
synthetic dataset with different poses and background images.
The observed translation at iteration k can be defined as
TZ
k = [xZk , y

Z
k , z

Z
k ]. From detected ROI center we estimate xZk

and yZk . Given that the UAV rotation influences the detected
ROI, we estimate zZk using a rotation-dependent canonical
ROI length. The canonical ROI lengths were pre-calculated by
running the YOLO detection on each image of the codebook
dataset. In this way, equation (8) is adapted to

zZk =
zo · SR

o (R̃)

max(w, h)
, (10)

where w and h are respectively the ROI width and height,
SR
o (R̃) is the canonical length of rotation R̃, and R̃ is the

rotation with the highest density value from P (Zk|T i
k, Rk).

D. Filtering

We divided the filtering processing into five sub-processes.
In III-D1, we define the initialization of the particle filter at
the first iteration. Afterward, III-D2 defines the processing of a
regular iteration. Our novel weighting technique is detailed in
III-D3. Then, we describe the resampling technique and the re-
initialization criterion in III-D4. Finally, in III-D5, we present
how the pose is estimated from the current set of particles.

1) Filter initialization: The filter initialization estimates a
prior distribution based only on the observation. This initial
iteration can be thought of as a pose detection iteration since
there is not any previous information to perform tracking.

Our filter initialization begins by detecting an ROI us-
ing the YOLO detector [6]. The initial rotation distribution
P (R0|T0, Z0) is estimated as the initial observation likeli-
hood distribution, obtained using the detected ROI as the
autoencoder input. After calculating the rotation distribution,
the translation hypotheses are estimated using the previously
defined translation observation technique with different values
of R̃. Instead of estimating R̃ as the rotation with the maxi-
mum value of P (Z0|T0, R0), we estimate the set of rotations
corresponding to the N higher values of the distribution. In
this way, we have some variability to the initial translation
hypotheses.

2) Filter iteration: After the initialization, for every new
frame, a filter iteration is performed. Figure 5 depicts the
procedure of one filter iteration.

The filter begins by sampling from the translation proposal
distribution. As [3], we consider the translation to follow
a constant velocity model. At iteration k, we sample the
translation hypotheses from

T i
k ∼ N

(
T̂ i
k,ΣT

)
, (11)

where T̂ i
k represents the translation obtained by applying the

motion model on the ith particle, and ΣT is the translation

covariance matrix. Given the locally linear model assumption,
T̂ i
k is defined as

T̂ i
k =

{
T i
k−1 if k = 1

T i
k−1 + α

(
T i
k−1 − T i

k−2

)
if k > 1

, (12)

where α represents a velocity weighting factor [3]. Given the
translation hypotheses sampled from the translation proposal
distribution, the next step is to estimate the rotation distribution
through equation (4).

3) Proposed Weighting Strategy: Once we have the trans-
lation hypotheses and the rotation distribution, the parti-
cle weights estimation is performed. The particle weights
are estimated by calculating the likelihood distribution
P (Zk|T i

0:k, Z0:k−1). As previously discussed, our main con-
tribution is a weighting process combining a detection-based
likelihood with the autoencoder-based likelihood proposed
by [3]. We begin by assuming that the observation, Zk, is
composed of two sub-observations, such that

Zk =
{
ZA
k , Z

Y
k

}
, (13)

with ZA
k representing the observation obtained from the au-

toencoder and ZY
k representing the observation obtained using

the YOLO object detector [6]. Its joint density distribution is
given by

P (ZA
k , Z

Y
k |T i

0:k, Z0:k−1) = P (ZY
k |T i

k, Z
A
k )P (ZA

k |T i
0:k, Z0:k−1), (14)

where P (ZY
k |T i

k, Z
A
k ) is the YOLO-based likelihood distribu-

tion assumed independent of the past, and P (ZA
k |T i

0:k, Z0:k−1)
is the autoencoder-based likelihood distribution.

The YOLO-based likelihood distribution per particle is
defined as

P (ZY
k |T i

k, Z
A
k ) = N

(
TZ
k − T i

k,Σ
Z
k

)
, (15)

where TZ
k is the previously defined translation observation

and ΣZ
k is the translation covariance matrix. As the translation

observation error was observed to be linearly dependent on the
UAV distance from the camera, we defined ΣZ

k dependent on
the last z-coordinate value.

Following [3], the autoencoder-based likelihood distribution
is given by

P (ZA
k |T i

0:k, Z0:k−1) =
∑

Rk
P (ZA

k |T i
k, Rk)P (Rk|T i

0:k, Z0:k−1), (16)

where P (ZA
k |T i

k, Rk) is the observation likelihood distribution
defined in equation (15), and P (Rk|T i

0:k, Z0:k−1) is a rotation
distribution given by

P (Rk|T i
0:k, Z0:k−1) =

∑
Rk−1

P (Rk|Rk−1)P (Rk−1|T0:k−1, Z0:k−1). (17)

4) Resampling and re-initialization criterion: Afterward,
the particles are resampled according to their importance
weights. As in [3] we resample the estimated particles us-
ing the systematic resampling method [20] and a filter re-
initialization criterion is verified. If the value of CSmax

k ,
introduced in the equation (9), is lower than a threshold for
five consecutive iterations, the filter is re-initialized.
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Fig. 5: The proposal’s architecture diagram. To simplify the depiction we represent the rotation distributions as P (R)1:Nk . This
diagram was adapted from [3].

5) Pose estimation: After each iteration, given the resam-
pled set of particles, the pose is estimated. The translation is
simply estimated as the weighted average over all the trans-
lation hypotheses. In order to calculate the rotation, we begin
by marginalizing the translation component from distribution
P (R0:k|T i

0:k, Z0:k), resulting in

P (R0:k|Z0:k) =

N∑
i=1

wi
k P (R0:k|T i

0:k, Z0:k), (18)

with P (R0:k|Z0:k) representing the rotation posterior probabil-
ity distribution. The rotation is estimated as a weighted average
over all the discretized rotations, weighted by the values of
P (R0:k|Z0:k). Given the Euler angles limitations, the average
is calculated in the quaternion space. As [3], we calculate
the quaternion weighted average following the approach of
Markley et al [21].

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate the proposed approach. We
begin by describing some implementation details such as the
network’s training and the filter parameter values. Afterward,
in Sub-sections IV-B and IV-C, respectively, we introduce the
datasets and metrics we use to assess the obtained results.
Then, in section IV-D we evaluate the results of the full sys-
tem. Moreover, in Sub-section IV-F, we evaluate and discuss
the contribution of each weight component. Finally, in Sub-
section IV-E, we assess the observation likelihood distribution
performance regarding symmetrical rotations.

A. Implementation details

For training the autoencoder network, we rendered a dataset
composed of 300 000 synthetic images. The images were
rendered by projecting the UAV geometrical model under
different rotations, uniformly sampled from the rotation space,
on different sea-related background images. We rendered the
training images using the simulator of [5]. Figure 6 shows

some autoencoder training images examples. We trained the
network using as loss function the Mean Squared Error (MSE),
and the optimization function was Adam [22]. The Adam
optimization function hyper-parameters were defined as α =
0.0002, β1 = 0.9, β2 = 0.999 and ε = 10−7. The network
was trained for 16 epochs. The weights of each network layer
were initialized using the Xavier uniform initializer [23]. To
perform the YOLO object detector, we use the weights trained
by [5]. The network was trained using a dataset composed of
335 767 images with different poses and background images.
Our approach is evaluated by performing the particle filter
applying the parameters defined in Table I. The dynamical
standard deviations from ΣZ

T were empirically defined as

σDynx
= 0.025100× zk−1 − 0.085096

σDyny = 0.015304× zk−1 − 0.049382
σDynz = 0.113718× zk−1 − 0.172764

, (19)

where zk−1 is the estimated pose z-coordinate of the last
iteration.

Fig. 6: Autoencoder training images examples.



TABLE I: Filter parameters definition.

Symbol Name Value

ΣT Translation
motion prior
covariance

0.072 0 0
0 0.072 0
0 0 0.72

 (m2)

α Velocity weight-
ing factor

0.7

ΣR Rotation motion
prior covariance

52 0 0
0 52 0
0 0 52

 (degrees2)

ΣZ
T Translation likeli-

hood distribution
covariance

σ2
Dynx

0 0

0 σ2
Dyny

0

0 0 σ2
Dynz

 (m2)

σCS Rotation
likelihood
normalization
standard
deviation

0.03

λCS Cosine similarity
threshold

0.91

B. Datasets

We evaluate our approach using two datasets, the test dataset
of [5], and a dataset rendered with a linear translation motion,
TransRot. [5] test the approach on a synthetic video simulating
a UAV landing procedure on the patrol boat. The UAV follows
a non-linear trajectory for both the translation and rotation.
Figure 7 shows the UAV translation and rotation under [5]
dataset. In order to evaluate the contributions of each weight
component, we rendered the TransRot dataset. The TransRot
dataset combines a linear translation with a non-linear rotation
movement. Figure 8 shows the UAV translation and rotation
under the TransRot dataset.
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Fig. 7: Ground-truth pose on the dataset of [5].

C. Metrics

In this article, we evaluate the results using the same metrics
as [5]. The translation error is evaluated using the Euclidean
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(a) Ground-truth translation.
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Fig. 8: Ground-truth pose on the TransRot dataset.

Distance (ED), defined as

EDk = ||Tk − T̃k||, (20)

where Tk is the ground truth translation in iteration k, and T̃k
is translation estimation. The rotation error is evaluated using

ErrorRot
k =

180

π

√√√√∥∥∥logm

(
RT

k R̃k

)∥∥∥2
F

2
, (21)

where logm is the matrix logarithm, ‖·‖F is the Frobenius
norm, Rk is the ground truth rotation matrix in iteration k,
and R̃k is the estimated rotation matrix [5]. To summarize
the obtained errors from equations (20) and (21) over all the
iterations, we compute their average and standard deviation.

D. Full system performance

We evaluate the full system performance by performing
our approach in Santos et al [5] dataset. Figure 9 shows the
pose estimation results as well as the ground truth trajectory
and the raw translation observations. A video showing our
approach estimation results can found in https://www.youtube.
com/watch?v=hTP0ikUciXc. We can observe that our ap-
proach can successfully track a trajectory simulating a landing
procedure. Moreover, from these results, we can observe that
our method is robust to non-linear trajectories despite that
the assumed motion models are linear. Table II compares the
numerical results of our approach with [5]. We can observe
a great improvement in the UAV translation estimation. In
particular, the median translation error is reduced by 46%, and
the 95% percentile is reduced by 38%. The rotation estimation
gets small improvements regarding the results of [5]. Although
we have obtained higher errors in the 5% and 25% percentiles,
we have lower errors in the remaining quartiles. In particular,
we observe a reduction of 26% on the 95% percentile error.
The error in the lower quartiles is justifiable by the size of the
rotation discretized bins. Although the reduction of the size of
the bins would reduce the rotation error, the computation time
would increase substantially.



(a) Translation estimation.

(b) Rotation estimation.

Fig. 9: Translation and rotation estimation in Santos et al [5] dataset.

TABLE II: Comparison the results of our method with Santos et al [5] approach in Santos dataset.

Pose component 5% Percentile 25% Percentile Median 75% Percentile 95% Percentile

Translation
(m)

Our approach 0.26 1.10 2.55 5.13 10.83

Santos et al [5] 0.29 1.28 4.73 8.87 17.44

Rotation
(degrees)

Our approach 3.29 6.07 7.89 10.10 17.60

Santos et al [5] 1.25 4.46 8.63 14.03 23.88

E. Rotation ambiguities handling

In this sub-section, we evaluate the observation likelihood
distribution regarding the symmetrical rotations observed in
Figure 2. Figure 10 shows the observation likelihood distri-
butions obtained for the symmetrical rotations represented in
Figure 2. As expected, the resulting likelihood distributions
are very similar. We can observe that both likelihoods have
two local maxima corresponding to the symmetrical rotations.
Thereby, we can conclude that given an ambiguous UAV
projection, the observation likelihood distribution observes all
the plausible rotations.

F. Weight components evaluation

In this sub-section, we evaluate the contribution of each
weight component to the results of our approach. To assess
the results of each weight component we performed the filter
under two different conditions. Performing the filter with a
weight calculated as the YOLO-based likelihood (equation
(15)) we obtained the results for the YOLO-based weighting.

Instead, the autoencoder-base weighting results were obtained
by performing the filter using as weight the autoencoder-based
likelihood (equation (16)). The autoencoder-based weighting
has a similar implementation to the baseline method [3].

First we performed the TransRot dataset, whose resust are
shown in Table III. We observe that the autoencoder-based
weighting is robust to handle a linear motion of the transla-
tion. Furthermore, this weighting component gets the lowest
translation estimation mean error. Instead, the YOLO-based
weight component gets the highest errors both on translation
and rotation. The results of our approach are comparable but
worst than the results of the autoencoder-based weight. We can
conclude that when the UAV follows a translation movement
compatible with the motion model, the autoencoder-based
weight is robust enough to successfully estimate the pose.

The results are different when evaluating the weight compo-
nents in a non-linear trajectory. Table IV shows the numerical
results on Santos et al [5] dataset. We start by observing
that the autoencoder-based weighting process has the worst



(a) Likelihood distribution obtained to the rotation represented in the left image of Figure 2.

(b) Likelihood distribution obtained to the rotation represented in the right image of Figure 2.

Fig. 10: Representation of the observation likelihood distribution for two different symmetrical rotations. The ground truth
rotation is represented as a yellow star.

results on the translation component of the pose estimation.
As the autoencoder-based weight does not have any translation
observation update, it takes more time to adjust the filter to
new velocities. In contrast, the YOLO-based weight shows a
better translation estimation. This weight component allows
the filter to rapidly adjust to new velocities, contributing to
increasing the robustness to non-linear trajectories. The results
in Table IV show that our approach has the lowest errors in
Santos et al [5] dataset. Combining the two weight components
we get robust translation and rotation estimations.

V. CONCLUSION

In this article, we presented a new weighting process com-
bining detection and the rotation distribution. Our results show
that by combining the two weight components, our method has
higher robustness to non-linear trajectories. Furthermore, we
observed that each weight component adds different contri-
butions to the full system. The autoencoder-based likelihood
weighting forces the filter to prioritize translations leveraging

to a better rotation distribution, contributing also to the filter
stability. Instead, the YOLO-based likelihood updates the filter
with translation observations, increasing the robustness to the
non-linear trajectories. Comparing our results with [5], we
verified that our method surpasses their results. Particularly,
our results show a great improvement in the UAV translation
estimation. Furthermore, our approach successfully handles
the UAV’s rotation ambiguities as it holds various plausible
hypotheses. This work is easily extendable to track multiple
UAVs and to handle longstanding occlusions, applying for
example a Boosted Particle Filter [24], which can be done
in a future work.
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TABLE III: Numerical results on the TransRot dataset.

Pose component 5%
Percentile

25%
Percentile Median 75%

Percentile
95%

Percentile mean Standard
deviation

Translation
(m)

Our approach 0.25 1.34 2.98 5.46 11.92 4.03 3.61

YOLO-based weighting 0.30 1.38 3.72 7.01 14.56 5.12 4.92

Autoencoder-based weighting 0.27 1.26 2.98 5.33 8.97 3.58 2.80

Rotation
(degrees)

Our approach 0.89 1.85 3.06 5.23 18.25 5.81 10.70

YOLO-based weighting 10.90 56.29 95.67 127.57 165.81 91.41 47.79

Autoencoder-based weighting 0.96 2.03 3.39 5.63 15.54 5.53 7.73

TABLE IV: Numerical results on the Santos et al [5] dataset.

Pose component 5%
Percentile

25%
Percentile Median 75%

Percentile
95%

Percentile mean Standard
deviation

Translation
(m)

Our approach 0.26 1.10 2.55 5.13 10.83 3.62 3.35

YOLO-based weighting 0.34 1.36 3.10 7.71 15.56 5.11 5.04

Autoencoder-based weighting 0.45 2.25 5.01 9.53 16.87 6.51 5.45

Rotation
(degrees)

Our approach 3.29 6.07 7.89 10.10 17.60 9.10 8.26

YOLO-based weighting 9.53 36.09 81.67 95.42 146.00 74.07 42.15

Autoencoder-based weighting 3.90 6.73 8.59 11.04 30.62 10.65 10.53
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