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Abstract: This paper presents a navigation solution for a vehicle operating in cooperation
with two other. The vehicle is assumed to measure bearing to one of the aiding vehicles and
range to the other. An observer with globally exponentially stable error dynamics is designed
by obtaining an equivalent observable linear time-varying system using an artificial output and
state augmentation. The observer relies on local measurements, as well as limited communication
between the vehicles. Simulations are performed to assess the proposed solution.
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1. INTRODUCTION

One fundamental component of autonomous vehicles is
a navigation system capable of providing location in the
operation area. While in most cases the Global Positioning
System (GPS) is available, in underwater scenarios, due
to electromagnetic signal attenuation, alternatives must
be found. The simplest approach is the development of
an Inertial Navigation System, as done in [1]. However,
this method suffers from open loop integration of sensors’
noise and bias, which, if used for a long time, may lead to
significant errors.

Acoustic waves propagate well and with known velocity
underwater, thus can be used to develop more sophisti-
cated solutions. There are three broad classes of acoustic
positioning systems: Long Baseline (LBL), Short Baseline
(SBL), and Ultra-short Baseline (USBL) systems. Both
the LBL and SBL systems use the travel time of acoustic
waves to measure distances, from which it is possible to de-
sign observers capable of computing the vehicles location.
Examples of the design of LBL systems can be seen in [2]
and in [3]. In [4] an SBL system is designed. Alternatively,
a USBL system not only uses the travel time of the signal
to measure the distance but also uses phase differencing to
measure the bearing to the signal emitter. One example of
the design and implementation of such can be consulted
in [5].

The systems presented before use acoustic signals to mea-
sure range and, in the case of USBL, bearing to emitters
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with known location. The position of the emitters needs
not to be fixed, see for instance [6], where a system uses
range measurements to floating buoys to determine its own
position.

It is also possible to develop navigation systems based
only on bearing measurements. In [7], observability re-
quirements for 3-D tracking using angle measurements
were studied. In [8–10], different solutions for bearing-only
tracking were proposed.

Both the bearing and range measurements depend non-
linearly on the position of the vehicle, thus leading to
nonlinear dynamic systems. Most solutions proposed to
tackle this problem use observers such as, for example,
the extended Kalman filter (EKF). However, such solu-
tions lack guarantees of convergence. To deal with these
non-linearities, it is also possible to find equivalent linear
systems with the help of state augmentation and artificial
outputs, as introduced in [11–13] for range-based local-
ization and navigation systems, or in [14–16] for bearing-
based systems.

In this paper, a navigation system for a vehicle moving
underwater is designed. Two measurements are assumed
to be available: i) bearing to one vehicle; and ii) range
to a different vehicle. Besides, the positions of both aid-
ing vehicles are assumed to be known. The bearing and
range measurements make the considered system nonlin-
ear, which means that a linear Kalman filter cannot be
directly applied. To cope with this, state augmentation is
performed and an artificial output is added, resulting in
a linear system. The observability of the new system is
studied in detail and observability conditions are derived.
Alternatively, an algebraic solution for the vehicle position,
only available in some scenarios, is derived, leading to an
alternate linear system that can be used to complement
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the previous one, as the availability conditions of both are
different. Finally, simulation results are presented to show
the convergent behaviour of the proposed solution.

2. PROBLEM STATEMENT

Consider a formation of 3 vehicles, indexed from 1 to
3. All the vehicles are evolving in a fluid whose velocity
is assumed to be constant. It is also assumed that the
inertial positions, expressed in a local inertial frame, {I},
of vehicles 1 and 2 are known, provided by, for example,
GPS or a long baseline system. The positions of each
vehicle, expressed in {I}, are denoted by pr(t) ∈ R3,
pb(t) ∈ R3, and p(t) ∈ R3 for vehicles 1, 2, and 3,
respectively. The velocity of the fluid, also expressed in
{I}, is denoted by vf (t) ∈ R3.

Since the positions of vehicles 1 and 2 are known, the goal
of this work is to design a navigation system for vehicle
3. As so, the nature of the sensors and measurements
available to vehicles 1 and 2 is not relevant.

Vehicle 3 is moving with a velocity relative to the fluid,
measured by a relative velocity sensor, such as a Doppler
velocity log (DVL), and denoted by v(t) ∈ R3, expressed
in the body frame, {B}. This vehicle is also equipped with
an attitude and heading reference system (AHRS), which
provides the rotation matrix, R(t) ∈ SO(3), from {B} to
{I}.
The kinematics of vehicle 3 are given by{

ṗ(t) = vf (t) + R(t)v(t)

v̇f (t) = 0
.

Vehicle 3 measures the range and bearing to vehicles 1 and
2, respectively, in discrete-time, as given by

r(k) = ‖pr(tk)− p(tk)‖

d(k) = RT (tk)
pb(tk)− p(tk)

‖pb(tk)− p(tk)‖
.

Besides, it has access to the true positions of vehicles 1 and
2, which are known and communicated by those vehicles.

From now on, and unless specified otherwise, it is consid-
ered

d(k) =
pb(tk)− p(tk)

‖pb(tk)− p(tk)‖
, (1)

since this simplifies the computations. This is done without
loss of generality since the matrix R(tk) is available and
invertible. For simulation purposes, the original bearing
measurement is used.

Because the communications, bearings, and range mea-
surements between vehicles are only available at a fre-
quency too low for the system to be studied as time-
continuous, the system must be discretized, which leads
to 

p(tk+1) = p(tk) + Tvf (tk) + u(k)

vf (tk+1) = vf (tk)

r(k) = ‖pr(tk)− p(tk)‖

d(k) =
pb(tk)− p(tk)

‖pb(tk)− p(tk)‖

, (2)

where T is the sampling period and u(k) is given by

u(k) =

∫ tk+1

tk

R(t)v(t)dt. (3)

The problem addressed in this paper is that of designing an
observer, with globally exponentially stable (GES) error
dynamics, for the position and local fluid velocity of vehicle
3, p(tk) and vf (tk), respectively. This is done by finding an
equivalent observable linear system, for which a Kalman
filter is designed.

3. OBSERVER DESIGN

The dynamic system (2) is nonlinear due to the bearing
and range outputs. To address the first non-linearity, the
bearing output is replaced by a linear artificial one. To
address the second non-linearity, state augmentation is
applied.

3.1 Artificial output

First, note that

d(k)dT (k)d(k) = d(k)

since d(k) is a unit vector, from which it is possible to
write

(I− d(k)dT (k))d(k) = 0. (4)

Combining (1) with (4) gives

(I− d(k)dT (k))pb(tk) = (I− d(k)dT (k))p(tk). (5)

Since all the terms in the left-hand side of (5) are known,
it is possible to define the artificial output

z(k) := (I− d(k)dT (k))p(tk) ∈ R3.

Also, since d(k) is known, z(k) is linear on the state p(tk).
Replacing d(k) by z(k) in (2) yields

p(tk+1) = p(tk) + Tvf (tk) + u(k)

vf (tk+1) = vf (tk)

z(k) = (I− d(k)dT (k))p(tk)

r(k) = ‖pr(tk)− p(tk)‖

. (6)

3.2 System augmentation

Define as states {
x1(k) := p(tk)

x2(k) := vf (tk)
.

The dynamic system (6) is still nonlinear due to the range
measurement. A linear system is obtained by adding a
state

x3(k) := ‖pr(tk)− p(tk)‖.
The evolution of x3(k) is obtained by expanding

r2(k + 1) = ‖pr(tk+1)− p(tk+1)‖2

using (6), which gives

r2(k + 1) = 2(u(k)−∆pr(tk))Tp(tk)

+ 2T (u(k)− pr(tk+1))Tvf (tk) + r2(k)

+ 2TpT (tk)vf (tk) + T 2‖vf (tk)‖2

+ ‖pr(tk+1)− u(k)‖2 − ‖pr(tk)‖2, (7)

where ∆pr(tk) := pr(tk+1)− pr(tk). Adding the states{
x4(k) := pT (tk)vf (tk)

x5(k) := ‖vf (tk)‖2
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and noting that r2(k) = r(k)x3(k) allows to rewrite (7) as

x3(k + 1) =
2

r(k + 1)
(u(k)−∆pr(tk))Tx1(k)

+
2T

r(k + 1)
(u(k)− pr(tk+1))Tx2(k)

+
r(k)

r(k + 1)
x3(k) +

2T

r(k + 1)
x4(k)

+
T 2

r(k + 1)
x5(k)

+
‖pr(tk+1)− u(k)‖2 − ‖pr(tk)‖2

r(k + 1)
.

The evolution of the new states x4(k) and x5(k) is simply
obtained using (2), as given by{

x4(k + 1) = uT (k)x2(k) + x4(k) + Tx5(k)

x5(k + 1) = x5(k)
.

Defining the augmented state vector

x(k) :=


x1(k)
x2(k)
x3(k)
x4(k)
x5(k)

 ∈ R9

and the output vector

y(k) :=

[
z(k)
r(k)

]
∈ R4

leads to a linear time-varying system (LTV), which can be
written as {

x(k + 1) = Akx(k) + Bku
∗(k)

y(k) = Ckx(k)
. (8)

The system matrices are given by

Ak =


I3 T I3 0 0 0
0 I3 0 0 0

A(3)
k

0 uT (k) 0 1 T
0 0 0 0 1

 ∈ R9×9,

where

A(3)
k =

1

r(k + 1)


2(u(k)−∆pr(tk))

2T (u(k)− pr(tk+1))
r(k)
2T
T 2


T

∈ R1×9,

Bk =


I3 0
0 0
0 1
0 0
0 0

 ∈ R9×4,

u∗(k) =

 u(k)
‖pr(tk+1)− u(k)‖2 − ‖pr(tk)‖2

r(k + 1)

 ∈ R4,

and

Ck =

[
C(1)
k

C(2)
k

]
=

[
I3 − d(k)dT (k) 0 0 0 0

0 0 1 0 0

]
∈ R4×9.

3.3 Observability

Define
∆ipr(tk) := pr(tk+i)− pr(tk)

and

ui(k) :=

k+i−1∑
j=k

u(j).

The following theorem addresses the observability of the
linear system (8). For the sake of easiness of notation, let
dk := d(k) be used indifferently throughout the paper.
Theorem 1. If rank(MN−1) = 8, where

Mi :=


M

(1)
i

1 1
2 4
...

...
i i2

M
(2)
i 0

 ∈ R(2i+1)×8,

with

M
(1)
i

:=


(
u(k0) − ∆pr(tk0

)
)T (

u(k0) − pr(tk0+1)
)T(

u2(k0) − ∆2pr(tk0
)
)T

2
(
u2(k0) − pr(tk0+2)

)T
...

...(
ui(k0) − ∆ipr(tk0

)
)T

i
(
ui(k0) − pr(tk0+i)

)T


and

M
(2)
i :=


I− dk0d

T
k0

0

I− dk0+1d
T
k0+1 I− dk0+1d

T
k0+1

...
...

I− dk0+id
T
k0+i i

(
I− dk0+id

T
k0+i

)

 ,
then the system (8) is observable on the interval [k0, k0 +
N ].

The proof is not presented due to space limitations. The
theorem takes the observability matrix of the system
and simplifies it to one of easier understanding. Still, it
is not possible to draw simple conclusions of geometric
interpretation relative to the system’s observability. The
system needs excitation to be observable, however this
need is less demanding than when only one bearing or one
range are available. It is possible that neither the system
with one bearing nor the the system with one range are
observable but this one is.

Theorem 1 addresses the observability of the linear aug-
mented system (8), however, there is no guarantee of
observability for the original nonlinear system (2). The
following theorem addresses this issue.
Theorem 2. If rank(MN−1) = 8, then the system (2)
is observable on [k0, k0 + N ]. Furthermore, the initial
conditions of (2) and (8) match.

The proof of this theorem is not presented due to space
limitations.

With the observability studied, the design of a Kalman
filter for (8) leads to an observer with guarantees of GES
error dynamics for (2). The design of a Kalman filter is the
obvious choice since it is applied to a system that is linear
in the state. This is due to the fact that d(k) is known.
The Kalman filter yields globally exponentially stable
error dynamics if the system is shown to be uniformly
completely observable [17]. Here, only observability was
shown due to space limitations but the proof of uniform
complete observability, while tedious, follows similar steps
considering uniform bounds in time.
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4. ALGEBRAIC SOLUTION

In the previous section, an LTV system and its observ-
ability conditions were derived. When this system is ob-
servable, it can be used to estimate the state of system
(2). However, it is possible that the original system (2)
is observable but the LTV system (8) is not. This is
evidenced in the following theorem.
Theorem 3. If ‖pr(tk)−pb(tk)‖ < r(k) for k = k0, k0+1,
then the system (2) is observable on the interval [k0, k0+2].

Proof. From (1) it is possible to write

p(tk) = pb(tk)− ‖pb(tk)− p(tk)‖d(k), (9)

which can be used to conclude that

r2(k) =‖pr(tk)− p(tk)‖2

=
∥∥pr(tk)− pb(tk) + ‖pb(tk)− p(tk)‖d(k)

∥∥2.
The previous equation can be expanded into a quadratic
equation on ‖pb(tk) − p(tk)‖, which, under the assump-
tions of the theorem, will have one positive and one neg-
ative solutions. Since only the positive solution is feasible
for a distance, it is possible to determine ‖pb(tk)−p(tk)‖.
It is now possible to determine p(tk0

) and p(tk0+1) using
(9). Finally, vf (tk0

) is given by

vf (tk0
) =

p(tk0+1)− p(tk0)− u(k0)

T
.

As so, the initial state of the system in uniquely deter-
mined by the input and output of the system at instants
k0 and k0 + 1, concluding the proof of the theorem.

This theorem can be used to design a Kalman filter for
p(tk+1) = p(tk) + Tvf (tk) + u(k)

vf (tk+1) = vf (tk)

p(tk+1) = pb(tk)− ‖pb(tk)− p(tk)‖d(k)

, (10)

with

‖pb(tk)− p(tk)‖ =
−b(k) +

√
b2(k)− 4c(k)

2
and {

b(k) = 2(pr(tk)− pb(tk))Td(k)

c(k) = ‖pr(tk)− pb(tk)‖2 − r2(k)
.

5. SIMULATION RESULTS

Simulations are presented in this section to illustrate the
behaviour of the proposed solutions when the measure-
ments are subject to noise.

5.1 Setup

To perform the simulations, a sampling period of 1s is
assumed for the bearing and range measurements and
the communications between the vehicles, while all the
other measurements are assumed to be available at 100Hz.
Azimuth and inclination are measured, from which the
bearing is obtained as

d =

[
sin(θ)cos(φ)
sin(θ)sin(φ)

cos(θ)

]
,

where φ and θ are, respectively, the azimuth and inclina-
tion angles to the other vehicle. Zero-mean white gaussian

noise with a standard deviation of 1o was added to both
angles. For vehicles 1 and 2, the position is available but
zero-mean white gaussian noise was added with a standard
deviation of 0.1m in each component. Some correlation was
added, resulting in the covariance matrix

0.01×

[
1 0.1 0.1

0.1 1 0.1
0.1 0.1 1

]
.

For the Euler angles, used to obtain the rotation matrix,
uncorrelated zero-mean white Gaussian noise was added
with a standard deviation of 0.01o for the pitch and roll
angles and 0.03o for the yaw angle. The relative velocity
to the fluid was corrupted by uncorrelated zero-mean
white Gaussian noise with standard deviation of 0.01
m/s. Finally, the range measurement was corrupted by
additive zero-mean white Gaussian noise with a standard
deviation of 0.1 m. The integral in (3) was computed
using the trapezoidal rule. The fluid velocity was set to
vf = [0.2 0.3 0.15]T m/s.

Two different scenarios were considered: i) when the aug-
mented system is observable; ii) when the algebraic so-
lution is valid. In both cases, the vehicles performed the
same type of trajectory with different starting points. The
trajectories were generated with way points, which are
described in Table 1. The differences between the cases are
the initial positions and the enrichment of the trajectory of
vehicle 1. The starting points are described in Table 2. The
acceleration was limited to 0.01 m/s2, which resulted in the
curve presented in Fig. 1. In scenario i), the trajectory for
vehicle 1 was enriched by adding 10 sin(0.1t)[1 1 1]T to its
position.

Fig. 1. Trajectory curve

Time (s) Position (m)

0 [0 0 0]

100 [40 0 0]

200 [40 20 0]

300 [40 30 0]

400 [20 40 0]

600 [50 60 0]

800 [5 30 -20]

1000 [5 0 -20]

Table 1. Trajectory waypoints for vehicle 1

5.2 Simulation Results

To assess the performance of the proposed solution, simu-
lations were performed for both scenarios. In scenario i), a
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Vehicle
Initial Position (m)
i) ii)

1 [0 0 0] [0 0 0]

2 [100 100 0] [100 100 0]

3 [70 70 -40] [130 130 -40]

Table 2. Initial positions.

linear Kalman filter is applied to (8), while in scenario ii) a
linear Kalman filter is applied to (10) instead. In scenario
i), the state covariance matrix was set to

Q = diag(0.01I, 0.000005I, 10−8, 10−10, 10−8).

In scenario ii), it was set to diag(0.01I, 0.000005I). The
output covariance matrices were set to diag(50I, 1) and I,
for scenario i) and ii), respectively. The initial estimates for
both scenarios were drawn from a Gaussian centred in the
true state and with covariance matrix P = diag(102I3, I6).

The estimation error in transient state can be seen in
Fig. 2 and Fig. 3 for scenario i) and Fig. 4 and Fig. 5
for scenario ii). It is possible to see that the convergence
in scenario ii) is faster, as expected, since the position is
directly available.

Fig. 2. Scenario i) Error of position estimates
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Fig. 3. Scenario i) Error of fluid velocity estimates

The estimation error in steady state can be seen in Fig. 6
and Fig. 7 for scenario i) and Fig. 8 and Fig. 9 for scenario
ii). It is possible to see that in scenario i) the estimates
present lower error in steady-state.

It is important to note that the two scenarios have different
conditions and that it is not useful nor important to com-
pare the performance between the two options. Instead,
it would be more relevant to compare the performance of
these two solutions with the performance of the extended

Fig. 4. Scenario ii) Error of the position estimates
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Fig. 5. Scenario ii) Error of the fluid velocity estimates

Kalman filter or the unscented Kalman filter, which will
be done in future work.

6. CONCLUSIONS

In underwater scenarios the communication bandwidth is
very limited, rendering centralized navigation solutions
impossible to implement. This paper presents a cooper-
ative, decentralized navigation solution for formations of
underwater vehicles where one bearing and one range to
different vehicles are available. In order to cope with the
nonlinear nature of the outputs, artificial outputs and
state augmentation are employed that render the dynamics
linear, thus allowing for the design of a Kalman filter
with GES errors dynamics. In some circumstances, it is
possible to determine an algebraic solution. Finally, sim-
ulation results were presented to assess the behaviour of
the proposed solutions.
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