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Abstract: This paper presents a novel estimation solution for the problems of navigation and
source localization based on pseudo-range measurements to a single pinger. In particular, the
distance measurements are assumed to be corrupted by an unknown multiplicative factor, which
is explicitly taken into consideration in the design. First, the equivalence between the problems of
navigation and source localization is established, as well as cooperative navigation of two vehicles
in tandem. Then, an augmented system is derived and its observability is carefully studied. The
analysis is constructive, in the sense that the means to design an observer for the new system
dynamics with globally exponentially stable error dynamics are readily available, resorting to
linear systems theory. Moreover, the new augmented system is shown to be equivalent to the
original one. Finally, simulations results are presented and discussed to assess the performance
of the proposed solution in the presence of sensor noise.
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1. INTRODUCTION

Navigation systems are of the utmost importance in the
development of autonomous vehicles, since they provide
the required state for its successful operation. Moreover,
for geo-referencing purposes, the position of the vehicle
is usually required. The global positioning system (GPS)
gives, in an easy and convenient way, the position of au-
tonomous vehicles. However, in underwater applications,
the GPS is not available and other solutions must be
employed. Generally speaking, the most common classes of
underwater positioning systems are long baseline (LBL),
short baseline (SBL), and ultra-short baseline acoustic
positioning systems. In these, a set of transponders (or
pingers) are disposed in such a way that the position of
another transponder (or pinger) can be computed. To do
so, the travel time of the acoustic signals emitted by the
positioning system is computed and the speed of propaga-
tion of the sound in water is also required. For the latter,
a sound speed profile is typically obtained prior to the
deployment of the vehicles.

More recently, the problems of navigation and source local-
ization based on distance measurements to a single source
have attracted the attention of the research community in
recent years since the deployment is considerable easier.
Roughly speaking, in the latter, an agent has access to
distance measurements to a source that is fixed in an
unknown position, as well as some other measurements
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2023 and through the FCT project DECENTER [LISBOA-01-0145-
FEDER-029605], funded by the Programa Operacional Regional de
Lisboa 2020 and PIDDAC programs.

about the state of the agent, and aims to estimate the
position of the source. In the former, a vehicle has access
to distance measurements to a known pinger, as well as
some other measurements about its own relative movement
between consecutive distance measurements, and aims to
estimate its inertial position.

One of the earlier contributions in the field can be found
in Larsen (2000), where an algorithm is proposed that
essentially builds a synthetic long baseline, and hence stan-
dard trilateration techniques can be applied. The vehicle
measures the range to a single transponder and, between
sampling instants, a high performance dead-reckoning sys-
tem is used to compute the motion of the vehicle. A
discrete-time Kalman filter is applied to a linearized model
of the system. The linearization of a nonlinear system
is considered again in Gadre and Stilwell (2005). Local
observability results are obtained and an extended Kalman
filter (EKF) is implemented to estimate the state, with
no guarantees of global asymptotic stability. The same
problem has been studied in Casey et al. (2007) and Lee
et al. (2007), where EKFs have been extensively used as
the estimation solution. In Jouffroy and Reger (2006), the
observability analysis of the problem of single transpon-
der navigation was carried out resorting to an algebraic
approach and algebraic observers were also proposed. In
Webster et al. (2009), preliminary experimental results
with single beacon acoustic navigation were presented,
where the EKF is employed as the state estimator. Ob-
servability questions and robustness issues of single range
navigation are addressed in Indiveri et al. (2016). The
problem of source localization has been addressed in Fidan
et al. (2009), where the authors propose a localization algo-
rithm based on the range to the source (more specifically
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its square) and the inertial position of the agent, which
provides the necessary self-awareness of the agent motion.
Global exponential stability (GES) is achieved under a
persistent excitation condition.

In previous work Batista et al. (2011), the problems of
single range navigation and source localization were ad-
dressed, where a novel solution was proposed with globally
exponentially stable error dynamics. More recently, the
problem of estimation of the sound speed propagation was
addressed in a long baseline configuration Batista (2015).
The main contribution of this paper is to bring both
concepts together. In particular, the problems of naviga-
tion and source localization based on single pseudo-ranges
are addressed. The range measurements are assumed to
be known only up to an unknown multiplicative factor,
accounting for an unknown speed of propagation of the
signals in water. From a theoretical point of view, this is
a very demanding framework, since one aims to estimat-
ing the state with scaled distance measurements, whereas
in Batista et al. (2011) the distance measurements were
assumed to be known exactly. Additionally, the problem
of tandem navigation considering pseudo-range measure-
ments is also considered. In fact, all three problems are
shown to be equivalent.

To successfully tackle the problem, new system states and
outputs are proposed and it is shown that the new system
dynamics can be seen as linear in the state for observability
analysis and observer design purposes. Its observability
is carefully studied and the Kalman filter provides the
estimation solution, with globally exponentially stable
error dynamics. The transformation from the new states
to the original system states is also addressed and it is
shown that the convergence properties are kept. This is,
to the best of the author’s knowledge, the first solution to
this problem, with GES error dynamics.

The paper is organized as follows. The different problem
frameworks that are addressed herein are introduced in
Section 2, where an equivalent system is also derived
that encompasses all the frameworks. The design of the
estimation solution is detailed in Section 3. Simulation
results are presented in Section 4 and Section 5 summarizes
the main results of the paper.

1.1 Notation

Throughout the paper, the symbol 0n×m denotes a n×m
matrix of zeros and In an identity matrix. When the
dimensions are omitted, they can be inferred from the
context. For x ∈ R

3 and y ∈ R
3, x · y represents the

inner product.

2. PROBLEM FORMULATION

2.1 Single vehicle navigation

Let {I} denote a local inertial coordinate reference frame
and consider a vehicle moving in a scenario where a fixed
single pinger, or transponder, is installed. Let p(k) ∈ R

3

denote the inertial position of the vehicle at the time
instant tk and s ∈ R3 denote the inertial position of the
pinger. The discrete-time dynamics of the vehicle can be
written as

p(k + 1) = p(k) + uv(k), (1)

where uv(k) corresponds to the displacement of the vehicle
from time instant tk to time instant tk+1.

In practice, the displacement of the vehicle can be obtained
from sensors installed on-board. For instance, an Iner-
tial Navigation System (INS) provides the displacement
between consecutive sampling times through integration
of inertial sensors. As another example, in underwater
scenarios, a Doppler Velocity Log (DVL) with bottom-lock
measures the inertial velocity of the vehicle expressed in
the body-frame of the vehicle. With an Attitude and Head-
ing Reference System (AHRS), the DVL measurements
can be rotated to the inertial frame and then integrated,
which gives the displacement of the vehicle.

In order to obtain the distance to the pinger, or transpon-
der, the speed of propagation of the emitted signals is
required. In this paper, this quantity is assumed constant
but unknown. As such, the range measurements, which are
measured periodically, are only available up to a scaling
factor. Thus, instead of range measurements, the vehicle
has access to pseudo-range measurements, as given by

r(k + 1) = vs (k + 1) ‖p(k + 1)− s‖ , (2)

where vs(k) corresponds to a dimensionless scaling factor
that accounts for the unknown speed of propagation of
the signals in the medium. In short, a nominal speed
of propagation in assumed by the range sensor, which
does not necessarily correspond to the actual speed of
propagation, which is assumed unknown. The scaling
factor vs(k) accounts for that relation. This scaling factor
is assumed constant, hence

vs (k + 1) = vs (k) . (3)

This scenario is similar to the one addressed in Batista
(2015), only now there is just one pinger in the scenario,
as opposed to the long baseline configuration composed of
several pingers that is considered in Batista (2015).

The navigation problem for a single vehicle based on
pseudo-range measurements to a single pinger that is here
considered is that of designing an estimation solution,
with globally exponentially stable error dynamics, for the
nonlinear system

{

p(k + 1) = p(k) + uv(k)
vs(k + 1) = vs(k)
r(k + 1) = vs(k + 1) ‖p(k + 1)− s‖

, (4)

where s is known and both uv(k) and r(k) are measured.

2.2 Cooperative navigation in tandem

Consider a scenario where two vehicles operate in tandem,
where one of the vehicle serves as support vehicle for the
other. As a practical example, consider an autonomous
surface craft (ASC) operating as a communication relay
and navigation support ship for an autonomous underwa-
ter vehicle (AUV). In this scenario, the pinger is installed
on the surface vehicle, which also sends, through commu-
nications, its position to the AUV.

Let {I} denote a local inertial coordinate reference frame
and denote by p(k) ∈ R

3 and ps(k) the positions of the
AUV and the ASC, respectively, at time instant tk. In this
case, the AUV kinematics are given by (1), whereas the
pseudo-range measurements are given by
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r(k + 1) = vs(k + 1) ‖p(k + 1)− ps(k + 1)‖ ,

where vs(k) is again the scaling factor that accounts for
the unknown speed of propagation of the emitted signals,
satisfying (3).

The tandem navigation problem based on pseudo-range
measurements considered in this paper is that of designing
an estimation solution, with globally exponentially stable
error dynamics, for the nonlinear system

{

p(k + 1) = p(k) + uv(k)
vs(k + 1) = vs(k)
r(k + 1) = vs(k + 1) ‖p(k + 1)− ps(k + 1)‖

, (5)

where uv(k) and r(k) are measured and ps(k) is assumed
available through communications. This problem is similar
to the one addressed in Viegas et al. (2014) but instead of
distance measurements, pseudo-range measurements are
considered herein.

2.3 Source localization

Consider a scenario where a fixed source periodically
emits, from an unknown position, a signal that is received
by an autonomous vehicle, whose goal is to determine the
position of the source. Since the speed of propagation of
the signal is unknown, the vehicle can only determine
pseudo-range distances to the source, as given by (2),
where s is the position of the source and p(k) is the
position of the vehicle, both described in a local inertial
coordinate reference frame {I}.

The source localization problem addressed in this paper
based on single pseudo-range measurements is that of de-
signing an estimation solution, with globally exponentially
stable error dynamics, for the nonlinear system

{

s(k + 1) = s(k)
vs(k + 1) = vs(k)
r(k + 1) = vs(k + 1) ‖p(k + 1)− s(k + 1)‖

, (6)

where p(k) and r(k) are measured.

2.4 Problem equivalence

In this section, it is shown that the problems previously
described are equivalent to the design of an estimator
with globally exponentially stable error dynamics for the
nonlinear system

{

x1(k + 1) = x1(k) + u(k)
x2(k + 1) = x2(k)
r(k + 1) = x2(k + 1) ‖x1(k + 1)‖

, (7)

where x1(k) ∈ R
3 and x2 ∈ R are the system states,

u(k) ∈ R
3 is the system input, and r(k) is the system

output.

Assumption 1. The pseudo-range measurements are posi-
tive, i.e., r (k) > 0 for all k.

Remark 1. The technical condition stated in Assumption
1 is a mild one, which is always verified in practice.

Single vehicle navigation Consider the system dynamics
(4) and define the state transformation

{

x1(k) := p(k)− s
x2(k) := vs(k)

. (8)

Then, it is a matter of straightforward computations to
show that x1(k) and x2(k) satisfy the system dynamics
(7), with u(k) = uv(k).

Notice that the state transformation (8) is invertible and
always well-defined. Moreover, s is available. Hence, if an
estimator is designed for (7), estimates for the original
states in (4) are readily available.

Cooperative navigation in tandem Consider the system
dynamics (5) and define the state transformation

{

x1(k) := p(k)− ps(k)
x2(k) := vs(k)

. (9)

Again, it is a matter of straightforward computations to
show that x1(k) and x2(k) satisfy the system dynamics (7),
with u(k) = uv(k) − [ps(k + 1)− ps(k)] . Also, the state
transformation (9) is invertible and always well-defined.
Hence, if an estimator is designed for (7), estimates for
the original states in (5) are readily available. However,
while in the previous case the quantity involved in the state
transformation, s, was constant and known, in this case
ps(k) is required. Even though ps(k) is available, it might
be measured and thus subject to noise. An alternative
observer design for the navigation problem consists in
designing an observer (or filter) for (7) and then apply
the inverse state transformation to the observer dynamics,
yielding an observer directly for (5), and thus avoiding the
direct injection of noise through the inversion of the state
transformation.

Source localization Consider the system dynamics (6)
and define the state transformation

{

x1(k) := p(k)− s(k)
x2(k) := vs(k)

. (10)

Again, it is a matter of straightforward computations to
show that x1(k) and x2(k) satisfy the system dynamics
(7), with u(k) = p(k + 1) − p(k). As before, the state
transformation (10) is invertible and always well-defined.
Moreover, the design of an estimator follows similarly.

3. FILTER DESIGN

3.1 State augmentation

Define a new system state as






z1(k) := x2
2(k)x1(k)

z2(k) := x2
2(k)

z3(k) := r(k)
. (11)

The evolutions of z1(k) and z2(k) are trivially obtained
from (7), as given by

{

z1(k + 1) := z1(k) + z2(k)u(k)
z2(k + 1) := x2(k)

. (12)

In order to derive the equation that describes the evolution
of z3(k), notice that, by definition, r2(k) = x2

2(k) ‖x1(k)‖
2

for the discrete time instant k, which gives

r2(k + 1) = x2
2(k + 1) ‖x1(k + 1)‖

2
(13)

for the discrete time instant k+1. Substituting (7) in (13)
gives

r2(k + 1) = x2
2(k) ‖x1(k)‖

2
+ 2x2

2(k)u(k) · x1(k)

+x2
2(k) ‖u(k)‖

2
,
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which using the new state definition (11) and rearranging
can be rewritten as

r2(k + 1) = 2u(k) · z1(k) + ‖u(k)‖
2
z2(k) + r2(k)

or, equivalently,

r(k+1) =
2u(k)

r(k + 1)
·z1(k)+

‖u(k)‖
2

r(k + 1)
z2(k)+

r(k)

r(k + 1)
r(k).

(14)
Using the new state definition (11) selectively in (14)
readily gives

z3(k + 1) = 2
u(k)

r(k + 1)
· z1(k) +

‖u(k)‖
2

r(k + 1)
z2(k)

+
r(k)

r(k + 1)
z3(k). (15)

Now, define the state vector

z(k) :=

[

z1(k)
z2(k)
z3(k)

]

.

Using (12) and (15), and noticing that the new system
state z3(k) is measured, allows to write the system dy-
namics

{

z(k + 1) = A(k)z(k)
y(k + 1) = Cz(k + 1)

, (16)

with

A(k) :=









I3 u(k) 03×1

01×3 1 0

2
uT (k)

r(k + 1)

‖u(k)‖
2

r(k + 1)

r(k)

r(k + 1)









∈ R
5×5,

and C = [ 01×3 0 1 ] ∈ R
1×5.

Notice that, in the system dynamics (16), the original
nonlinear output r(k + 1) = x2(k + 1) ‖x1(k + 1)‖ was
replaced by r(k + 1) = z3(k + 1). This choice allows to
derive a system that is linear in the state.

Remark 2. Notice that the system (16) is well defined
under Assumption 1.

3.2 Observability analysis

The system (16) can be regarded as a discrete-time linear
time-varying system for observer design purposes, since it
is linear in the state, even though the system matrix A(k)
depends on the pseudo-range and input measurements.
This is possible because for observer (or filter) design
purposes, both r(k) and u(k) are available and, hence, they
can be simply considered as functions of time. This idea
was first pursued by the authors in (Batista et al., 2011,
Lemma 1) for continuous systems, whose application is
equivalent for the discrete-time case, as shown in (Batista,
2015, Lemma 1).

The following result addresses the observability of the
discrete-time system (16).

Theorem 1. Suppose that, for some time instant ka ≥ 0,

L (ka) :=







L0 (ka)
...

L3 (ka)






∈ R

4×4

is full rank, i.e.,

rank (L (ka)) = 4, (17)

with

Li (ka) :=















2

i
∑

j=0

u (ka + j)

∥

∥

∥

∥

∥

∥

i
∑

j=0

u (ka + j)

∥

∥

∥

∥

∥

∥

2















T

∈ R
1×4.

Then, the discrete-time system (16) is observable on
the time interval [ka, ka + 5], ka = 0, 1, 2, . . ., in the
sense that the initial state z (ka) is uniquely determined
by the input {u (k) : k = ka, . . . , ka + 4} and the output
{y (k) : k = ka, . . . , ka + 4}.

Proof. The proof resorts to (Batista, 2015, Lemma 1)
and it reduces to show that the observability matrix
O (ka, ka + 5) associated with the pair (A (k) ,C) on
[ka, ka + 5], k ≥ 0, has rank equal to the number of states
of the system. It is omitted due to space limitations. ✷

Finally, it is important to stress that, in the definition of
the augmented system (16), the original nonlinear output
equation r(k) = x2(k) ‖x1(k)‖ was discarded and artificial
states were defined. As such, it is still necessary to relate
this new augmented system (16) to the original nonlinear
system (7). The following theorem addresses this issue and
provides the means to design a state observer or filter for
(16).

Theorem 2. Suppose that (17) holds. Then:

i) the nonlinear system (7) is observable on any interval
[ka, ka + 5], ka = 0, 1, 2, . . ., in the sense that the ini-
tial state (x1 (ka) , x2 (ka)) is uniquely determined by
the input {u (k) : k = ka, . . . , ka + 4} and the output
{r (k) : k = ka, . . . , ka + 4}; and

ii) the initial condition of the augmented system (16)
matches that of (7), i.e.,







z1 (ka) = x2
2 (ka)x1 (ka)

z2 (ka) = x2
2 (ka)

z3 (ka) = x2 (ka) ‖x1 (ka)‖
.

Proof. The proof follows by comparison of the outputs
of both systems along the time interval as a function of
the initial conditions, which allows to conclude that they
match. This is omitted due to space limitations. Notice
that, using Theorem 1, the initial condition of (16) is
uniquely determined. Hence, due to the correspondence
between the two systems, it follows that the initial con-
dition of (7) is also uniquely determined, thus completing
the proof. ✷

3.3 Estimation solution

Kalman filter The means to design an observer for (7)
are readily provided by Theorem 2. Indeed, since the aug-
mented system (16) is equivalent to (7), an observer (filter)
for (16) is also an observer (filter) for (7). Furthermore,
since the system (16) is linear in the state, for observer
design purposes, a simple Kalman filter can be applied,
yielding globally exponentially stable error dynamics if the
system is shown to be uniformly completely observable
Jazwinski (1970). In this paper, the pair (A (k) ,C) was
shown to be observable. The proof of uniform complete
observability follows similar steps considering uniform
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bounds in time. It is omitted due to space limitations. An
alternative to the Kalman filter could be the design of a
Luenberger observer as detailed in (Rugh, 1995, Theorem
29.2), which would allow to choose the convergence rate.

Estimates of x1(k) and x2(k) Notice that, with the
design of an observer (or filter) for the augmented system
(16), one obtains estimates for z1(k), z2(k), and z3(k),
when one aims to estimate x1(k) and x2(k). Nevertheless,
the latter follow trivially, as it will be seen. First, some
assumtions are introduced.

Assumption 2. The unknown factor x2(k) satisfies

Vm ≤ x2(t) ≤ VM ,

with Vm, VM > 0.

Assumption 3. The state x1(k) is norm-bounded.

Considering estimates x̂2(t) with globally exponentially
stable error dynamics, the estimate of the speed of propa-
gation of the signals in the medium can be obtained from

x̂2(t) =







Vm, ẑ2(t) < V 2
m

√

ẑ2(t), V
2
m ≤ ẑ2(t) ≤ V 2

M

VM , ẑ2(t) > V 2
M

, (18)

whose error also converges exponentially fast to zero for
all initial conditions under Assumption 2. Estimates for
the position then follow from

x̂1(k) =
ẑ1(t)

x̂2
2(t)

(19)

and it is possible to show that, under Assumptions 2 and 3,
these also converge exponentially fast to zero for all initial
conditions, see (Batista, 2015, Proposition 1).

4. SIMULATION RESULTS

In order to assess the performance of the proposed so-
lution, numerical simulations are presented. These are
preliminary results and extensive Monte Carlo simulations
will be carried out in the future, prior to experimental val-
idation, as well as comparison with the extended Kalman
filter, which does not offer globally exponentially stable
error dynamics.

A simple navigation setup framework is considered, with-
out loss of generality, as it was seen in Section 2.4 that
all three problems that were introduced in Section 2 are
equivalent. In particular, the pinger is assumed to be
placed at the origin of the inertial reference frame, i.e.,
s = 0. In terms of measurements, the sampling rate is set
to T = 1 s, which means that each discrete time instant
occurs every second.

The initial position of the vehicle is p(0) = [20 0 0]
T
m and

the trajectory described by the vehicle is depicted in Fig.
1. This was obtained considering as input

uv(k) =

















cos

(

2πk

30

)

cos

(

2πk

20
+

π

6

)

2 cos

(

2πk

45
+

π

9

)

















m,

such that the observability condition is verified. The term
that accounts for the unknown speed of propagation of

-5

y (m)
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515
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25
30

-20

-10
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10

20

z 
(m

)

Fig. 1. Trajectory described by the vehicle

the signals in the medium was set to vs = 1.1 (recall it is
dimensionless).

In the simulations, sensor noise was considered for both
the pseudo-range measurements and the input readings. In
particular, zero-mean, additive uncorrelated white Gaus-
sian noise was considered, with standard deviation of 5
cm for the pseudo-range measurements r(k) and 1 cm for
the input readings u(k). Recall that, for the navigation
case, the input readings can be obtained through open-
loop integration of inertial sensors, in this case over a
period of 1 s. While small, the standard deviation that
is considered here is realistic due to the small period of
open-loop integration. Indeed, it is well known that INSs
are very accurate for small periods of time. For specific
examples, the Hydrins INS, or the Phins INS, both from
iXblue, specify a 50% circular error probability (CEP) of
0.8 m, 3.2 m, and 20 m for 1, 2, and 5 minutes, respectively.
This translates to a CEP 50 much lower than 1 cm for 1
second (about 2.22× 10−4 m for 1 second).

To tune the Kalman filter, the state disturbance covariance
matrix was set to 0.012I5 and the output noise covariance
to 0.052. All initial state estimates were set to zero but
ẑ2(0) = 1. In order to obtain estimates for the position
and scale factor, the bounds in Assumption 2 were set to
Vm = 0.8 and VM = 1.2.

The initial convergence of the position and scale factor
estimation errors is depicted in Figs. 2 and 3. For the sake
of completeness, the initial convergence of the estimation
error of the additional state z3(k) is also depicted in
Fig. 4. As it is possible to see, the estimation error

k
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Fig. 2. Initial convergence of the position estimation error

converges very fast to a neighborhood of zero (due to the
presence of sensor noise, otherwise it would converge to
zero). Moreover, the effect of the bounds Vm and VM used
to obtain the estimates of x2(k) are clearly visible in its
initial evolution, in Fig. 3. The detailed evolutions of the
position and scale factor errors are depicted in Figs. 5 and
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Fig. 4. Initial convergence of the estimation error of z3(k)

6, respectively. The most noticeable feature is that the
position and scale factor errors remain, most of the time,
below 0.5m and 0.02m/s, respectively.
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Fig. 5. Steady-state evolution of the position error
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5. CONCLUSIONS

This paper addressed the problems of autonomous vehicle
navigation and source localization based on discrete-time
pseudo-range measurements to a single beacon. In partic-
ular, the distance measurements to the single transponder
(or pinger) are only assumed to be known up to a scaling
factor. First, the problems were shown to be equivalent to
the design of an observer for a simplified form of the system

dynamics. Then, a new augmented system was derived
that can be seen as linear in the state for observer design
purposes. Its observability was studied and the analysis,
which is constructive, provides the means to design an
observer for the original system dynamics, with globally
exponentially stable error dynamics. Simulation results,
including sensor noise, were presented, evidencing good
filtering performance.

REFERENCES

Batista, P. (2015). GES Long Baseline Navigation with
Unknown Sound Velocity and Discrete-time Range Mea-
surements. IEEE Transactions on Control Systems
Technology, 23(1), 219–230.

Batista, P., Silvestre, C., and Oliveira, P. (2011). Single
Range Aided Navigation and Source Localization: ob-
servability and filter design. Systems & Control Letters,
60(8), 665–673.

Casey, T., Guimond, B., and Hu, J. (2007). Underwater
Vehicle Positioning Based on Time of Arrival Measure-
ments from a Single Beacon. In Proceedings of the
MTS/IEEE Oceans 2007, 1–8. Vancouver, BC, Canada.

Fidan, B., Dandach, S., Dasgupta, S., and Anderson,
B. (2009). A continuous time linear adaptive source
localization algorithm robust to persistent drift. Systems
& Control Letters, 58(1), 7–16.

Gadre, A. and Stilwell, D. (2005). A complete solution
to underwater navigation in the presence of unknown
currents based on range measurements from a single
location. In Proceedings of the 2005 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
1420–1425. Edmonton AB, Canada.

Indiveri, G., De Palma, D., and Parlangeli, G. (2016).
Single range localization in 3-D: Observability and ro-
bustness issues. IEEE Transactions on Control Systems
Technology, 24(5), 1853–1860.

Jazwinski, A. (1970). Stochastic Processes and Filtering
Theory. Academic Press, Inc.

Jouffroy, J. and Reger, J. (2006). An algebraic perspective
to single-transponder underwater navigation. In Pro-
ceedings of the 2006 IEEE International Conference on
Control Applications, 1789–1794. Munich, Germany,.

Larsen, M. (2000). Synthetic long baseline navigation of
underwater vehicles. In Proc. of the 2000 MTS/IEEE
Oceans, volume 3, 2043–2050. Providence, RI, USA.

Lee, P.M., Jun, B.H., Kim, K., Lee, J., Aoki, T., and
Hyakudome, T. (2007). Simulation of an Inertial
Acoustic Navigation System With Range Aiding for
an Autonomous Underwater Vehicle. IEEE Journal of
Oceanic Engineering, 32(2), 327–345.

Rugh, W. (1995). Linear system theory. Prentice-Hall,
Inc., 2nd edition.

Viegas, D., Batista, P., Oliveira, P., and Silvestre, C.
(2014). Position and Velocity Filters for ASC/I-AUV
Tandems based on Single Range Measurements. Journal
of Intelligent & Robotic Systems, 74(3-4), 745–768.

Webster, S., Eustice, R., Singh, H., and Whitcomb, L.
(2009). Preliminary deep water results in single-beacon
one-way-travel-time acoustic navigation for underwater
vehicles. In Proceedings of the 2009 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems-
IROS 2009, 2053–2060. SaintLouis, MO, USA.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

14868


