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A B S T R A C T

Signal control strategies for congested urban road networks designed in a centralized framework
require many communication links, serious processing power, and infrastructure for the cen-
tralized coordination. As a result, strategies based on a centralized framework are not scalable.
The use of decentralized signal control strategies for large-scale urban traffic networks is a
solution to this problem, since it allows for the implementation of such strategies on networks
whose centralized solution is not easily scalable. This paper addresses the problem of designing
a decentralized traffic-responsive signal control solution, proposing two methods based on
different formulations of the store-and-forward model: (i) the Decentralized Traffic-responsive
Urban Control (DTUC) method; and (ii) the Decentralized Decoupled Traffic-responsive Urban
Control (D2TUC). The decentralized configuration is such that each intersection is associated
with one computational unit, with limited computational power and memory, which controls
the traffic signals of the incoming links. Sufficient conditions for the controllability of the
considered store-and-forward models are also presented. Both methods are validated resorting
to numerical simulations of the urban traffic network of Chania, Greece, for two demand
scenarios, and their performance is compared with the performance of the Traffic-responsive
Urban Control (TUC) centralized strategy. One of the proposed decentralized methods, D2TUC,
is shown to match the performance of TUC.

1. Introduction

The increasing mobility demand, which oftentimes results in serious congestion of urban road networks, motivates the study of
optimized signal control strategies. In fact, these strategies allow to make use of the already available traffic network infrastructure
more efficiently, alleviating traffic congestion, and increasing the throughput of vehicles. Accomplishing a reduction of congestion
and an efficient management of traffic networks is crucial since it allows to decrease delays, fuel consumption, and environmental
pollution. In fact, it is known for decades that significant economical losses are attributed to this issue (EC, 2001). For this reason,
extensive research has been carried out, from which a collection of strategies have arisen, namely SCATS (Sims and Dobinson, 1979),
SCOOT (Hunt et al., 1981), PRODYN (Henry et al., 1984), UTOPIA (Mauro and Di Taranto, 1990), and RHODES (Mirchandani and
Head, 2001). For an extensive description of strategies currently in use, see Papageorgiou et al. (2003). More recently, several new
strategies have arisen. One particularly promising is Traffic-responsive Urban Control (TUC), presented in Diakaki (1999), which is
based on the store-and-forward model of a traffic network, initially proposed in Gazis and Potts (1963). TUC has been extensively
studied Dinopoulou et al. (2000), Diakaki et al. (2002, 2003) and has been experimentally implemented in urban traffic networks
in Glasgow (Diakaki et al., 1999), Chania (Dinopoulou et al., 2005), and Southampton (Smaragdis et al., 2003).
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However, the vast majority of signal control strategies is designed considering a centralized framework, which requires many
ommunication links, serious processing power, and infrastructure for the centralized coordination. In fact, the implementation of
centralized configuration requires all-to-all communication, via one ou more central units. This configuration requires that there

s communication between every node and a central unit, which can be achieved by a path of several physical communication links.
hese are the same physical links that are used in a decentralized configuration. The big difference is the amount of information that
eeds to be handled at the protocol level. On one hand, in a decentralized configuration, only local information is transmitted. On
he other hand, in a centralized configuration, information has to be retransmitted via several nodes to the centralized unit, which
eceives information from all nodes. As the dimension of the network increases, the load on the communication links increases,
he communication delays increase, and the complexity of the protocol increases, which makes the implementation of a centralized
olution challenging for a large-scale network. Moreover, these strategies offer little robustness to failure of the central processing
ode or the communication infrastructure. As a result, in general, strategies based on a centralized framework are not easily scalable.
ver the past decades, decentralized solutions have emerged as an alternative to the use of well known centralized solutions, whose

mplementation becomes more challenging and expensive as the dimension of the network increases. The popularity of distributed
olutions is also increasing with the widening of its applications to a broad range of engineering fields. Examples of such applications
re unmanned aircraft formation flight (Bereg et al., 2015; Thien and Kim, 2018), unmanned underwater formations (Viegas et al.,
012; Yuan et al., 2017), satellite constellations (Ivanov et al., 2019), and irrigation networks (Prodan et al., 2017). Despite that,
ery little research has been undergone into decentralized signal control of large-scale urban road networks. In fact, the use of
ecentralized solutions allows for the implementation of signal control strategies to large-scale networks, in which the cost and
nfrastructure requirements of a centralized solution render it difficult to implement. One of the few works on decentralized signal
ontrol is Xie et al. (2012). It is based on the junction based scheduling problem, whose complexity increases exponentially due to
he combinatorial nature of the problem. This work tackles this problem by aggregating vehicles on routes into sequences of clusters,
hich allows to find near optimal solutions efficiently. However, it makes limiting assumptions on the network topology, considering
on-overlapping intersection routes. Other decentralized approaches have also been proposed making use of the back-pressure
rinciple (Varaiya, 2013; Le et al., 2015) and reinforcement learning techniques (El-Tantawy and Abdulhai, 2010). In Manolis
t al. (2018), the performance of the back-pressure (Varaiya, 2013) and junction based scheduling (Xie et al., 2012) decentralized
lgorithms were compared to the performance obtained with TUC, which is based on a centralized framework. It was found that
nly TUC and the back-pressure algorithm are able to achieve high performance under different demand scenarios, with TUC
verperforming under congested traffic conditions and underperforming in less congested conditions, in relation to the back-pressure
lgorithm. Recently, another approach found in the literature is to decouple the traffic network into nodes, or clusters of nodes (Chow
t al., 2020a,b; Su et al., 2021). Applying standard control techniques to each of the nodes or clusters allows to obtain a control law
hat can be implemented in a decentralized configuration. However, each local minimization iteration does not take into account its
ffect on the local performance of the remaining nodes, thus this solution is sub-optimal. Conversely, in the novel approach proposed
n this paper, the network is treated globally, as far as the synthesis of the gains is considered, subject to a constraint that arises from
he decentralized configuration of the network, as seen in the sequel. The decentralized control solutions proposed in this paper are
ased on the classic principles of optimal control. Nevertheless, there are more techniques, which could be applied instead, such
s linear matrix inequality (LMI) based methods (Befekadu and Erlich, 2006; Blanchini et al., 2013; Viegas et al., 2012). It is not
ossible to formulate the decentralized control problem as an LMI, only as a bilinear matrix inequality, to which even finding just a
easible solution is NP-hard. However, to circumvent this problem: (i) an iterative procedure may be followed (Befekadu and Erlich,
006; Viegas et al., 2012), whose iterations consist of LMIs; or (ii) it is also possible to exploit the structure of a particular control
roblem to formulate it as an LMI (Blanchini et al., 2013). Nevertheless, these methods have major drawbacks: (i) the solution is
ub-optimal; and (ii) the iterative procedure requires significant computational power.

In this context, this paper addresses the problem of designing a decentralized traffic-responsive signal control solution for a large-
cale congested urban road network. The proposed control solutions are based on the store-and-forward model of a traffic network,
hich allows to formulate the originally combinatorial model as a simplified continuous model. Thus, instead of the exponential

omplexity associated with combinatorial models, it is possible to achieve polynomial complexity with the proposed methods. Stage
ynchronization or cycle duration optimization are not considered, which have to be adjusted making use of an external algorithm
see Diakaki et al., 2003 for more details). This paper builds on seminal state-of-the-art research, in particular the outstanding work
nd results presented by the TUC group (Diakaki, 1999; Dinopoulou et al., 2000; Diakaki et al., 2002, 2003, 1999; Dinopoulou
t al., 2005; Aboudolas et al., 2009). These proved to be of the utmost importance to the development of the findings presented
erein, as it will be highlighted throughout the paper. It is assumed that each intersection is associated with one computational
nit, with limited computational power and memory, which controls the traffic signals of the incoming links. Also, only restricted
ommunication between the computational units of two intersections sharing a link is allowed. In this paper, two methods are
resented, each formulated as a classical linear-quadratic regulator problem on a different formulation of the store-and-forward
odel. For both methods, the regulator problem is formulated for the global traffic network, with a given sparsity constraint on

he regulator gain. Such sparsity constraints impose certain entries of the global gain matrix to be null, following a structure that
eflects the decentralized nature of the network, necessary for the implementation of the decentralized regulator. The first method,
enoted herein as Decentralized Traffic-responsive Urban Control (DTUC) method, is essentially a decentralized version of the TUC
trategy. The derivation of this method also provides insight into the operation of TUC. The second method, designated herein
s Decentralized Decoupled Traffic-responsive Urban Control (D2TUC), is inspired in the principle of the centralized Quadratic
rogramming Control (QPC) method proposed in Aboudolas et al. (2009) as an attempt to improve the performance obtained with
UC. Finally, both methods are validated resorting to numerical simulations of the urban traffic network of Chania, Greece, and
2

heir performance is compared with the performance obtained with TUC.
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This paper is organized as follows. In Section 2, the control problem is formulated, introducing the store-and-forward model and
he decentralized configuration paradigm. In Sections 3 and 4, the DTUC and D2TUC signal control methods are derived, respectively.
n Section 5, both methods are validated resorting to numerical simulations of a urban traffic network, and their performance is
ompared with the performance obtained with TUC, a state-of-the-art centralized method. Finally, Section 6 presents the main
onclusions of this paper.

.1. Notation

Throughout this paper, the identity and null matrices, both of appropriate dimensions, are denoted by 𝐈 and 𝟎, respectively.
lternatively, 𝐈𝑛 and 𝟎𝑛×𝑚 are also used to represent the 𝑛 × 𝑚 identity matrix and the 𝑛 × 𝑚 null matrix, respectively. The vector
f ones, of appropriate dimensions, is denoted by 𝟏. Alternatively, 𝟏𝑛 is used to denote the vector of ones of dimension 𝑛. The 𝑖th
omponent of a vector 𝐯 ∈ R𝑛 is denoted by [𝐯]𝑖, and the entry (𝑖, 𝑗) of a matrix 𝐀 is denoted by [𝐀]𝑖𝑗 . The column wise concatenation
f vectors 𝐱𝟏,… , 𝐱𝐍 is denoted by col(𝐱𝟏,… , 𝐱𝐍). The block diagonal matrix whose diagonal blocks are given by matrices 𝐀𝟏,… ,𝐀𝐍
s denoted by diag(𝐀𝟏,… ,𝐀𝐍). Moreover, diag(𝐯) ∈ R𝑛×𝑛, where 𝐯 ∈ R𝑛 is a vector, denotes the diagonal matrix whose diagonal
ntries correspond to the entries of 𝐯. Given a symmetric matrix 𝐏, 𝐏 ≻ 𝟎 and 𝐏 ⪰ 𝟎 are used to point out that 𝐏 is positive definite
nd positive semidefinite, respectively. The cardinality of a set  is denoted by ||.

. Problem statement

The decentralized traffic-responsive control strategies proposed in this paper are based on the store-and-forward model of traffic
etworks. In this section, the store-and-forward model is presented for the sake of completeness. Afterwards, the decentralized signal
ontrol problem is formulated. Given that the parameters of a traffic network vary slowly with time, time-invariant parameters that
haracterize the traffic network are considered.

.1. Store-and-forward model

The store-and-forward model presented herein closely follows the one presented in Diakaki (1999), Aboudolas et al. (2009).
n addition, more details on the computation of the dynamics matrices are given herein, as well as sufficient conditions for the
ontrollability of the LTI systems that arise from this model. The topology of a traffic network, which is assumed to be time invariant,
an be defined by the interconnection of the junctions via directional links. Such topology may be represented by a directed graph,
r digraph,  ∶= (, ), composed of a set  of vertices and a set  of directed edges. An edge 𝑒 incident on vertices 𝑖 and 𝑗,
irected from 𝑗 towards 𝑖, is denoted by 𝑒 = (𝑗, 𝑖). For a vertex 𝑖, its in-degree, 𝜈−𝑖 , is the number of edges directed towards it, and
−
𝑖 is the set of such edges. Conversely, for a vertex 𝑖, its out-degree, 𝜈+𝑖 , is the number of edges directed from it, and +

𝑖 , is the
et of such edges. A directed walk of length 𝑛 is an ordered sequence of edges denoted by 𝑝 = (𝑒1,… , 𝑒𝑛−1) for which there exists a
equence of vertices (𝑣1,… , 𝑣𝑛) such that 𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1). For a more detailed overview of the elements of graph theory used to model
his network, see West et al. (1996), Wallis (2010).

Consider a traffic network with links 𝑧 ∈ {1,… , 𝑍,𝑍 + 1… , 𝑍̃} and signalized junctions 𝑗 ∈ {1,… , 𝐽}. In this framework, each
unction is represented by a vertex, i.e. junction 𝑗 is represented by vertex 𝑗, and if there is a directional link 𝑧 from junction 𝑖 towards
junction 𝑗, then this link is represented by an edge directed from vertex 𝑖 towards vertex 𝑗, i.e., edge 𝑒𝑧 = (𝑖, 𝑗) with 𝑧 ∈ {1,… , 𝑍}.
If there is a link 𝑧 from outside of the network towards a vertex 𝑗 then it represented by 𝑒𝑧 = (0, 𝑗), with 𝑧 ∈ {1,… , 𝑍}. Conversely,
a link 𝑧 directed from a vertex 𝑗 towards outside of the network is represented by 𝑒𝑧 = (𝑗, 0), with 𝑧 ∈ {𝑍 + 1,… , 𝑍̃}. Links
𝑧 ∈ {𝑍 + 1,… , 𝑍̃} are not considered in the traffic network control, since their flow is not controlled by any of the junctions.

According to the configuration of the network, a vehicle in link 𝑧 has the possibility to turn to link 𝑤 ∈ 𝑂𝑧, where

𝑂𝑧 ∶=
{

𝑤 ∈ N ∶ ∃𝑗 ∈ {1,… , 𝐽} ∶ 𝑒𝑧 ∈ −
𝑗 ∧ 𝑒𝑤 ∈ +

𝑗

}

.

Conversely, the set of links with the possibility of turning to link 𝑧 is defined as

𝐼𝑧 ∶=
{

𝑤 ∈ N ∶ ∃𝑗 ∈ {1,… , 𝐽} ∶ 𝑒𝑤 ∈ −
𝑗 ∧ 𝑒𝑧 ∈ +

𝑗

}

.

Each link 𝑧 is characterized by: (i) a saturation flow 𝑆𝑧 ∈ R+, expressed in vehicles per unit of time; (ii) turning rates 𝑡𝑤,𝑧 ∈ [0, 1],
where 𝑤 ∈ 𝐼𝑧; and (iii) the link exit rate 𝑡𝑧,0 ∈ [0, 1[. Define the turning rate matrix 𝐓 ∈ R𝑍×𝑍 as

[𝐓]𝑧𝑤 ∶=

{

𝑡𝑤,𝑧 , 𝑤 ∈ 𝐼𝑧
0 , 𝑤 ∉ 𝐼𝑧

, 𝑧, 𝑤 ∈ {1,… , 𝑍} ,

and the exit rates vector 𝐭𝟎 ∶=
[

𝑡1,0 … 𝑡𝑍,0
]𝑇 ∈ R𝑍 . It is important to remark that, for two links 𝑧 and 𝑤, which, respectively, arrive

at and depart from a junction 𝑗, i.e., 𝑤 ∈ 𝑂𝑧, it may be the case that it is not allowed to turn from 𝑧 to 𝑤. In that case, one sets
𝑡𝑧,𝑤 = 0. Also, if for an edge 𝑒𝑧, 𝑧 ∈ {1,… , 𝑍}, there exists 𝑒𝑤 ∈ , 𝑤 ∈ {𝑍 + 1, 𝑍̃}, with 𝑡𝑧,𝑤 ≠ 0, then the sum of the entries of the
𝑧th column of 𝐓 is less than or equal to one, and equal to one otherwise.

A traffic network at a given instant is defined by the triplet (,𝐓, 𝐭𝟎), which may be time-varying. Note that there are possible
configurations of (,𝐓, 𝐭𝟎) that are not physically meaningful in the context of the problem. For that reason, one may define a subset
of traffic networks of finite dimension and for which vehicles are not permanently trapped inside it, as detailed in the following
definitions, without any loss of generality in the context of traffic network control. Note that a vehicle may exit the network either
by entering an edge 𝑒𝑧 which is of the form 𝑒𝑧 = (𝑗, 0), or whose exit rate 𝑡𝑧,0 is non-zero.
3
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Definition 2.1 (Open Traffic Network). A traffic network characterized by (,𝐓, 𝐭𝟎) is said to be open if, for every edge of the network
𝑧 ∈ , there is a directed walk starting at 𝑒𝑧 which a vehicle may follow to exit the network with non-zero probability.

efinition 2.2 (Feasible Traffic Network). A traffic network characterized by (,𝐓, 𝐭𝟎) is said to be feasible if

1.  and  are finite sets;
2. (,𝐓, 𝐭𝟎) is open.

The signal control strategy for each junction 𝑗 is based on cycles of a given duration 𝐶𝑗 , which for the sake of simplicity is
onsidered to be constant and equal to 𝐶 across all junctions. For each cycle of junction 𝑗, there is a fixed number of stages, which

belong to the set 𝑗 , each defined by an unique integer 𝑠 ∈ {1,… , 𝑆} network-wise. Each stage 𝑠 has an associated green time 𝑔𝑠,
hat is the control variable, which must satisfy the constraint

𝑔𝑠 ≥ 𝑔𝑠,min , 𝑠 ∈ {1,… , 𝑆} , (1)

here 𝑔𝑠,min ∈ R is the minimum permissible green time for stage 𝑠. This constraint is necessary to guarantee sufficient green time
llocated to the pedestrian phases that are allowed during stage 𝑠. Then, each cycle has to satisfy the constraint

∑

𝑠∈𝑗

𝑔𝑠 + 𝐿𝑗 = 𝐶 , 𝑗 ∈ {1,… , 𝐽} , (2)

here 𝐿𝑗 is the lost time per cycle at junction 𝑗. The lost time at a junction, also designated as intergreen time, is the time of all-red
ignals of that junction, during a whole cycle, which is necessary to provide a temporal safety margin between the instant a stage
s set to red and the instant another stage is set to green. For each stage, there is a set of links which have right of way (r.o.w.).
efine the stage matrix 𝐒 ∈ R𝑍×𝑆 as

[𝐒]𝑧𝑠 ∶=
{

1 , if link 𝑧 has r.o.w. at stage 𝑠
0 , otherwise

.

efinition 2.3 (Minimum Complete Stage Strategy). A stage strategy characterized by the stage matrix 𝐒 is said to be a minimum
omplete stage strategy if

1. every stage gives r.o.w. to at least one link, i.e., ∀𝑠 ∈ {1,… , 𝑆} ∃𝑧 ∶ [𝐒]𝑧𝑠 = 1;
2. each link has a stage in which it is given r.o.w., i.e., ∀𝑧 ∈ {1,… , 𝑍} ∃𝑠 ∶ [𝐒]𝑧𝑠 = 1;
3. stages of a given junction can only give r.o.w. to links directed towards that junction, i.e.,

∀𝑗 ∈ {1,… , 𝐽} ∀𝑠 ∈ 𝑗 ∀𝑧 ∈ {1,… , 𝑍} [𝐒]𝑧𝑠 = 1 ⟹ 𝑒𝑧 ∈ −
𝑗 ;

4. the set of links that are given r.o.w. for each stage in a junction is linearly independent, i.e.,
∀𝑗 ∈ {1,… , 𝐽} ∀𝑠1, 𝑠2 ∈ 𝑗 𝑠1 ≠ 𝑠2 ⟹ ∄𝑘 ∈ R ∶ [𝐒]𝑠1 = 𝑘[𝐒]𝑠2 , where [𝐒]𝑠 denotes the 𝑠th column of 𝐒.

Without loss of generality, the following numbering convention is used to ease the notation throughout this paper, following
the procedure: (i) a natural number is attributed to each junction with no particular criterion; (ii) a natural number is attributed
to each link, starting by those incident on junction 1, i.e., edges in −

1 , followed by edges in −
2 and so forth until the edges in −

𝐽
are numbered; (iii) natural numbers are then attributed to the remaining edges, which are of the form 𝑒𝑧 = (𝑗, 0), with no particular
criterion; (iv) natural numbers are attributed to each stage, whose purpose is detailed in the sequel, starting by those which give
r.o.w. to links in −

1 , followed by those which give r.o.w to links in −
2 , and so forth.

Consider now a link 𝑧 and denote the number of vehicles in link 𝑧 as 𝑥𝑧(𝑘) at time 𝑘𝐶, where 𝑘 is the discrete time instant and
he cycle time 𝐶 is the chosen sampling time. The dynamics are modeled by the vehicle conservation equation

𝑥𝑧(𝑘 + 1) = 𝑥𝑧(𝑘) + 𝐶
(

𝑞𝑧(𝑘) − 𝑢𝑧(𝑘) + 𝑑𝑧(𝑘) − 𝑠𝑧(𝑘)
)

, (3)

where 𝑢𝑧(𝑘) is the outflow of link 𝑧; 𝑞𝑧(𝑘) is the inflow given by

𝑞𝑧(𝑘) =
∑

𝑤∈𝐼𝑧

𝑡𝑤𝑧𝑢𝑤(𝑘) ; (4)

𝑑𝑧(𝑘) is the demand within the link; and 𝑠𝑧(𝑘) is the exit flow within the link, set to 𝑠𝑧(𝑘) = 𝑡𝑧,0𝑞𝑧(𝑘). Additionally, links are subject
o constraints

0 ≤ 𝑥𝑧(𝑘) ≤ 𝑥𝑧,max , 𝑧 ∈ 𝑍 , (5)

where 𝑥𝑧,max ∈ R denotes the maximum admissible number of vehicles in link 𝑧. To satisfy this constraint, an upstream gating may
e put in place in order to avoid overloading any links during periods of high demand. More details on this nonlinear imposition
re given in Section 2.2, and its effects are exemplified and discussed in Section 5.

After some algebraic manipulations, detailed in Appendix A, it is possible to write the dynamics as an LTI system with a
ime-varying disturbance
4

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐮𝐮(𝑘) + 𝐶𝐝(𝑘) , (6)
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where 𝐱(𝑘) ∶= col(𝑥1(𝑘),… , 𝑥𝑍 (𝑘)) ∈ R𝑍 , 𝐮(𝑘) ∶= col(𝑢1(𝑘),… , 𝑢𝑍 (𝑘)) ∈ R𝑍 , 𝐝(𝑘) ∶= col(𝑑1(𝑘),… , 𝑑𝑍 (𝑘)) ∈ R𝑍 , 𝐀 = 𝐈𝑍 , and

𝐁𝐮 = 𝐶
((

𝐈𝑍 − diag(𝐭𝟎)
)

𝐓 − 𝐈𝑍
)

. (7)

However, note that the components of 𝐮(𝑘) in (6) cannot be independently selected, as they depend on the different admissible
stages at each junction. Nevertheless, (6) is of great interest as far as the simulation of the network is concerned, due to the ease
to include nonlinear constraints such as (5), as put forward in Section 2.2. As a matter of fact, in Section 5, it is the basis for the
nonlinear numeric simulation of a traffic network as a means of assessing the performance of the control strategies proposed herein.

The store-and-forward model is mainly characterized by the following simplification of the traffic flow, which models green–red
switchings within a whole cycle as a continuous flow of vehicles. Consider a link 𝑧, and conditions in which constraint (5) is satisfied,
i.e. there is room to store vehicles in every link 𝑤 ∈ 𝑂𝑧, and in which 𝑥𝑧(𝑘) is large enough to allow for the maintenance of the flow
of vehicles during the green time of the link. The real flow is approximately equal to the saturation flow 𝑆𝑧 during the green time
of the stages for which link 𝑧 has r.o.w. and null otherwise, during each cycle. Under the store-and-forward formulation, the flow
of each link is assumed to be constant and equal to its average value, during a whole cycle. Thus, the control sampling time is set
to the cycle time 𝐶 and the modeled flow is given by

𝑢𝑧(𝑘) = 𝑆𝑧
𝐺𝑧(𝑘)
𝐶

, 𝑧 ∈ {1,… , 𝑍} , (8)

here 𝑘 is the discrete time instant, and 𝐺𝑧(𝑘) is the total green time of link 𝑧, given by the summation of the green times of each
stage for which link 𝑧 has r.o.w., i.e.,

𝐺𝑧(𝑘) =
∑

𝑠∶[𝐒]𝑧𝑠≠0
𝑔𝑠(𝑘) . (9)

Substituting (8) in (6), according to the store-and-forward model, one obtains the following LTI system with a time-varying
disturbance

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐆𝐆(𝑘) + 𝐶𝐝(𝑘) , (10)

where 𝐆(𝑘) ∶= col(𝐺1(𝑘),… , 𝐺𝑍 (𝑘)) ∈ R𝑍 and

𝐁𝐆 = 1
𝐶
𝐁𝑢diag(𝑆1,… , 𝑆𝑍 ) =

((

𝐈𝑍 − diag(𝐭𝟎)
)

𝐓 − 𝐈𝑍
)

diag(𝑆1,… , 𝑆𝑍 ) ∈ R𝑍×𝑍 . (11)

Similarly to (6), the components of the command action in (10), 𝐆(𝑘), cannot be independently selected, since they depend on the
different admissible stages at each junction. However, the D2TUC control strategy, proposed in Section 4, makes use of this LTI
system to find a suitable command action 𝐆(𝑘), as if it were possible to optimize its components independently, and then apply a
post-processing algorithm, as detailed in the sequel, to allocate the green times among the stages.

Substituting (9) in (6) and still considering the sampling time to be equal to the cycle time, according to the store-and-forward
model, after some algebraic manipulation, as detailed in Appendix A, one obtains the LTI system with a time-varying disturbance

𝐱(𝑘 + 1) = 𝐀𝐱(𝑘) + 𝐁𝐠𝐠(𝑘) + 𝐶𝐝(𝑘) , (12)

where 𝐠(𝑘) ∶= col(𝑔1(𝑘),… , 𝑔𝑆 (𝑘)) ∈ R𝑆 and

𝐁𝐠 = 𝐁𝐆𝐒 =
((

𝐈𝑍 − diag(𝐭𝟎)
)

𝐓 − 𝐈𝑍
)

diag(𝑆1,… , 𝑆𝑍 )𝐒 ∈ R𝑍×𝑆 . (13)

The components of the command action in (12), 𝐠(𝑘), are the green times of each stage, thus can be independently selected. The
DTUC control strategy, proposed in Section 3, makes use of this LTI system to find a suitable command action 𝐠(𝑘).

It is assumed that one can sense the full state 𝐱(𝑘). Thus, the output of the discrete-time systems (10) and (12), with sampling
time equal to the cycle time 𝐶 are given by

𝐲(𝑘) = 𝐂𝐱(𝑘) , (14)

where 𝐲(𝑘) ∶= col(𝑦1(𝑘),… , 𝑦𝑍 (𝑘)) ∈ R𝑍 is the output and 𝐂 = 𝐈𝑍 . For practical applications, the state has to be estimated with an
observer that relies on sensing devices. For a detailed overview of vehicle detection sensor networks, see Padmavathi et al. (2010),
and for a recent low-cost approach, see Wang et al. (2017). However, in a decentralized control application, limited information is
available. Thus, 𝐲(𝑘) is not available to any junction in its whole, as discussed in Section 2.4.

The store-and-forward model of a traffic network models the average flow of vehicles instead of considering the real interrupting
flow. This formulation allows to approximate a combinatorial model with an LTI model of the traffic network, whose control law
synthesis techniques are not only well studied, but also efficient. However, given that it is not sensible to green–red stage switching,
it is not sensible to either stage synchronization or cycle duration, which have to be adjusted making use of an external algorithm.
An example of such an algorithm was developed for TUC in Diakaki et al. (2003). Moreover, this simplification is valid only under
conditions in which constraint (5) is satisfied, which is often not the case for high demand scenarios. For this reason, additional
nonlinear post-processing of the green times, computed for the store-and-forward model, is required. As a result, this simplification
5

evidently leads to a sub-optimal solution of the original combinatorial control problem.
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Fig. 1. Illustrative traffic network.

Table 1
Stage organization of the illustrative traffic network.

Junction 𝑗 1 2 3 4 5

Stages 1 2 3 4 5 6 7 8 9
Links with r.o.w. {1} {2} {3} {4} {5, 6} {7} {8} {9, 11} {10}

2.2. Nonlinear model

Although it is very convenient to work with a linear model for controller synthesis purposes, such as the store-and-forward model,
t is insufficient to simulate the network dynamics and assess the performance of a control law, since the nonlinear constraint (5)
s not enforced. For that reason, a nonlinear model is introduced, as a means of assessing the performance of the store-and-forward
ased control laws. As put forward in Aboudolas et al. (2009), adapting the store-and-forward model, a simple nonlinear discrete-
ime model can be employed. Considering a sampling time 𝑇 ≪ 𝐶 and assuming, for simplicity, that 𝐶∕𝑇 ∈ N, it is possible to write

{

𝐱(𝑘𝑇 + 1) = 𝐀𝐱(𝑘𝑇 ) +
𝑇
𝐶 𝐁𝐮𝐮𝐧𝐥(𝑘𝑇 ) + 𝑇𝐝(𝑘𝑇 )

𝐲(𝑘𝑇 + 1) = 𝐂𝐱(𝑘𝑇 )
, (15)

s put forward in Aboudolas et al. (2009), where 𝑘𝑇 is the discrete time instant corresponding to time 𝑘𝑇 𝑇 and 𝐮𝐧𝐥(𝑘𝑇 ) ∶=
ol(𝑢𝑛𝑙,1(𝑘𝑇 ),… , 𝑢𝑛𝑙,𝑍 (𝑘𝑇 )) ∈ R𝑍 with

𝑢𝑛𝑙,𝑧(𝑘𝑇 ) =

{

0 , ∃𝑤 ∈ 𝑂𝑧 ∶ 𝑡𝑧,𝑤 ≠ 0 ∧ 𝑥𝑤(𝑘𝑇 ) > 𝑐𝑢𝑔𝑥𝑤,max

min{𝑥𝑧(𝑘𝑇 )∕𝑇 , 𝑢𝑧(𝑘 = ⌊𝐾𝑇 𝑇 ∕𝐶⌋)} , otherwise
,

as put forward in Aboudolas et al. (2009), in which 𝑢𝑧(𝑘) is the command action, which is updated every cycle 𝐶, whose synthesis
is based on a linear model as defined in (8), and 𝑐𝑢𝑔 ∈ ]0, 1[ is a parameter to be tuned in order to adjust the sensitivity of upstream
gating. Note that, in this model, constraint (5) is modeled.

2.3. Illustrative traffic network

Consider an illustrative section of an urban road, as depicted in Fig. 1, containing a roundabout with three signalized entries
out of a total of four entries, and an intersection. Fig. 2 depicts the traffic network topology graph, whereas the associated stage
organization is presented in Table 1, with 𝐽 = 5 junctions, 𝑍 = 11 links, and 𝑆 = 9 stages. The exit rate and saturation flow of each
link of the illustrative traffic network is shown in Table 2. The numbering convention proposed in Section 2.1 was used.
6
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Fig. 2. Illustrative traffic network topology graph.

Table 2
Exit rate and saturation flow of each link of the illustrative traffic network.

Link 𝑧 1 2 3 4 5 6 7 8 9 10 11

𝑡𝑧,0 0.05 0 0.04 0 0.1 0 0.02 0 0.05 0.03 0.01
𝑆𝑧 (veh min−1) 50 50 50 50 35 50 50 50 55 10 60

According to the definitions above, it follows that the stage matrix 𝐒 and a possible turning rate matrix 𝐓 are given by

𝐒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and 𝐓 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0.3 0.4 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0.6 0.4 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.6 0.9
0 0 0.7 0.5 0 0 0 0 0 0 0
0 0 0.3 0 0 0 0 0 0 0 0
0 0 0 0 0.8 1 0 0 0 0 0
0 0 0 0.5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

respectively. It is important to remark that this network is feasible and the illustrative stage strategy is minimum complete, according
to the aforementioned definitions. Note that, in junctions 𝑗 where there may be a flow of vehicles exiting the network under study
via a link 𝑒𝑧 = (𝑗, 0), represented in Fig. 2 by dashed links, the summation of the 𝑗th column of 𝐓 does not amount to one. It is also
important to remark that, although there is no signaling in junction 3, a vertex with a single stage was added with the purpose of
dividing the queue on link 8 into traffic coming from the roundabout and link 5. In this way, the constraint (2) with 𝐿5 = 0 ensures
that traffic from links 5 and 6 is always allowed, unless there is no room for vehicles in link 8, which is monitored by constraint
(5), which is taken into account in the nonlinear model presented in Section 2.2. The fact that vehicles coming from link 6 to 8
have r.o.w. over those coming from 5 to 8 is modeled by the difference in their average saturation flows 𝑆6 and 𝑆5. Note that both
links are given an artificial green time in the model, and they have a similar throughput capacity without considering the priority
of the vehicles. Nevertheless, link 5 has a significantly lower saturation flow, because all vehicles coming from link 5 ought to yield
if there is traffic coming from 6, which reduces the macroscopic throughput of vehicles in link 5.

2.4. Decentralized configuration

Assume that each junction 𝑗 is associated with one computational unit 𝑗 , with limited computational power and memory, which
controls the traffic signals. Moreover, communication between 𝑗 and 𝑖 is allowed if there is a link between junctions 𝑗 and 𝑖 with
either direction. This communication link is usually necessary for the integration of an observer based on multiple vehicle detectors.
Although this problem falls out of the scope of this paper, the necessity of such links should not be disregarded. For this reason, the
7
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communication graph is similar to the network topology graph, except that all directional links of  are now bidirectional and each
vertex now represents the corresponding computational units. Two decentralized configurations are considered: (i) configuration
𝛹 , for which each computational unit 𝑗 has access only to the queue length of the links arriving or departing from junction 𝑗, i.e.,
𝑥𝑧(𝑘), 𝑒𝑧 ∈ 𝛹𝑗 , where

𝛹𝑗 = −
𝑗 ∪ +

𝑗 ; (16)

and (ii) configuration 𝛷, for which each computational unit 𝑗 has access to the queue length of not only the links arriving and
eparting from junction 𝑗 but also of all the links arriving at and departing from every junction with which 𝑗 has a communication
ink, which are, as aforementioned, all junctions with at least a link connected to junction 𝑗 with either direction, i.e., 𝑥𝑧(𝑘), 𝑒𝑧 ∈ 𝛷𝑗 ,

where

𝛷𝑗 =
⋃

𝑖∈𝜙𝑗

(−
𝑖 ∪ +

𝑖 ) and 𝜙𝑗 =
{

𝑖 ∈ {1,… , 𝐽} ∶ (−
𝑗 ∩ +

𝑖 ) ∪ (+
𝑗 ∩ −

𝑖 ) ≠ ∅
}

. (17)

ote that 𝛹𝑗 ⊆ 𝛷𝑗 . In fact, for the decentralized configuration 𝛹 , no queue length information is transmitted via the established
ommunication links, required by a decentralized observer. In other words, in this configuration, the controller of a given junction
oes not require information that is not already available to allow for the operation of a decentralized state observer. In configuration
, the information known to each of the junctions is shared via the established communication links. In the sequel, the difference
f performance between these configurations is assessed, with particular emphasis to whether or not the increase in communication
oad originates an appreciable improvement of the traffic control performance.

The control problem at hand is, then, to find a steady-state control technique that relies on state feedback and follows the
ollowing guidelines:

1. The computational load of the control algorithm of the network must be distributed across all computational units in a way
such that each caries out computations concerning their own signaling command action exclusively, which circumvents the
curse of dimensionality;

2. The controller synthesis must be able to be carried out offline, as a means of avoiding intensive real-time computational
loads;

3. The quantity of information exchanged in a communication link should be reduced to a minimum, and must concern the
junction broadcasting the data exclusively.

. Decentralized Traffic-responsive Urban Control (DTUC)

The first control strategy presented herein is based on the traffic dynamics model (12) and output (14). It is a decentralized
ersion of the TUC strategy, as presented in Diakaki et al. (2002, Section 3), which is a state-of-the-art centralized solution. The
erivation of this method is very distinct to the one presented in Diakaki et al. (2002, Section 3) and it provides additional insight
nto the working principle of TUC. Consider the following result.

roposition 3.1. Consider a feasible traffic network characterized by (,𝐓, 𝐭𝟎) and a minimum complete stage strategy characterized by
tage matrix 𝐒. Let  be the controllability matrix of the store-and-forward LTI system (12). Then, rank() = 𝑆 ≤ 𝑍.

roof. See Appendix B. □

Note that the LTI system (12) is the same formulation of the store-and-forward model that was used to develop TUC (Diakaki
t al., 2002). It follows directly from Proposition 3.1 that the store-and-forward LTI system (12) is controllable if and only if 𝑆 = 𝑍.
iven that, in general, the number of stages 𝑆 is lower than the number of links 𝑍, i.e., 𝑆 < 𝑍, it follows that, in general, (12) is

not controllable. The following analysis is conducted to overcome the uncontrollability of the general case 𝑆 < 𝑍. Although it is
unnecessary if 𝑆 = 𝑍, it remains valid for this case and all the results obtained are, at any point, easily particularized for 𝑆 = 𝑍. Let
 be the controllability matrix of the store-and-forward LTI system (12). As a means of devising a state feedback control strategy,
one may decompose system (12) according to the Canonical Structure Theorem (Rugh, 1996, Chap. 18). For that purpose, consider
a change of state variables

𝐳(𝑘) = 𝐖−1𝐱(𝑘) , (18)

where 𝐖 ∈ R𝑍×𝑍 . In addition, the columns of 𝐖, denoted by 𝐰𝟏,… ,𝐰𝐙, are selected such that 𝐰𝟏,… ,𝐰𝐒 is a basis of Im() and
the remaining columns 𝐰𝐒+𝟏,… ,𝐰𝐙 are selected such that 𝐰𝟏,… ,𝐰𝐙 is a basis of R𝑍 . By the Canonical Structure Theorem, the
transformation of system (12), according to (18), can be decomposed into

[

𝐳𝟏(𝑘 + 1)
𝐳𝟐(𝑘 + 1)

]

= 𝐀̂
[

𝐳𝟏(𝑘)
𝐳𝟐(𝑘)

]

+ 𝐁̂𝐠𝐠(𝑘) + 𝐶
[

𝐝1(𝑘)
𝐝2(𝑘)

]

,

where 𝐳𝟏(𝑘) ∈ R𝑆 is the controllable component of the state, 𝐳𝟐(𝑘) ∈ R𝑍−𝑆 is the uncontrollable component of the state, and

𝐀̂ =
[

𝐀̂𝟏𝟏 𝐀̂𝟏𝟐
̂

]

= 𝐖−1𝐀𝐖 = 𝐈𝑍 , 𝐁̂𝐠 = 𝐖−1𝐁𝐠 =
[

𝐁̂𝐠𝟏
]

and
[

𝐝1(𝑘)
̂

]

= 𝐖−1𝐝(𝑘) , (19)
8
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with 𝐁̂𝐠𝟏 ∈ R𝑆×𝑆 . Writing each of the components separately yields

𝐳𝟏(𝑘 + 1) = 𝐳𝟏(𝑘) + 𝐁̂𝐠𝟏𝐠(𝑘) + 𝐶𝐝1(𝑘) (20)

and

𝐳𝟐(𝑘 + 1) = 𝐳𝟐(𝑘) + 𝐶𝐝2(𝑘) . (21)

Furthermore, given that the uncontrollable component, whose dynamics are given by (21), is not stable, then, by Rugh (1996,
Theorem 18.28), the system (12) is not stabilizable. In fact, no matter the chosen linear feedback control law, there are 𝑍 −𝑆 poles
at the intersection of the unitary circumference with the positive real axis of the complex plane, i.e., 𝑍 − 𝑆 integrator poles. It
follows, by the definition of stabilizability, that there is no control law, either centralized or decentralized, of the form

𝐠(𝑘) = −𝐊𝐱(𝑘) , (22)

where 𝐊 ∈ R𝑆×𝑍 is the feedback gain, that stabilizes (12) in closed-loop.
The analysis of the controllability of (12), making use of the Canonical Structure Theorem, seems discouraging at first sight. In

fact, after closer inspection of the uncontrollable component, described by (21), one readily notes that it easily grows unbounded.
However, the validity conditions of the store-and-forward model, namely the queue length constraint (5), guarantees that, in the
nonlinear case, 𝐳𝟐(𝑘) is, in fact, bounded. Also, apart from nonlinear considerations, nothing can be done to affect the uncontrollable
component. Thus, one can aim to synthesize a linear state feedback control law of the form (22), as a means of driving the
controllable component to zero. Note also that, in the TUC derivation in Diakaki et al. (2002) the underlying nominal system
dynamics and cost functional are the same as the ones considered here. The difference lies, at the synthesis level, on the fact that,
herein, sparsity constraints are considered in order to account for the decentralized configuration. The approach detailed herein
provides, for this reason, further insight into the underlying principle of TUC. First, one assumes that an historical demand 𝐝hist(𝑘)
is available. Note that (20) can be rewritten as

𝐳𝟏(𝑘 + 1) = 𝐳𝟏(𝑘) + 𝐁̂𝐠𝟏(𝐠(𝑘) − 𝐠̄(𝑘)) + 𝐶 𝝐̂(𝑘) , (23)

where 𝝐̂(𝑘) is considered to be a disturbance, given by 𝝐̂(𝑘) ∶= [𝐈𝑆 𝟎𝑆×(𝑍−𝑆)]𝐖−1𝐝hist(𝑘) + 𝐁̂𝐠𝟏𝐠̄(𝑘). In order to apply a decentralized
egulator to (23), 𝐠̄(𝑘) is selected such that the disturbance 𝝐̂(𝑘) is minimal, i.e., 𝐠̄(𝑘) is given by the solution to

minimize
𝐠̄(𝑘)∈R𝑆

‖𝝐̂(𝑘)‖2 ,

or 𝑘 ∈ N0. The optimization problem above is a least squares optimization problem, whose solution is

𝐠̄(𝑘) = −
(

𝐁̂𝑇
𝐠𝟏𝐁̂𝐠𝟏

)−1
𝐁̂𝑇
𝐠𝟏 [𝐈𝑆 𝟎𝑆×(𝑍−𝑆)]𝐖−1𝐝hist(𝑘)

= −
(

𝐁𝐠
𝑇𝐖−𝑇

[

𝐈𝑆 𝟎
𝟎 𝟎

]

𝐖−1𝐁𝐠

)−1

𝐁𝐠
𝑇𝐖−𝑇

[

𝐈𝑆 𝟎
𝟎 𝟎

]

𝐖−1𝐝hist(𝑘) ,
(24)

f 𝐁̂𝐠𝟏 ∈ R𝑆×𝑆 is full rank. Note that, by the Canonical Structure Theorem, (20) is controllable. Then, by definition, the controllability
atrix of (20), denoted as 1 ∈ R𝑆×𝑆2 , is full rank. Moreover,

𝑆 = rank(1) = rank([𝐁̂𝐠𝟏 𝐈𝑆 𝐁̂𝐠𝟏 … 𝐈𝑆−1𝑆 𝐁̂𝐠𝟏]) = rank(𝐁̂𝐠𝟏) ,

hus, 𝐁̂𝐠𝟏 is, in fact, necessarily full rank.
A decentralized regulator can be applied to (23), as a means of minimizing the quadratic infinite horizon cost function

𝐽∞(𝑘) ∶=
∞
∑

𝜏=𝑘
𝐳𝟏(𝜏)𝑇𝐐𝟏𝐳𝟏(𝜏) + (𝐠(𝜏) − 𝐠̄(𝜏))𝑇𝐑(𝐠(𝜏) − 𝐠̄(𝜏)) , (25)

sing a state feedback control law of the form (22), where 𝐐𝟏 ⪰ 𝟎 and 𝐑 ≻ 𝟎 are selected matrices of appropriate dimensions.
ewriting (25) as

𝐽∞(𝑘) =
∞
∑

𝜏=𝑘
𝐱(𝜏)𝑇𝐖−𝑇

[

𝐐𝟏 𝟎𝑆×(𝑍−𝑆)
𝟎(𝑍−𝑆)×𝑆 𝟎(𝑍−𝑆)×(𝑍−𝑆)

]

𝐖−1𝐱(𝜏) + (𝐠(𝜏) − 𝐠̄(𝜏))𝑇𝐑(𝐠(𝜏) − 𝐠̄(𝜏))

=
∞
∑

𝜏=𝑘
𝐱(𝜏)𝑇𝐐𝐱(𝜏) + (𝐠(𝜏) − 𝐠̄(𝜏))𝑇𝐑(𝐠(𝜏) − 𝐠̄(𝜏)) ,

(26)

here

𝐐 = 𝐖−𝑇
[

𝐐𝟏 𝟎𝑆×(𝑍−𝑆)
𝟎(𝑍−𝑆)×𝑟 𝟎(𝑍−𝑆)×(𝑍−𝑆)

]

𝐖−1 and
[

𝐐𝟏 𝟎𝑆×(𝑍−𝑆)
𝟎(𝑍−𝑆)×𝑆 𝟎(𝑍−𝑆)×(𝑍−𝑆)

]

= 𝐖𝑇𝐐𝐖 , (27)

ne concludes that (25) is equivalent to a quadratic regulation cost of the original system (12), where 𝐐, of appropriate dimensions,
9

s guaranteed to be positive semidefinite, i.e., 𝐐 ⪰ 𝟎. Ideally, 𝐐 should be set to diag(1∕𝑥1,max,… , 1∕𝑥𝑍,max) in order to minimize
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the relative occupancy of each link, as suggested, for instance, in Aboudolas et al. (2009). However, the structural constraint on 𝐐,
portrayed in (27), must be obeyed. Having that in mind, one should choose 𝐐𝟏 corresponding to the ideal 𝐐. That is,

𝐐𝟏 =
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖𝑇 diag(1∕𝑥1,max,… , 1∕𝑥𝑍,max)𝐖
[

𝐈𝑆
𝟎(𝑍−𝑆)×𝑆

]

,

which is equivalent, from (27), to

𝐐 = 𝐖−𝑇
[

𝐈𝑆 𝟎
𝟎 𝟎

]

𝐖𝑇 diag(1∕𝑥1,max,… , 1∕𝑥𝑍,max)𝐖
[

𝐈𝑆 𝟎
𝟎 𝟎

]

𝐖−1 .

Furthermore, note that, due to the limitation of the communication links between junctions in a decentralized configuration,
as put forward in Section 2.4, there are constraints on the structure of the feedback gain 𝐊. Consider a junction 𝑗. The command
action of a stage 𝑠 ∈ 𝑗 is computed making use of information available to the computational unit 𝑗 , exclusively. The set of links
whose queue length is available to the computational unit 𝑗 is: (i) 𝛹𝑗 , as defined in (16), for configuration 𝛹 ; or (ii) 𝛷𝑗 , as defined
in (17), for configuration 𝛷. Thus, for configuration 𝛹 , 𝑔𝑠(𝑘) is of the form

𝑔𝑠(𝑘) = [𝐠̄(𝑘)]𝑠 −
∑

𝑒𝑖∈𝛹𝑗

[𝐾]𝑠𝑖𝑥𝑖(𝑘) ,

and, for configuration 𝛷, 𝑔𝑠(𝑘) is of the form

𝑔𝑠(𝑘) = [𝐠̄(𝑘)]𝑠 −
∑

𝑒𝑖∈𝛷𝑗

[𝐾]𝑠𝑖𝑥𝑖(𝑘) .

As a matter of fact, it is equivalent to imposing a sparsity constraint 𝐊 ∈ Sparse(𝐄𝜳 ), where 𝐄𝜳 ∈ R𝑆×𝑍 is such that

∀𝑗 ∈ {1,… , 𝐽} ∀𝑠 ∈ 𝑗 ∀𝑤 ∈ {1,… , 𝑍}
(

𝑒𝑤 ∈ 𝛹𝑗 ⟹ [𝐄𝜳 ]𝑠𝑤 ≠ 0
)

∧
(

𝑒𝑤 ∉ 𝛹𝑗 ⟹ [𝐄𝜳 ]𝑠𝑤 = 0
)

, (28)

for the decentralized configuration 𝛹 , and 𝐊 ∈ Sparse(𝐄𝜱), where 𝐄𝜱 ∈ R𝑆×𝑍 is defined in the same manner as (28), replacing 𝛹𝑗
with 𝛷𝑗 , for the decentralized configuration 𝛷.

Thus, the linear quadratic optimization problem becomes

minimize
𝐊∈R𝑆×𝑍

𝐽∞(0)

subject to 𝐊 ∈ Sparse(𝐄) ,
(29)

which is a decentralized linear quadratic regulator problem subject to a sparsity constraint on the feedback gain. The sparsity pattern,
represented by 𝐄, takes the values of 𝐄𝜳 or 𝐄𝜱, depending on the decentralized configuration considered. This problem has already
been addressed in Viegas et al. (2020), for LTI systems. In this paper, the one-step method is employed to obtain an approximate, not
necessarily optimal, solution to (29) for an LTI system, as detailed in Viegas et al. (2020, Section 3). However, a numerical solution
to the optimization problem (29), such as the one computed by the one-step method, is, generally, not numerically stable. In fact,
if the computation of 𝐐 using (27) has any numerical error, arising either from the selection of the columns of the transformation
matrix 𝐖 or other source that allows for a residual uncontrollable component of 𝐱(𝜏) to be summed in (26), then, the cost function
is not bounded. In fact, the problem has to be formulated exclusively for the controllable component of the original system, (23),
with a feedback control law of the form

𝐠(𝑘) = 𝐠̄(𝑘) −𝐊𝟏𝐳𝟏(𝑘) , (30)

where 𝐊𝟏 ∈ R𝑆×𝑆 is the feedback gain of the controllable component. Writing (30) in terms of 𝐱(𝑘) and making use of (18), the
relation of the feedback gain of the controllable component in relation to the feedback gain of the original system can be written
as

𝐊 = 𝐊𝟏
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1 . (31)

The optimization problem (29) is, thus, equivalent to

minimize
𝐊𝟏∈R𝑆×𝑆

𝐽∞(0)

subject to 𝐊𝟏
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1 ∈ Sparse(𝐄)
𝐳𝟏(𝜏 + 1) = 𝐳𝟏(𝜏) − 𝐁̂𝐠𝟏𝐊𝟏𝐳𝟏(𝜏)
𝐳𝟏(𝜏) =

[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1𝐱(𝜏)
𝐳𝟐(𝜏 + 1) = 𝐳𝟐(𝜏)
𝐳𝟐(𝜏) =

[

𝟎(𝑍−𝑆)×𝑆 𝐈𝑍−𝑆
]

𝐖−1𝐱(𝜏) , 𝜏 = 0, 1,… ,

(32)

where 𝐄 takes the value of 𝐄𝜳 or 𝐄𝜱, depending on the decentralized configuration considered. A numerical solution to (32) is not
unstable. However, it is important to remark that, it is neither of the form of the one-step method optimization problem, nor of other
state-of-the-art methods, since the sparsity constraint is not on the gain, but on a linear transformation of the gain. Nevertheless,
as evident in the following result, which is adapted from Viegas et al. (2020, Theorem 1), the one-step method can be adapted and
10
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employed to obtain an approximate solution to (32). The one-step method finds a sub-optimal steady-state gain for the finite-window
optimization problem

minimize
𝐊𝟏(𝜏)∈R𝑆×𝑆

𝜏=0,…,𝑇−1

𝐽 (0)

subject to 𝐊𝟏(𝜏)
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1 ∈ Sparse(𝐄)
𝐳𝟏(𝜏 + 1) = 𝐳𝟏(𝜏) − 𝐁̂𝐠𝟏𝐊𝟏𝐳𝟏(𝜏)
𝐳𝟏(𝜏) =

[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1𝐱(𝜏)
𝐳𝟐(𝜏 + 1) = 𝐳𝟐(𝜏)
𝐳𝟐(𝜏) =

[

𝟎(𝑍−𝑆)×𝑆 𝐈𝑍−𝑆
]

𝐖−1𝐱(𝜏) , 𝜏 = 0,… , 𝑇 − 1 ,

(33)

hich is a relaxation of (32). It takes as solution 𝐊𝟏(0) as 𝑇 → ∞, if the limit exits, where 𝑇 ∈ N is the window size, and

𝐽 (𝑘) ∶=𝐱𝑇 (𝑇 )𝐐𝐱(𝑇 ) +
𝑇−1
∑

𝜏=𝑘

(

𝐱𝑇 (𝜏)𝐐𝐱(𝜏) + (𝐠(𝜏) − 𝐠̄(𝜏))𝑇𝐑(𝐠(𝜏) − 𝐠̄(𝜏))
)

=𝐳𝟏𝑇 (𝑇 )𝐐𝟏𝐳𝟏(𝑇 ) +
𝑇−1
∑

𝜏=𝑘
𝐳𝟏𝑇 (𝜏)𝐐𝟏𝐳𝟏(𝜏) + (𝐠(𝜏) − 𝐠̄(𝜏))𝑇𝐑(𝐠(𝜏) − 𝐠̄(𝜏))

(34)

s the finite-window cost function.

heorem 3.1 (Adapted One-Step Method). Let 𝐥𝑗 denote a column vector whose entries are all set to zero except for the 𝑗th one, which is
et to 1, and 𝑗 ∶= diag(𝐥𝑗 ). Define a vector 𝐦𝑗 ∈ R𝑆 to encode the non-zero entries in the 𝑗th column of 𝐄 as

𝐦𝑗 (𝑖) =

{

0, [𝐄]𝑖𝑗 = 0
1, [𝐄]𝑖𝑗 ≠ 0

, 𝑖 = 1,… , 𝑆 ,

nd let 𝑗 ∶= diag(𝐦𝑗 ). Then, the gain of the one-step sub-optimal solution to (33) is given by

𝐊𝟏(𝜏)
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1 =
𝑛
∑

𝑗=1

(

𝐈 −𝑗 +𝑗𝐒(𝜏)𝑗
)−1 𝑗 𝐁̂𝑇

𝐠𝟏𝐏̂(𝜏 + 1)
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1𝑗 , (35)

= 0,… , 𝑇 − 1, where

𝐒(𝜏) ∶= 𝐁̂𝑇
𝐠𝟏𝐏̂(𝜏 + 1)𝐁̂𝐠𝟏 + 𝐑

nd 𝐏̂(𝜏), 𝜏 = 0,… , 𝑇 , is a symmetric positive semidefinite matrix given by the recurrence

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝐏̂(𝑇 ) = 𝐐𝟏(𝑇 ) (a)

𝐏(𝜏 + 1) = 𝐖−𝑇

[

𝐈𝑆
𝟎(𝑍−𝑆)×𝑆

]

𝐏̂(𝜏 + 1)
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)

]

𝐖−1 (b)

𝐊(𝜏) = 𝐊𝟏(𝜏)
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)

]

𝐖−1 (c)

𝐏(𝜏) = 𝐐 +𝐊𝑇 (𝜏)𝐑𝐊(𝜏) +
(

𝐀 − 𝐁𝐠𝐊(𝜏)
)𝑇 𝐏(𝜏 + 1)

(

𝐀 − 𝐁𝐠𝐊(𝜏)
)

(d)

𝐏̂(𝜏) =
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)

]

𝐖𝑇𝐏(𝜏)𝐖
[

𝐈𝑆
𝟎(𝑍−𝑆)×𝑆

]

. (e)

(36)

oreover, the one-step sub-optimal solution yields a sub-optimal performance index that follows

𝐽⋆(𝜏) = 𝐱𝑇 (𝜏)𝐏(𝜏)𝐱(𝜏) = 𝐳𝟏𝑇 (𝜏)𝐏̂(𝜏)𝐳𝟏(𝜏) .

roof. See Appendix C. □

emark 3.1. The computation of the closed-form solution (35) requires (𝑛4) floating point operations, using Gaussian elimination.
nstead of using it, the exact numeric algorithm proposed in Pedroso and Batista (2021) can be, alternatively, applied to (C.16) to
ompute each gain with a computational complexity of (|𝜒|3), where |𝜒| denotes the number of nonzero entries of 𝐄. Usually, in

decentralized control applications, |𝜒| ≈ 𝑐𝑛, where 𝑐 ∈ N is a constant, as it is the case for decentralized traffic networks. It, thus,
follows that a computational complexity of (𝑛3) is achieved, which is identical to the computational complexity of the centralized
solution. An efficient MATLAB implementation of this efficient numeric algorithm can be found in the DECENTER toolbox, available
at https://decenter2021.github.io (accessed on 10 July 2021).

3.1. Summed-up DTUC feedback gain synthesis

Even though the extensive analysis conducted in this section is necessary to gather insight into the problem at hand, as well
11

as to devise numerically stable algorithms to solve it, it can be neatly summarized. First, it was noted that, in general, the traffic

https://decenter2021.github.io
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Table 3
Augmented one-step algorithm for the computation of a
steady-state feedback gain.

1. Initialization:
(a) Select a large enough finite-window length 𝑇
(b) 𝐏̂(𝑇 ) = 𝐐𝟏
(c) 𝜏 = 𝑇 − 1

2. Do:
(a) Compute 𝐊(𝜏) making use of (35) and ((36)c)
(b) Compute 𝐏(𝜏 + 1) making use of ((36)b)
(c) Compute 𝐏(𝜏) making use of ((36)d)
(d) Compute 𝐏̂(𝜏) making use of ((36)e)
(e) 𝜏 = 𝜏 − 1
While: 𝜏 ≤ 0

3. Return: 𝐊(0)

dynamics model (12) is not controllable, but the constraint (5) ensures all the components of the system, namely the uncontrollable
component, are bounded. Second, a linear feedback control law of the form

𝐠(𝑘) = 𝐠̄(𝑘) −𝐊𝐱(𝑘)

s sought to regulate the controllable component of (12), where 𝐠̄(𝑘) is based on historic demands on the network 𝐝hist(𝑘) and given
y (24). Third, the state-of-the-art decentralized methods of synthesizing 𝐊 are not numerically stable for this formulation of the
roblem. Thus, the one-step method, put forward in Viegas et al. (2020, Section 3), was adapted, as detailed in Theorem 3.1, which
rovides a numerically stable algorithm. The iterative procedure of the one-step method is detailed in Table 3. Note that, for the
omputation of both 𝐠̄(𝑘) and 𝐊, matrices 𝐖 and 𝐁̂𝐠𝟏 must be computed beforehand, according to (18) and (19), decomposing the
TI system (12) according to the Canonical Structure Theorem. Furthermore, the gain 𝐊 can be computed offline.

.2. Post-processing

It is, now, important to incorporate the constraints (1) and (2) into the DTUC strategy. Having that in mind, for each cycle 𝑘, the
computational unit of each junction 𝑗, has to adjust the solution provided by the linear quadratic optimization problem, 𝑔𝑠(𝑘), 𝑠 ∈ 𝑗 ,
according to (1) and (2). As proposed in Diakaki (1999), Aboudolas et al. (2009), the introduction of these constraints amounts to
solving

minimize
𝑔̃𝑠(𝑘), 𝑠∈𝑗

1
2

∑

𝑠∈𝐹𝑓

(

𝑔̃𝑠(𝑘) − 𝑔𝑠(𝑘)
)2

subject to 𝑔̃𝑠(𝑘) ≥ 𝑔𝑠,𝑚𝑖𝑛 , 𝑠 ∈ 𝑗
∑

𝑠∈𝑗

𝑔̃𝑠(𝑘) + 𝐿𝑗 = 𝐶 .

(37)

Note that, the optimization problems (37) for 𝑗 ∈ {1,… , 𝐽}, that each computational unit 𝑗 has to solve, are independent and
rely, exclusively, on data known to 𝑗 . Thus, they can be solved in parallel, by each computational unit 𝑗 , in a distributed manner,
without requiring additional communication. Define 𝐠̃𝐣 ∶= col(𝑔̃𝑠(𝑘) − 𝑔𝑠,min, 𝑠 ∈ 𝑗 ), where the discrete time instant 𝑘 was dropped
for lighter notation. Expanding the objective function of the optimization above and rewriting the constraints yields

minimize
𝐠̃𝐣∈R

|𝑗 |

1
2
𝐠̃𝑇𝐣 diag(𝐝)𝐠̃𝐣 − 𝐚𝑇 𝐠̃𝐣

subject to 𝟎 ≤ 𝐠̃𝐣 ≤ 𝐛
𝟏𝑇 𝐠̃𝐣 = 𝑐 ,

(38)

here 𝐝 = 𝟏
|𝑗 |

, 𝐚 = col
(

𝑔𝑠(𝑘) − 𝑔𝑠,min, 𝑠 ∈ 𝑗
)

, and

𝑐 = 𝐶 − 𝐿𝑗 −
∑

𝑠∈𝑗

𝑔𝑠,min(𝑘) .

Since there is no upper bound on 𝐠̃𝐣, 𝐛 can be set to 𝐛 = 𝑐𝟏
|𝑓𝑗 |, for instance, which does not modify the solution of the original

optimization problem (37). Not only is optimization problem (38) convex, but it is also a quadratic continuous knapsack problem,
whose solution can be found making use of very efficient algorithms. Note that (38) is of the same form as the problem solved
in Helgason et al. (1980). In fact, the optimal solution to (38) can be solved using the iterative algorithm presented in Helgason
et al. (1980, Section 3) in | | iterations or less.
12
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4. Decentralized Decoupled Traffic-responsive Urban Control (D2TUC)

In this section, another decentralized traffic-responsive signal control strategy is presented, which is inspired in the QPC approach,
roposed in Aboudolas et al. (2009, Section 4.2) for a centralized configuration, as an attempt to improve the performance of TUC.
he linear-quadratic method explored in the previous section relies on a cost function that does not allow to weight the state as one
ould ideally want. In fact, the weighting matrix 𝐐 in (26) must have a particular structure, given by (27), instead of ideally being

set to 𝐐 = diag(1∕𝑥1,max,… , 1∕𝑥𝑍,max). Having this limitation in mind, one can, alternatively, compute the green times of each link
independently, i.e.

𝐆(𝑘) = 𝐆̄(𝑘) −𝐊𝐱(𝑘) , (39)

where 𝐊 ∈ R𝑍×𝑍 is the gain matrix of this approach, which is synthesized based on the LTI system (10), and 𝐆̄(𝑘) is a feedforward
term computed using an historical demand, as defined in the sequel. Note that, similarly to DTUC, the gain 𝐊 can be computed
offline. First, as detailed in the following result, the LTI system (10) of a feasible traffic network, as defined in Definition 2.2, is
controllable.

Proposition 4.1. Consider a feasible traffic network characterized by (,𝐓, 𝐭𝟎). Then, the store-and-forward LTI system (10) is controllable.

Proof. See Appendix D. □

Next, one assumes that an historical demand 𝐝hist(𝑘) is available. Rewrite (10) as

𝐱(𝑘 + 1) = 𝐱(𝑘) + 𝐁𝐆(𝐆(𝑘) − 𝐆̄(𝑘)) + 𝐶𝝐(𝑘) , (40)

where 𝝐(𝑘) is considered to be a disturbance, given by 𝝐(𝑘) ∶= 𝐝hist(𝑘) +𝐁𝐆𝐆̄(𝑘). In order to apply a decentralized regulator to (40),
𝐆̄(𝑘) is selected such that the disturbance 𝝐(𝑘) is minimal, i.e., 𝐆̄(𝑘) is given by the solution to

minimize
𝐆̄(𝑘)∈R𝑆

‖𝝐(𝑘)‖2 ,

for 𝑘 ∈ N0. The optimization problem above is a least squares optimization problem, whose solution is

𝐆̄(𝑘) = −
(

𝐁𝐆
𝑇𝐁𝐆

)−1 𝐁𝐆
𝑇 𝐝hist(𝑘)

if 𝐁𝐆 ∈ R𝑍×𝑍 is full rank, which is an immediate consequence of Proposition 4.1.
Since (40) is controllable, it is possible to write the quadratic cost function as

𝐽∞(𝑘) =
∞
∑

𝜏=𝑘
𝐱(𝜏)𝑇𝐐𝐱(𝜏) + (𝐆(𝑘) − 𝐆̄(𝑘))𝑇𝐑(𝐆(𝑘) − 𝐆̄(𝑘)) , (41)

where 𝐐 ⪰ 𝟎 and 𝐑 ≻ 𝟎 are selected matrices of appropriate dimensions. Note that, contrarily to (26), the state weighting matrix
𝐐 can be selected freely, as long as it is positive semidefinite. Thus, it can be set to the ideal 𝐐 = diag(1∕𝑥1,max,… , 1∕𝑥𝑍,max), to
penalize the relative occupancy of each link. Note that the fact that the green time of each link can be selected independently allows
for more flexibility and would, evidently, lead to better performance if it could be applied. Nevertheless, the green times of each
link are subject to the green times of the stages in which they are given r.o.w. For that reason, this approach requires additional
post-processing, not only to split the green times of the links among the stages, but also to impose the constraints (1) and (2),
whereas the post-processing step of the DTUC strategy has only to enforce the latter.

Furthermore, note that, due to the limitation on the communication links between junctions in a decentralized configuration, as
put forward in Section 2.4, there are constraints on the structure of the feedback gain 𝐊 of the control law (39). Consider junction
𝑗. The command action of a stage 𝑠 ∈ 𝑗 is computed making use of information know to the computational unit 𝑗 , exclusively.
The set of links whose queue length is available to computational unit 𝑗 is: (i) 𝛹𝑗 , as defined in (16), for configuration 𝛹 ; and (ii)
𝛷𝑗 , as defined in (17), for configuration 𝛷. Thus, for configuration 𝛹 , 𝐺𝑧(𝑘) is of the form

𝐺𝑧(𝑘) = [𝐆̄(𝑘)]𝑧 −
∑

𝑒𝑖∈𝛹𝑗

[𝐾]𝑧𝑖𝑥𝑖(𝑘) ,

and, for configuration 𝛷, 𝐺𝑧(𝑘) is of the form

𝐺𝑧(𝑘) = [𝐆̄(𝑘)]𝑧 −
∑

𝑒𝑖∈𝛷𝑗

[𝐾]𝑧𝑖𝑥𝑖(𝑘) .

As a matter of fact, it is equivalent to imposing a sparsity constraint 𝐊 ∈ Sparse(𝐄𝜳 ), where 𝐄𝜳 ∈ R𝑍×𝑍 is such that

∀𝑗 ∈ {1,… , 𝐽} ∀𝑒𝑧 ∈ −
𝑗 ∀𝑤 ∈ {1,… , 𝑍}

(

𝑒𝑤 ∈ 𝛹𝑗 ⟹ [𝐄𝜳 ]𝑧𝑤 ≠ 0
)

∧
(

𝑒𝑤 ∉ 𝛹𝑗 ⟹ [𝐄𝜳 ]𝑧𝑤 = 0
)

, (42)

for the decentralized configuration 𝛹 and 𝐊 ∈ Sparse(𝐄𝜱) for configuration 𝛷, where 𝐄𝜱 ∈ R𝑍×𝑍 is defined in the same manner as
(42) replacing 𝛹𝑗 with 𝛷𝑗 .

Thus, the linear quadratic optimization problem becomes

minimize
𝐊∈R𝑍×𝑍

𝐽∞(0)
(43)
13

subject to 𝐊 ∈ Sparse(𝐄) ,



Transportation Research Part C 132 (2021) 103412L. Pedroso and P. Batista

p
o

4

H

w
r
d

which is a decentralized linear quadratic regulator problem subject to a sparsity constraint on the feedback gain. The sparsity
pattern, represented by 𝐄, takes the values of 𝐄𝜳 or 𝐄𝜱, depending on the decentralized configuration that is considered. This
roblem has already been addressed in Viegas et al. (2020) for LTI systems. In this paper, the one-step method is employed, to
btain an approximate, not necessarily optimal, solution to (43) for an LTI system, as detailed in Viegas et al. (2020, Section 3).

.1. Post-processing

It is, now, necessary to incorporate the constraints (1), (2), and allocate the green time of each link among the available stages.
aving that in mind, for each cycle 𝑘, the computational unit of each junction 𝑗, has to adjust the solution of the linear quadratic

optimization problem, 𝐺𝑧(𝑘), 𝑧 ∈ {1,… , 𝑍}, according to 𝐆(𝑘) = 𝐒𝐠(𝑘), (1), and (2). It seems, at first sight, that the best option is to
split the green times of the links among the stages and imposing the constraints (1) and (2) simultaneously. However, given that
the allocation of the stage times is what influences most significantly the performance of the regulator, it is performed beforehand
and constraints (1) and (2) are enforced posteriorly.

First, the optimal stage times 𝑔𝑠(𝑘), 𝑠 ∈ {1,… , 𝑆} are obtained solving

minimize
𝐠(𝑘)∈R𝑆

‖𝐆(𝑘) − 𝐒𝐠(𝑘)‖2 , (44)

where 𝐠(𝑘) = col(𝑔𝑠(𝑘), 𝑠 ∈ {1,… , 𝑆}), which is a standard least squares optimization problem. However, (44) is not written in a
form to allow for the distributed computation across the computational units of each junction. For that reason, consider, without
loss of generality, the numbering convention proposed in Section 2.1. For a minimum complete stage strategy, one can write
𝐒 = diag(𝐒𝟏,… ,𝐒𝐉), where 𝐒𝐣 ∈ R|𝑗 |×𝜈−𝑖 . Thus, the decentralized optimization problem

minimize
𝐠𝐣(𝑘)∈R𝑆

‖𝐆𝐣(𝑘) − 𝐒𝐣𝐠𝐣(𝑘)‖2 , (45)

where 𝐠𝐣(𝑘) ∶= col(𝑔𝑠(𝑘), 𝑠 ∈ 𝑗 ) and 𝐆𝐣 ∶= col(𝐺𝑧(𝑘), 𝑒𝑧 ∈ −
𝑗 ), for 𝑗 = 1,… , 𝐽 , is equivalent to (44). The optimization problem (45)

is also a least squares problem, whose solution is given by

𝐠𝐣(𝑘) = (𝐒𝐣𝑇 𝐒𝐣)−1𝐒𝐣𝑇𝐆(𝑘) , (46)

if 𝐒𝐣 is full rank, which is required by the condition 4 of Definition 2.3 of a minimum complete stage strategy. Second, the constraints
(1) and (2) are posteriorly imposed, using the same procedure as described in Section 3.2, to determine the D2TUC stage green times
for each junction 𝐠̃𝐣.

5. Numeric simulation

As a means of assessing the performance of the decentralized control strategies proposed in this paper, they are applied to a
simulated urban traffic network of the city center of Chania, Greece, whose model was kindly provided by the authors of Aboudolas
et al. (2009). The performance of DTUC and D2TUC decentralized methods for both decentralized configurations are compared
between themselves, with the centralized solution provided by TUC (Diakaki et al., 2002), and the centralized equivalent of D2TUC.
The numerical simulations are carried out considering the nonlinear model (15), put forward in Section 2.2, which offers a realistic
macroscopic simulation of a real traffic network.

The Chania urban traffic network, whose topology graph is depicted in Fig. 3, consists of 𝐽 = 16 signalized junctions, and 𝐿 = 60
links. The cycle time is set to 𝐶 = 90 s, the simulation sampling time to 𝑇 = 5 s, and the parameter that adjusts the sensibility
of upstream gating to 𝑐𝑢𝑔 = 0.85. This network is feasible and a minimum complete stage strategy was used, whose details are
omitted. The command action weighting matrix is set to 𝐑 = 10−4𝐈, for both DTUC and D2TUC strategies, which was adjusted using
a trial-and-error procedure (Aboudolas et al., 2009). The performance of the strategies simulated in this section was found to exhibit
very little sensibility to the choice of the weighting matrix 𝐑.

Two objective functions, proposed in Aboudolas et al. (2009, Section 5.2), are used to assess the performance of the proposed
decentralized approaches: (i) the total time spent (TTS)

TTS = 𝑇
∑

𝑘

𝑍
∑

𝑧=1
𝑥𝑧(𝑘)

and (ii) the relative queue balance (RQB)

RQB =
∑

𝑘

𝑍
∑

𝑧=1

𝑥2𝑧(𝑘)
𝑥𝑧,𝑚𝑎𝑥

.

Similarly to Aboudolas et al. (2009), these criteria are applied to the average of the values of 𝑥𝑧(𝑘𝑇 ) over each cycle interval 𝐶.
The simulations were carried out for one scenario of high and another of intermediate demand. The simulation was run for 10

control cycles, corresponding to 15 min. The initial link queues were randomly generated, as well as the historic demand 𝐝hist(𝑘),
hich was held constant during the simulations. Both parameters were kept unchanged among all the simulations carried out. The

esults of the performance criteria are presented in Table 4, for the high demand scenario, and in Table 5, for the intermediate
emand scenario. Figs. 4 and 5 depict the evolution of the sum of the absolute value of the entries of the controllable and
14
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Fig. 3. Chania urban traffic network topology graph, kindly provided by the authors of Aboudolas et al. (2009).

Table 4
Performance criteria of simulation for the high demand scenario, and comparison of the performance of the
decentralized solutions with the corresponding centralized solutions.

Strategy TUC DTUC 𝛹 DTUC 𝛷 D2TUC Cent. D2TUC 𝛹 D2TUC 𝛷

RQB 1512 2155 1581 1438 1577 1494
– +42.5% +4.57% – +9.67% +3.88%

TTS 84.25 100.9 85.95 86.10 86.59 84.16
– +19.7% +2.02% – +0.573% −2.24%

Table 5
Performance criteria of simulation for the intermediate demand scenario, and comparison of the performance of
the decentralized solutions with the corresponding centralized solutions.

Strategy TUC DTUC 𝛹 DTUC 𝛷 D2TUC Cent. D2TUC 𝛹 D2TUC 𝛷

RQB 527.6 937.9 670.0 469.4 731.8 514.8
– +77.8% +27.0% – +55.9% +9.67%

TTS 39.82 53.16 44.15 38.67 45.86 38.76
– +33.5% +10.9% – +18.6% +0.246%

Fig. 4. Evolution of the sum of the absolute value of the state components for the high demand scenario.

uncontrollable components, for the high and intermediate demand scenarios, respectively. Fig. 6 shows the evolution of illustrative
15

link occupancy and stage time, related to junction 12, for the D2TUC strategy with decentralized configuration 𝛷.
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Fig. 5. Evolution of the sum of the absolute value of the state components for the high demand scenario.

Fig. 6. Evolution of illustrative link occupancy and stage green time for the D2TUC strategy with decentralized configuration 𝛷.

Table 6
Performance comparison between the decentralized solution of D2TUC with configuration 𝛷 and TUC.

Demand scenario Intermediate High

Strategy TUC D2TUC 𝛷 TUC D2TUC 𝛷

RQB 527.6 514.8 1512 1494
– −2.43% – −1.19%

TTS 39.82 38.76 84.25 84.16
– −2.73% – −0.11%

First, it is visible in Figs. 4 and 5 that both decentralized methods, for both decentralized configurations, and for both demand
cenarios, successfully stabilize the traffic dynamics, regulating the controllable component of the link occupancy. It is interesting to
ote that, despite the fact that the demand is constant throughout each simulation, the uncontrollable component actually decreases
ith time, which is a consequence of the use of simulation nonlinear effects, such as (5) and upstream gating, as described in
ection 2.2. Second, recall that the DTUC and D2TUC methods, proposed herein, are inspired in the TUC approach and QPC
ethod, presented, respectively in Diakaki et al. (2002) and Aboudolas et al. (2009), whose performance is compared in Aboudolas

t al. (2009). Similarly to that comparison, Tables 4 and 5 show that it is possible to improve the performance of TUC making
se of the centralized D2TUC method. Third, as an example, in Fig. 6 the effect of upstream gating throughout the simulation
s noticeable, preventing link 15 from overloading, due to the high demand. Furthermore, the decentralized solution is shown to
uccessfully reduce congestion. Fourth, recall that, contrarily to the DTUC method, the D2TUC method allows to design the regulator
ith the weighting ratios necessary to balance the relative occupancy of the links. In fact, the results presented in Tables 4 and
show that there is a significant reduction on the RQB of the D2TUC method compared with the DTUC method, for both the

entralized and decentralized solutions and for both demand scenarios. Fifth, it is important to remark that due to the very limited
ink load information when computing the green times of the stages at a junction, it is expected that the performance of decentralized
olutions is generally poorer. However, although in a decentralized configuration it is particularly hard to achieve a balanced relative
16

ccupancy of the links, due to the heavy communication limitations, the D2TUC decentralized solution, using the decentralized
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configuration 𝛷, leads to an increase of only 3.88% and 9.67% of the RQB in relation to the best centralized solution, for the
high and intermediate demand scenarios, respectively. Sixth, despite the heavy communication restrictions, the TTS of the D2TUC
decentralized solution, using the decentralized configuration 𝛷, is identical to the performance of the best centralized solution,
resulting in an increase of 2.24% and decrease of 0.246%, for the high and intermediate demand scenarios, respectively. This result
indicates that, as far as the ability to reduce congestion is concerned, the performance of the best decentralized and centralized
method are similar. On top of that, the infrastructure required by the application of the centralized solution is significantly greater
than the necessary for the application of the decentralized solution. Note that the increase in performance of the decentralized
solution was obtained by chance, and is only possible due to the use of the nonlinear simulation model, which does not correspond
to the controller synthesis model. Seventh, it is important to remark that the decentralized solution of the D2TUC method, with the
decentralized configuration 𝛷, is able to consistently match the performance of TUC, for both demand scenarios, as it is possible to
notice analyzing Table 6. Eighth, there is a significant performance improvement by using the decentralized configuration 𝛷 rather
than 𝛹 . Recall, from Section 2.4, that the decentralized configuration 𝛹 requires no communication between junctions regarding
the decentralized controller, whereas the decentralized configuration 𝛷 takes advantage of the communication links required by a
decentralized observer to receive link occupancy information known to neighboring junctions. In this particular example, only 21
bidirectional communication links are required to apply the decentralized configuration 𝛷, which are the same necessary for the
implementation of a decentralized observer.

In this section, both decentralized methods presented in this paper for the signal control problem in large-scale congested urban
roads were validated, yielding very promising results. In fact, making use of only 21 bidirectional communication links between
junctions of the traffic network, it was possible to consistently match the performance of TUC. The implementation of a decentralized
solution requires significantly less infrastructure, and as the computation of the green times can be performed in a distributed manner
across the computational units of each junction and very efficiently, cheap microcontrollers are suitable for the computational units.
The significant reduction of the implementation cost of signal control for large-scale traffic networks allows for the implementation
of such strategies on networks whose centralized solution is not feasible.

6. Conclusion

Signal control strategies designed in a centralized framework require many communication links, serious processing power, and
infrastructure for the centralized coordination. As a result, strategies based on a centralized framework are not easily scalable. The
use of decentralized signal control solutions for large-scale urban traffic networks is a solution to this problem, since it allows for the
implementation of such strategies on networks whose centralized implementation is challenging and expensive due to the dimension
of the network. However, very little work has been carried out regarding the design of decentralized signal control solutions for
large-scale urban traffic networks. In this paper, two decentralized traffic-responsive signal control methods, designated as DTUC and
D2TUC, based on different formulations of the store-and-forward model, are derived and their performance is assessed. Sufficient
conditions for the controllability of the considered store-and-forward models are also presented. Both methods are devised as the
solution to a decentralized linear quadratic regulator problem, which results in a very efficient computation of the green times for
each stage. It is considered that each intersection is associated with one computational unit, with limited computational power
and memory, which controls the traffic signals of the incoming links. The proposed methods are validated resorting to numerical
simulations of the urban traffic network of Chania, Greece, and their performance is compared with the performance obtained with
TUC, a state-of-the-art centralized solution which has already been applied experimentally in three cities in Europe. The simulations
are carried out for two different demand scenarios and for two different decentralized configurations. First, it is shown that both
methods successfully stabilize the traffic dynamics, regulating the link occupancy. Second, the D2TUC decentralized method is
shown to match the performance of TUC, for both demand scenarios considered, as far as the balance of the relative link occupancy
and vehicle throughput are concerned. Third, the computations required by both methods are very efficient and performed in a
distributed framework, requiring only cheap microcontrollers as computational units. For these reasons, the solution proposed in
this paper is very compelling. Not only is it suitable for the implementation to large-scale traffic networks, with a fraction of the
cost that would be required for a centralized implementation, but it also matches the performance of a state-of-the-art centralized
approach.
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Appendix A. Derivation of LTI traffic network dynamics for the store-and-forward model

The detailed derivation of the three expressions for the store-and-forward model of a traffic network (6), (10), and (12), is
etailed in this section. As a means of lightening the notation, Einstein summation convention is used. Rewriting (3) as

𝐱(𝑘 + 1)𝑖 = 𝐱(𝑘)𝑖 + 𝐶𝐪(𝑘)𝑖 − 𝐶𝐮(𝑘)𝑖 − 𝐶𝐬(𝑘)𝑖 + 𝐶𝐝(𝑘)𝑖 ,

where 𝐪(𝑘) ∶= col(𝑞1(𝑘),… , 𝑞𝑍 (𝑘)) ∈ R𝑍 and 𝐬(𝑘) ∶= col(𝑠1(𝑘),… , 𝑠𝑍 (𝑘)) ∈ R𝑍 , (4) as

𝐪(𝑘)𝑖 = 𝐓𝑖
𝑗𝐮(𝑘)

𝑗 ,

and 𝐬(𝑘)𝑖 = 𝑡𝑖,0𝐪(𝑘)𝑖 as

𝐬(𝑘)𝑖 = 𝑡𝑖,0𝜹𝑖𝑗𝐪(𝑘)
𝑗 ,

where 𝜹𝑖𝑗 denotes the Kronecker delta, one arrives at

𝐱(𝑘 + 1)𝑖 = 𝜹𝑖𝑗𝐱(𝑘)
𝑗 + 𝐶(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐪(𝑘)

𝑘 − 𝐶𝜹𝑖𝑗𝐮(𝑘)
𝑗 + 𝐶𝐝(𝑘)𝑖

= 𝜹𝑖𝑗𝐱(𝑘)
𝑗 + 𝐶

(

(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐓
𝑘
𝑗 − 𝜹𝑖𝑗

)

𝐮(𝑘)𝑗 + 𝐶𝐝(𝑘)𝑖

= 𝐀𝑖
𝑗𝐱(𝑘)

𝑗 + 𝐁𝐮
𝑖
𝑗𝐮(𝑘)

𝑗 + 𝐶𝐝(𝑘)𝑖 ,

(A.1)

with

𝐀𝑖
𝑗 = 𝜹𝑖𝑗 and 𝐁𝐮

𝑖
𝑗 = 𝐶

(

(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐓
𝑘
𝑗 − 𝜹𝑖𝑗

)

, (A.2)

which is of the same form as (6). Writing (A.2) in matrix notation yields 𝐀 = 𝐈𝑍 and (7). Rewriting (8) as

𝐮(𝑘)𝑙 =
𝑆𝑙
𝐶

𝜹𝑙𝑗𝐆(𝑘)𝑗 ,

(A.1) can be rewritten as

𝐱(𝑘 + 1)𝑖 = 𝜹𝑖𝑗𝐱(𝑘)
𝑗 +

(

(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐓
𝑘
𝑙 − 𝜹𝑖𝑙

)

𝑆𝑙𝜹𝑙𝑗𝐆(𝑘)𝑗 + 𝐶𝐝(𝑘)𝑖

= 𝐀𝑖
𝑗𝐱(𝑘)

𝑗 + 𝐁𝐆
𝑖
𝑗𝐮(𝑘)

𝑗 + 𝐶𝐝(𝑘)𝑖 ,

with

𝐁𝐆
𝑖
𝑗 = 𝐶

(

(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐓
𝑘
𝑙 − 𝜹𝑖𝑙

)

𝑆𝑙𝜹𝑙𝑗 , (A.3)

which is of the same form as (10). Writing (A.3) in matrix notation yields (11). Rewriting (9) as

𝐆(𝑘)𝑚 = 𝐒𝑚𝑗 𝐠(𝑘)
𝑗 ,

(A.1) can be rewritten as

𝐱(𝑘 + 1)𝑖 = 𝜹𝑖𝑗𝐱(𝑘)
𝑗 +

(

(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐓
𝑘
𝑙 − 𝜹𝑖𝑙

)

𝑆𝑙𝜹𝑙𝑚𝐒
𝑚
𝑗 𝐠(𝑘)

𝑗 + 𝐶𝐝(𝑘)𝑖

= 𝐀𝑖
𝑗𝐱(𝑘)

𝑗 + 𝐁𝐠
𝑖
𝑗𝐮(𝑘)

𝑗 + 𝐶𝐝(𝑘)𝑖 ,

with

𝐁𝐠
𝑖
𝑗 = 𝐶

(

(𝜹𝑖𝑘 − 𝑡𝑖,0𝜹𝑖𝑘)𝐓
𝑘
𝑙 − 𝜹𝑖𝑙

)

𝑆𝑙𝜹𝑙𝑚𝐒
𝑚
𝑗 , (A.4)

which is of the same form as (12). Writing (A.4) in matrix notation yields (13).

Appendix B. Proof of Proposition 3.1

Consider a feasible traffic network characterized by (,𝐓, 𝐭𝟎) and a minimum complete stage strategy characterized by stage
matrix 𝐒. Let  be the controllability matrix of the store-and-forward LTI system (12), which is given by

 =
[

𝐁𝐠 𝐀𝐁𝐠 … 𝐀𝑍−1𝐁𝐠
]

.

Given that 𝐀 = 𝐈𝑍 , it is evident that  ∈ R𝑍×𝑍𝑆 has rank() = rank(𝐁𝐠). Furthermore, by (13) and Sylvester rank inequality (Prasolov,
1994, Theorem 8.1.2), one has

rank(𝐁𝐠) ≥ rank(𝐒) + rank(𝐁𝐆) −𝑍 . (B.1)

In Appendix D, it is proved that, for a feasible traffic network characterized by (,𝐓, 𝐭𝟎), then rank(𝐁𝐆) = 𝑍. Furthermore, considering,
without loss of generality, the numbering convention proposed in Section 2.1, for a minimum complete stage strategy, the stage
matrix 𝐒 can be written as 𝐒 = diag(𝐒𝟏,… ,𝐒𝐉), where 𝐒𝐣 ∈ R|𝑗 |×𝜈−𝑖 . Given that condition 4 of Definition 2.3 requires each matrix 𝐒𝐣,
𝑗 ∈ {1,… , 𝐽}, to be full rank, and the rank of a block diagonal matrix is equal to the sum of the rank of the block matrices, then
𝐒 is full rank. Additionally, for a minimum complete stage strategy, 𝑆 ≤ 𝑍, thus rank(𝐒) = 𝑆. For this reason, from (B.1), one has

𝑍×𝑆
18

rank(𝐁𝐠) ≥ 𝑆. In addition, since 𝐁𝐠 ∈ R , then rank(𝐁𝐠) ≤ min(𝑍,𝑆) = 𝑆. Therefore, rank() = rank(𝐁𝐠) = 𝑆 ≤ 𝑍.
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Appendix C. Derivation of the augmented one-step method

The proposed derivation of the augmented one-step method for the computation of decentralized LQR gains, which correspond
o a sub-optimal solution to the finite-window decentralized LQR problem, follows the Lagrange-multiplier approach detailed, for
nstance, in Lewis et al. (2012). The goal of using this approach is to ease the inclusion of the sparsity constraint 𝐊(𝜏) ∈ Sparse(𝐄),
he state equation, and the linear feedback action, which allows to write (33) as an unconstrained optimization problem.

Writing an augmented performance index, 𝐽 ′(0), that takes into account a linear feedback action, as well as the state equation,
ields

𝐽 ′(0) =𝐱𝑇 (𝑇 )𝐐𝐱(𝑇 ) +
𝑇−1
∑

𝜏=0
𝐱𝑇 (𝜏)

(

𝐐 +𝐊𝑇 (𝜏)𝐑𝐊(𝜏)
)

𝐱(𝜏) +
𝑇−1
∑

𝜏=0
𝝀𝑇 (𝜏 + 1)

[(

𝐀 − 𝐁𝐠𝐊(𝜏)
)

𝐱(𝜏) − 𝐱(𝜏 + 1)
]

=𝐳𝟏𝑇 (𝑇 )𝐐𝟏𝐳𝟏(𝑇 ) +
𝑇−1
∑

𝜏=0
𝐳𝟏𝑇 (𝜏)

(

𝐐𝟏 +𝐊𝟏
𝑇 (𝜏)𝐑𝐊𝟏(𝜏)

)

𝐳𝟏(𝜏) +
𝑇−1
∑

𝜏=0
𝝀𝟏𝑇 (𝜏 + 1)

[(

𝐈𝑆 − 𝐁̂𝐠𝟏𝐊𝟏(𝜏)
)

𝐳𝟏(𝜏) − 𝐳𝟏(𝜏 + 1)
]

,

(C.1)

here 𝝀(𝜏 +1) ∈ R𝑛 and 𝝀𝟏(𝜏 +1) ∈ R𝑆 are the Lagrange-multipliers associated with each of the constraints that arise from the state
quations. The augmented performance index (C.1) is often written, for convenience, as a function of the Hamiltonian, defined, in
his case, as

𝐻(𝜏) ∶= 𝐱𝑇 (𝜏)
(

𝐐 +𝐊𝑇 (𝜏)𝐑𝐊(𝜏)
)

𝐱(𝜏) + 𝝀𝑇 (𝜏 + 1)
(

𝐀 − 𝐁𝐠𝐊(𝜏)
)

𝐱(𝜏)

or the whole system, and as

𝐻1(𝜏) ∶= 𝐳𝟏𝑇 (𝜏)
(

𝐐𝟏 +𝐊𝟏
𝑇 (𝜏)𝐑𝐊𝟏(𝜏)

)

𝐳𝟏(𝜏) + 𝝀𝑇𝟏 (𝜏 + 1)
(

𝐈𝑆 − 𝐁̂𝐠𝟏𝐊𝟏(𝜏)
)

𝐳𝟏(𝜏) ,

or the controllable component of the state, which yields

𝐽 ′(0) = 𝐱𝑇 (𝑇 )𝐐𝐱(𝑇 ) − 𝝀𝑇 (𝑇 )𝐱(𝑇 ) +𝐻(0) +
𝑇−1
∑

𝜏=1

(

𝐻(𝜏) − 𝝀𝑇 (𝜏)𝐱(𝜏)
)

= 𝐳𝟏𝑇 (𝑇 )𝐐𝟏𝐳𝟏(𝑇 ) − 𝝀𝟏𝑇 (𝑇 )𝐳𝟏(𝑇 ) +𝐻1(0) +
𝑇−1
∑

𝜏=1

(

𝐻1(𝜏) − 𝝀𝟏𝑇 (𝜏)𝐳𝟏(𝜏)
)

.

(C.2)

aking the differential of the augmented performance index (C.2), one obtains

𝑑𝐽 ′(0) = (2𝐐𝐱(𝑇 ) − 𝝀(𝑇 ))𝑇𝑑𝐱(𝑇 ) +
(

𝜕𝐻(0)
𝜕𝐱(0)

)𝑇
𝑑𝐱(0) +

𝑇
∑

𝜏=1

(

𝜕𝐻(𝜏 − 1)
𝜕𝝀(𝜏)

− 𝐱(𝜏)
)𝑇

𝑑𝝀(𝜏) +
(

𝜕𝐻(0)
𝜕vec (𝐊(0))

)𝑇
𝑑vec (𝐊(0))

+
𝑇−1
∑

𝜏=1

[

(

𝜕𝐻(𝜏)
𝜕vec (𝐊(𝜏))

)𝑇
𝑑vec (𝐊(𝜏)) +

(

𝜕𝐻(𝜏)
𝜕𝐱(𝜏)

− 𝝀(𝜏)
)𝑇

𝑑𝐱(𝜏)
]

,

(C.3)

or the whole system, and

𝑑𝐽 ′(0) =
(

2𝐐𝟏𝐳𝟏(𝑇 ) − 𝝀𝟏(𝑇 )
)𝑇𝑑𝐳𝟏(𝑇 )

+
(

𝜕𝐻1(0)
𝜕𝐳𝟏(0)

)𝑇
𝑑𝐳𝟏(0) +

𝑇
∑

𝜏=1

(

𝜕𝐻1(𝜏 − 1)
𝜕𝝀𝟏(𝜏)

− 𝐳𝟏(𝜏)
)𝑇

𝑑𝝀𝟏(𝜏) +

(

𝜕𝐻1(0)
𝜕vec

(

𝐊𝟏(0)
)

)𝑇

𝑑vec
(

𝐊𝟏(0)
)

+
𝑇−1
∑

𝜏=1

⎡

⎢

⎢

⎣

(

𝜕𝐻1(𝜏)
𝜕vec

(

𝐊𝟏(𝜏)
)

)𝑇

𝑑vec
(

𝐊𝟏(𝜏)
)

+
(

𝜕𝐻1(𝜏)
𝜕𝐳𝟏(𝜏)

− 𝝀𝟏(𝜏)
)𝑇

𝑑𝐳𝟏(𝜏)
⎤

⎥

⎥

⎦

,

(C.4)

or the controllable component of the state.
Define the set 𝜒 of integer pairs of the form (𝑖, 𝑗) to index the non-zero entries of 𝐄 as

{

(𝑖, 𝑗) ∈ 𝜒 if [𝐄]𝑖𝑗 ≠ 0
(𝑖, 𝑗) ∉ 𝜒 otherwise,

𝑖 = 1,… , 𝑚, 𝑗 = 1,… , 𝑛 . (C.5)

he necessary conditions for the constrained minimum follow from (C.3) and from the sparsity constraint. Note that, although it
s straightforward to introduce the sparsity constraint using (C.3), the same is not true for (C.4). For a fixed initial state 𝐱(0) and
ree final state 𝐱(𝑇 ), the constrained minimum requires that 𝑑𝐽 ′(0) = 0 holds for any: (i) 𝑑𝐱(𝜏), with 𝜏 = 1,… , 𝑇 ; (ii) 𝑑𝝀(𝜏), with
= 1,… , 𝑇 ; and (iii) 𝐥𝑇𝑖 𝑑𝐊(𝜏)𝐥𝑗 , with 𝜏 = 0,… , 𝑇 − 1 and (𝑖, 𝑗) ∈ 𝜒 . Hence, it follows that

𝐱(𝜏 + 1) =
𝜕𝐻(𝜏)

𝜕𝝀(𝜏 + 1)
, 𝜏 = 0,… , 𝑇 − 1 , (C.6a)

𝝀(𝜏) = 𝜕𝐻(𝜏)
𝜕𝐱(𝜏)

, 𝜏 = 1,… , 𝑇 − 1 , (C.6b)

𝐥𝑇 𝜕𝐻(𝜏) 𝐥𝑗 = 0 , 𝜏 = 0,… , 𝑇 − 1, (𝑖, 𝑗) ∈ 𝜒 , (C.6c)
19

𝑖 𝜕𝐊(𝜏)
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𝐥𝑇𝑖 𝐊(𝜏)𝐥𝑗 = 0 , 𝜏 = 0,… , 𝑇 − 1, (𝑖, 𝑗) ∉ 𝜒 , (C.6d)

nd

𝝀(𝑇 ) = 2𝐐(𝑇 )𝐱(𝑇 ) , (C.6e)

here 𝐥𝑖 is defined as in Theorem 3.1. Above, (C.6a) is the state equation, (C.6b) is the costate equation, (C.6c) is the stationary
ondition, (C.6d) is the sparsity constraint, and (C.6e) is the boundary condition. It is interesting to remark the usefulness of the
amiltonian function, which allows to write the constraints of the optimization problem as neat identities involving its partial
erivatives. As the form of the boundary condition suggests, the Lagrange-multipliers can possibly be written as 𝝀(𝜏) = 2𝐏(𝜏)𝐱(𝜏),
here 𝐏(𝜏) is a symmetric positive semidefinite matrix. In that case, from the boundary condition (C.6e), it follows that 𝐏(𝑇 ) = 𝐐.

n fact, making use of the costate equation (C.6b), this hypothesis yields

𝐏(𝜏)𝐱(𝜏) =
(

𝐐 +𝐊𝑇 (𝜏)𝐑𝐊(𝜏)
)

𝐱(𝜏) +
(

𝐀 − 𝐁𝐠𝐊(𝜏)
)𝑇 𝐏(𝜏 + 1)𝐱(𝜏 + 1) ,

= 0,… , 𝑇 − 1, which holds for every 𝐱(𝜏) if and only if

𝐏(𝜏) = 𝐐 +𝐊𝑇 (𝜏)𝐑(𝜏)𝐊(𝜏) +
(

𝐀 − 𝐁𝐠𝐊(𝜏)
)𝑇 𝐏(𝜏 + 1)

(

𝐀 − 𝐁𝐠𝐊(𝜏)
)

. (C.7)

or this reason, the hypothesis on the form of the Lagrange multipliers, 𝝀(𝑘) = 2𝐏(𝑘)𝐱(𝑘), is valid, and 𝐏(𝑘) is given by the recursive
losed-form expression (C.7). Note, however, that this recurrence is sensible to numerical error. One can also prove, by induction,
hat

𝐽 (𝜏) = 𝐱𝑇 (𝜏)𝐏(𝜏)𝐱(𝜏) , (C.8)

or 𝜏 = 0,… , 𝑇 . First, note that 𝐽 (𝑇 ) = 𝐱𝑇 (𝑇 )𝐏(𝑇 )𝐱(𝑇 ), which follows directly from the definition of the finite-window performance
ndex (34) and the fact that 𝐏(𝑇 ) = 𝐐. Moreover, for 𝜏 = 0,… , 𝑇 − 1, it follows from (34) and the linear command action that

𝐽 (𝜏) = 𝐽 (𝜏 + 1) + 𝐱𝑇 (𝜏)
(

𝐐 +𝐊𝑇 (𝜏)𝐑𝐊(𝜏)
)

𝐱(𝜏) . (C.9)

ubstituting the inductive hypothesis (C.8) in (C.9) and making use of the closed-loop system dynamics yields

𝐽 (𝜏) = 𝐱𝑇 (𝜏)
(

𝐐 +𝐊𝑇 (𝜏)𝐑𝐊(𝜏) +
(

𝐀−𝐁𝐠𝐊(𝜏)
)𝑇 𝐏(𝜏 + 1)

(

𝐀−𝐁𝐠𝐊(𝜏)
)

)

𝐱(𝜏) ,

hich by comparison with (C.7) concludes the proof by induction. Carrying out the same analysis for the controllable component
f the system, it is possible to arrive at the corresponding identities. That is, the Lagrange-multipliers of the controllable component
an be written as 𝝀𝟏(𝜏) = 2𝐏̂(𝜏)𝐳𝟏(𝜏), where 𝐏̂(𝜏) is a symmetric positive semidefinite matrix, which allows to write

𝐏̂(𝜏) = 𝐐𝟏 +𝐊𝟏
𝑇 (𝜏)𝐑𝐊𝟏(𝜏) +

(

𝐈𝑆 − 𝐁̂𝐠𝟏𝐊𝟏(𝜏)
)𝑇

𝐏̂(𝜏 + 1)
(

𝐈𝑆 − 𝐁̂𝐠𝟏𝐊𝟏(𝜏)
)

, (C.10)

with boundary condition

𝐏̂(𝑇 ) = 𝐐𝟏 .

Also, it follows that

𝐽 (𝜏) = 𝐳𝟏𝑇 (𝜏)𝐏̂(𝜏)𝐳𝟏(𝜏) . (C.11)

Equaling (C.11) and (C.8), and using the transformation (18), one obtains

𝐏(𝜏) = 𝐖−𝑇
[

𝐈𝑆
𝟎(𝑍−𝑆)×𝑆

]

𝐏̂(𝜏)
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖−1 , (C.12)

which can be manipulated to yield

𝐖𝑇𝐏(𝜏)𝐖 =
[

𝐏̂(𝜏) 𝟎𝑟×(𝑍−𝑆)
𝟎(𝑍−𝑆)×𝑟 𝟎(𝑍−𝑆)×(𝑍−𝑆)

]

.

Transformation (C.12) can be inverted yielding

𝐏̂(𝜏) =
[

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)
]

𝐖𝑇𝐏(𝜏)𝐖
[

𝐈𝑆
𝟎(𝑍−𝑆)×𝑆

]

. (C.13)

Making use of (C.6c), and using, also, the closed-loop system dynamics of the whole system, one can write

𝐥𝑇𝑖
[

𝐑𝐊(𝜏)𝐱(𝜏)𝐱𝑇 (𝜏) − 𝐁𝐠
𝑇𝐏(𝜏 + 1)

(

𝐀 − 𝐁𝐠𝐊(𝜏)
)

𝐱(𝜏)𝐱𝑇 (𝜏)
]

𝐥𝑗 = 0 , (C.14)

for all (𝑖, 𝑗) ∈ 𝜒 and 𝜏 = 0,… , 𝑇 −1. Note that (C.14) depends on 𝐱(𝜏), 𝜏 = 0,… , 𝑇 −1, which is not readily available in a decentralized
formulation. For that reason, unlike the centralized finite-horizon problem, finding all the solutions to (C.14), being the global
minimum among them, is not possible without the knowledge of 𝐱(𝜏), 𝜏 = 0,… , 𝑇 −1. For that reason, it is only possible to compute
one sub-optimal solution using this equation, designated herein by the one-step solution. Introducing the sparsity constraint (C.6d),
this solution satisfies

{

𝐥𝑇𝑖
[

𝐒(𝜏)𝐊(𝜏) − 𝐁𝐠
𝑇𝐏(𝜏 + 1)𝐀

]

𝐥𝑗 = 0 , (𝑖, 𝑗) ∈ 𝜒
𝑇

, 𝜏 = 0,… , 𝑇 − 1, (C.15)
20

𝐥𝑖 𝐊(𝜏)𝐥𝑗 = 0 , (𝑖, 𝑗) ∉ 𝜒
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where

𝐒(𝜏) ∶= 𝐑 + 𝐁𝐠
𝑇𝐏(𝜏 + 1)𝐁𝐠 .

Substituting (31) and (C.13) in (C.15), yields

⎧

⎪

⎨

⎪

⎩

𝐥𝑇𝑖
[(

𝐒(𝜏)𝐊𝟏(𝜏) − 𝐁̂𝑇
𝐠𝟏𝐏̂(𝜏 + 1)

) [

𝐈𝑆 𝟎𝑆×(𝑍−𝑆)

]

𝐖−1
]

𝐥𝑗 = 0 , (𝑖, 𝑗) ∈ 𝜒

𝐥𝑇𝑖 𝐊(𝜏)𝐥𝑗 = 0 , (𝑖, 𝑗) ∉ 𝜒
, 𝜏 = 0,… , 𝑇 − 1, (C.16)

here 𝐒(𝜏) can be written as

𝐒(𝜏) ∶= 𝐑 + 𝐁̂𝑇
𝐠𝟏𝐏̂(𝜏 + 1)𝐁̂𝐠𝟏 .

ote that (C.16) has the same form as the equation that arises in the LTI formulation of the one-step method for the decentralized
stimation problem, put forward in Viegas et al. (2018, Theorem 4.1). From Viegas et al. (2018, Appendix A), the sub-optimal gain
s, then, given by (35). Note that it is not possible to determine 𝐊1(𝜏) explicitly from the solution obtained for the gain, given by
35). For that reason it is not possible to compute the propagation of 𝐏̂(𝜏) in (C.10). To circumvent this issue one may propagate
(𝜏) instead, which makes use of 𝐊(𝜏), which is easily computed using (35). Then, 𝐏̂(𝜏) is obtained with transformation (C.13).
ne has, now, a set of equations that allows for the backpropagation of 𝐏̂(𝜏) and 𝐊𝟏(𝜏). In short, perform the following iteration

or 𝜏 = 𝑇 − 1,… , 0: (i) compute 𝐊(𝜏), making use of 𝐏̂(𝜏 + 1); (ii) compute 𝐏(𝜏 + 1), using transformation (C.12) and 𝐏̂(𝜏 + 1); (iii)
ackpropagate 𝐏(𝜏), using (C.7), 𝐊(𝜏), and 𝐏(𝜏 + 1); and (iv) compute 𝐏̂(𝜏), using transformation (C.13) and 𝐏(𝜏).

ppendix D. Proof of Proposition 4.1

Consider a feasible traffic network characterized by (,𝐓, 𝐭𝟎), as given by Definition 2.2. Consider a directed walk of length 𝑝,
(𝑝) = {𝑒1,… , 𝑒𝑝−1}, whose sequence of vertices is (𝑣1, 𝑣2 … , 𝑣𝑝). The probability of a vehicle traveling from 𝑣2 to 𝑣𝑝 by following
(𝑝) is denoted by 𝑃 (𝑝(𝑝)). Let 𝑝

𝑖,𝑗 denote the set of walks of length 𝑝 between edges 𝑒𝑖 and 𝑒𝑗 . Then,

∀𝑖, 𝑗 ∈ {1,… , 𝑍̃} ∀𝑝(𝑝) ∈ 𝑝
𝑖,𝑗 lim

𝑝→∞
𝑃 (𝑝(𝑝)) = 0 , (D.1)

hich is proved by contradiction. Note that (D.1) is, by the definition of limit, equivalent to

∀𝑖, 𝑗 ∈ {1,… , 𝑍̃} ∀𝑝(𝑝) ∈ 𝑝
𝑖,𝑗 ∀𝜖 > 0 ∃𝑝̄ ∈ N ∶ 𝑝 > 𝑝̄ ⟹ 𝑃 (𝑝(𝑝)) < 𝜖 . (D.2)

ssume, by contradiction, that (D.2) is false, i.e., there exists 𝑖, 𝑗 ∈ {1,… , 𝑍̃}, 𝑝(𝑝) ∈ 𝑝
𝑖,𝑗 , and 𝜖 > 0, such that, for all 𝑝̄ ∈ N,

here exists 𝑝 > 𝑝̄, such that 𝑃 (𝑝(𝑝)) ≥ 𝜖. Thus, there exists 𝑖, 𝑗 ∈ {1,… , 𝑍̃}, 𝑝(𝑝) ∈ 𝑝
𝑖,𝑗 , 𝜖 > 0, 𝑝̄ arbitrarily large, and 𝑝 > 𝑝̄

uch that 𝑃 (𝑝(𝑝)) ≥ 𝜖. Given that there exists an arbitrarily large 𝑝 and the traffic network is finite, which is a requirement for a
easible traffic network, then there exists a nonempty set of edges  which appear in the walk 𝑝(𝑝) an arbitrarily large number
f times. Thus, if there is an edge 𝑒 ∈  that appears in the walk 𝑝(𝑝) an arbitrarily large number of times, then there exists a
ub-walk starting and ending at the same edge 𝑒 ∈  , which appears in the walk 𝑝 an arbitrarily large number of times. Thus, the
robability of progressing from edge 𝑒 via such sub-walk back to edge 𝑒 is unitary, otherwise, as 𝑝 grows arbitrarily large, eventually
(𝑝(𝑝)) < 𝜖. Therefore, if there is a walk that starts and returns with unitary probability back to the starting edge, the network
annot be open, which is a contradiction, thus proving (D.1). Furthermore, consider matrix 𝐓̃ ∶= (𝐈 − diag(𝐭𝟎))𝐓. Note that [𝐓̃]𝑖,𝑗
epresents the probability of turning from link 𝑗 to link 𝑖 and not exiting the network in link 𝑖. Thus, [𝐓̃2]𝑖,𝑗 is the probability of a
ehicle traveling from link 𝑗 to link 𝑖, via one and only one link, without exiting the network, neither in the intermediate link, nor
n link 𝑖. It is then possible to write

[𝐓̃𝑛]𝑖,𝑗 =
∑

𝑘1

…
∑

𝑘𝑛−1

[𝐓̃]𝑖,𝑘1 …[𝐓̃]𝑘𝑛−2 ,𝑘𝑛−1 [𝐓̃]𝑘𝑛−1 ,𝑗 =
∑

𝑝∈𝑛+2
𝑗,𝑖

𝑃 (𝑝(𝑝)) .

Thus, making use of (D.1), one has

lim
𝑛→∞

𝐓̃𝑛 = 𝟎 . (D.3)

According to Theys et al. (2005, Lemma 1.1), (D.3) is equivalent to the spectral radius of 𝐓̃, denoted by 𝜌(𝐓̃), satisfying 𝜌(𝐓̃) < 1.
Therefore, as the absolute value of the eigenvalues of a matrix are bounded by its spectral radius, 𝜆 = 1 cannot be an eigenvalue of
𝐓̃. Thus, (𝐓̃ − 𝐈)𝐱 = 0 for 𝐱 ∈ R implies 𝐱 = 𝟎, which is equivalent to (𝐓̃ − 𝐈) being invertible, i.e.,

rank((𝐈 − diag(𝐭𝟎))𝐓 − 𝐈) = 𝑍 .

Finally, the LTI system (12) is, by definition, controllable if and only if the controllability matrix

 ∶=
[

𝐁𝐆 𝐀𝐁𝐆 … 𝐀𝑍−1𝐁𝐆
]

is full rank. Since 𝐀 = 𝐈𝑍 , then rank() = rank(𝐁𝐆). Thus, by (11) and the Sylvester rank inequality (Prasolov, 1994, Theorem 8.1.2),
one has

rank(𝐁𝐆) ≥ rank((𝐈 − diag(𝐭𝟎))𝐓 − 𝐈) + rank(diag(𝑆1,… , 𝑆𝑍 )) −𝑍 = 𝑍 .
𝑍×𝑍
21

Since 𝐁𝐆 ∈ R and rank(𝐁𝐆) = 𝑍, it follows that the controllability matrix is full rank, thus completing the proof.
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