Automatica 110 (2019) 108534

journal homepage: www.elsevier.com/locate/automatica

Contents lists available at ScienceDirect

Automatica

automatica

Brief paper

Robust global exponential stabilization on the n-dimensional sphere
with applications to trajectory tracking for quadrotors™

Check for
updates

Pedro Casau®!* Christopher G. Mayhew, Ricardo G. Sanfelice ®, Carlos Silvestre *?

2 Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macau, China
b Department of Electrical and Computer Engineering, University of California, Santa Cruz, CA 95064, USA

ARTICLE INFO ABSTRACT

Article history:

Received 11 July 2017

Received in revised form 5 June 2019
Accepted 25 July 2019

Available online 20 September 2019

Keywords: of a quadrotor vehicle.

Hybrid control systems
Synergistic potential functions
Lyapunov-based control

In this paper, we design a hybrid controller that globally exponentially stabilizes a system evolving on
the n-dimensional sphere, denoted by S". This hybrid controller is induced by a “synergistic” collection
of potential functions on S". We propose a particular construction of this class of functions that
generates flows along geodesics of the sphere, providing convergence to the desired reference with
minimal path length. We show that the proposed strategy is suitable to the exponential stabilization
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1. Introduction
1.1. Motivation and problem statement

In this paper, we design a hybrid controller for global expo-
nential stabilization of a setpoint for a system evolving on the
n-dimensional sphere, given by S" := {x € R"*! : xTx = 1}. The
dynamics of this system can be described by

x=HOx)w xeS" (1)

where w € R™! is the input and IT(x) = I, —xx' projects w onto
the tangent space to S" at x, given by T,S" := {z e R""! : zTx =
0}. Even though there exist controllers that globally asymptoti-
cally stabilize a setpoint on the n-dimensional sphere (cf. Mayhew
and Teel (2013a)) and others that globally exponentially stabilize
a setpoint on the special orthogonal group of order 3 (cf. Berkane,

Abdessameud, and Tayebi (2017) and Lee (2015)), to the best
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of our knowledge, the problem of global exponential stabiliza-
tion of a setpoint in S" has not been addressed before, despite
the fact that it has many meaningful applications, such as vi-
sual servoing (cf. Triantafyllou, Rovithakis, and Doulgeri (2018));
control of robotic manipulators (cf. Chaturvedi and McClamroch
(2009)); exoskeleton tracking (cf. Brahmi, Saad, Rahman, and
Ochoa-Luna (2019)); multi-agent synchronization (cf. Markdahl,
Thunberg, and Gongalves (2018)); formation control (cf. Zhao and
Zelazo (2016)); rigid-body stabilization (cf. Chaturvedi, Sanyal,
and McClamroch (2011)) and trajectory tracking for multi-rotor
aerial vehicles (cf. Mahony, Kumar, and Corke (2012)), which we
also explore in this paper. To see how the proposed controller
for global exponential stabilization on the n-dimensional sphere
applies to trajectory tracking for a multi-rotor aerial vehicle,
consider the following: the position dynamics of a multi-rotor
vehicle can be described by

p=v, vV=xu+g

where g is the acceleration of gravity, p € R® and v € R? denote
the position and the velocity of the vehicle with respect to the
inertial reference frame, u denotes the magnitude of the thrust
and x € S? denotes the direction of the thrust (cf. Hamel, Mahony,
Lozano, and Ostrowski (2002)). Given a reference trajectory with
acceleration py and a control law w : R®* — R? that expo-
nentially stabilizes the double integrator, if the controller for x
exponentially stabilizes the commanded thrust direction, given
by p(B. 7. Ba) = s for each (5.9, ) € {(B.7.pa) €
R® : w(p, V) —g +Pg # 0} where p and v denote the position and
velocity tracking errors, respectively, then exponential tracking is
attained. This, however, cannot be achieved through continuous
feedback because it is not possible to globally asymptotically
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stabilize a given setpoint on a compact manifold by means of
continuous feedback (cf. Bhat and Bernstein (2000)). Moreover, if
a dynamical system cannot be globally asymptotically stabilized
through continuous feedback, it cannot be robustly stabilized by
discontinuous feedback either, as shown in Mayhew and Teel
(2011). Overcoming these limitations is particularly important for
multi-rotor aerial vehicles due to their popularity and the wide
range of applications in which they are used, such as surveillance,
tracking, search and rescue, infrastructure inspection, agricul-
ture and disaster mitigation (see e.g Augugliaro, Schoellig, and
D’Andrea (2013), Fink, Michael, Kim, and Kumar (2011), Floreano
and Wood (2015), Jiang and Kumar (2013), Liang, Fang, Sun, and
Lin (2018), Lupashin et al. (2014) and Mellinger, Michael, and
Kumar (2012)). In this paper, we present a hybrid controller that
not only provides global exponential stability, but also confers a
quantifiable robustness margin to perturbations.

Recent developments on hybrid control theory overcame the
topological obstructions to global stabilization on compact man-
ifolds with the introduction of synergistic potential functions
in Mayhew and Teel (2010). A potential function on a compact
manifold is a continuously differentiable function that is positive
definite relative to a given point, thus it induces a gradient vector
field which asymptotically stabilizes the given reference from
every initial condition except a set of measure zero. To see this,
consider the closed-loop system resulting from the interconnec-
tion of the gradient-based feedback law of a potential function h,
that is positive definite relative to r € S" and (1), given by:

% = —IT(X)V hy(x). )

The equilibrium points of (2) are the critical points of h,(x),
denoted by

crith, .= {x € S" : [1(x)V h,(x) = 0}, (3)

which correspond to the set of points x where V h,(x) is orthog-
onal to T,S". Since the set (3) includes the maximum and the
minimum of h, on S", it follows that r € S" is not globally
asymptotically stable for (2). On the other hand, synergistic po-
tential functions are collections of potential functions that enable
a controller to achieve robust global asymptotic stabilization of
the given setpoint, because, at the undesired equilibria, there
exists another function in the collection with a lower value that
we can switch to.

The concept of synergistic potential functions has been intro-
duced to address the problem of stabilizing a three-dimensional
pendulum in Mayhew and Teel (2010) and later used in full
attitude stabilization in Mayhew and Teel (2013b) and Lee (2015);
attitude synchronization (Mayhew, Sanfelice, Sheng, Arcak, &
Teel, 2012); partial attitude stabilization (cf. Mayhew and Teel
(2013a)), and stabilization by hybrid backstepping (cf. Mayhew,
Sanfelice, and Teel (2011b)). More recently, the interest in this
control technique has spawned the design of new synergistic
potential functions on SO(3), such as the ones by Berkane et al.
(2017) and Berkane and Tayebi (2015, 2017). It was shown by
the authors in Casau, Sanfelice, Cunha, Cabecinhas and Silvestre
(2015) that synergistic potential functions can be used for global
asymptotic stabilization of a reference trajectory for a multi-rotor
aerial vehicle, but the extent to which exponential stabilization is
possible was not addressed.

1.2. Contributions

The contributions in this paper are as follows. Extension to the
concept of synergistic potential functions: in Section 3, we show
that the existence of a centrally synergistic potential function

V : 8" x @ — Ry, where Q is a compact set, induces a
gradient-based control law that renders

A={xy)eS"xQ :x=r} (4)

globally asymptotically stable for the closed-loop system. This
nomenclature is inherited from Mayhew and Teel (2013a), where
synergistic potential functions satisfying V(r,y) = 0forally € Q
are said to be central because they share are a common minimum
at r. In this paper, we extend the previous notion of centrally
synergistic potential functions, because we consider that Q is
compact rather than finite, which adds flexibility to the design
of synergistic potential functions. The proposed controller is sig-
nificantly different from the one in Mayhew and Teel (2013b)
because the focus is on global exponential stabilization of S"
rather than SO(3) and it further expands the work in Mayhew and
Teel (2010) from global asymptotic stabilization on S? to global
exponential stabilization on S". Interestingly, the controller that
we propose may be used for global stabilization on S* which is
the universal cover of SO(3). However, the resulting controller
would be more complex than that of Mayhew, Sanfelice, and Teel
(2011a) if used for rigid-body stabilization, because it would not
take advantage of the fact that S? is a double cover of SO(3).
Global exponential stability of a setpoint on S": in Theorem 2, we
show that, if V is bounded from above and below by a polynomial
function of the distance to A and if V converges exponentially
fast to O, then A is globally exponentially stable for the closed-
loop system, in the sense that, for all initial conditions, the state
of the system converges exponentially to .A. This is different
from the controllers proposed in Berkane et al. (2017) and Lee
(2015), because these address the problem of global exponen-
tial stabilization on SO(3) rather than S". Optimal switching: in
Section 3.1, we construct a synergistic potential function on the n-
dimensional sphere that meets the requirements for exponential
stability and has an optimal switching law, in the sense that
it guarantees that solutions to the closed-loop system follow
geodesics whenever a jump of the hybrid controller is triggered.
Robustness to perturbations: the proposed hybrid controller satis-
fies the so-called hybrid basic conditions, therefore it is endowed
with nominal robustness properties that are outlined in Goebel,
Sanfelice, and Teel (2012). In addition, the switching rule intro-
duces a hysteresis gap that prevents chattering. Saturated thrust
feedback for exponential tracking of a reference trajectory for a
multi-rotor aerial vehicle: in Section 4, we employ the hybrid
controller for global exponential stabilization on S" in trajectory
tracking for a multi-rotor aerial vehicle. We show that, for each
compact set of initial position and velocity tracking errors and
for all initial orientations, the reference trajectory is exponen-
tially stable. This is particularly difficult, because in addition to
the topological constraints to global attitude stablilization, mul-
tirotor aerial vehicles are subject to underactuation constraints
that prevent stabilization of the vehicle when the commanded
thrust is zero (cf. Lizarraga (2004)). This issue has been widely
acknowledged but mostly overlooked due to its singular nature.
For example, in Lee, Leok, and McClamroch (2013) this flight
condition is assumed to not occur and in Hua, Hamel, Morin, and
Samson (2009) the controller is turned off when the commanded
thrust approaches zero. Similarly to the work of Hua, Hamel,
Morin, and Samson (2015), we assume that the reference trajec-
tory does not lead to a situation where the commanded thrust is
zero, but, unlike the aforementioned approach, we explicitly build
this limitation into the control design procedure so to achieve
semi-global exponential stability with respect to the position and
velocity errors. A video of experimental runs using this controller
can be found in Casau, Mayhew, Sanfelice and Silvestre (2017).
The paper is organized as follows: in Section 2, we present the
notation and the framework of hybrid dynamical systems that
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is used in this paper. In Section 3, we develop the notions of
synergistic potential functions on the n-dimensional sphere. In
Section 4, we apply the given controllers to the tracking of a ref-
erence trajectory for a vectored-thrust vehicle, and in Section 5,
we present the conclusions of this work. In Casau, Mayhew,
Sanfelice and Silvestre (2015) we reported the results that are
presented in Section 3 without the proofs. In Casau, Mayhew,
Sanfelice, and Silvestre (2016), we presented some preliminary
results on work reported in Section 4 without the construc-
tive controller synthesis that is presented in this paper for the
quadrotor application.

2. Preliminaries

The symbol R denotes the set of real numbers, N denotes the
set of natural numbers and zero, R>p := {x € R : x > 0}, R"
denotes the n-dimensional Euclidean space equipped with the
norm |x| := /{x,x) for each x € R" where (u,v) = u'v
for each u,v € R" The canonical basis for R" is denoted by
{eiti<icn C R"and c + 1B = {x € R" : |[x —c| < r}. If areal
symmetric matrix A € R™" is positive (negative) definite, we
write A € ST, (A € $%,) or A > 0 (A < 0) if the dimensions can
be inferred from context. If a real symmetric matrix A € R™"
is positive (negative) semidefinite, we write A € S, (A € SZ)
orA > 0 (A =< 0)if the dimensions can be inferred from
context. Given A € R™", onax(A) denotes the maximum singular
value of A. The gradient of a continuously differentiable function

V : R" — R is given by VV(x) := [837‘/]()0 3—"(){)] for

0Xn

each x = (xq,...,%;) = [x1 xn]T € R" The derivative
of a differentiable matrix function with matrix arguments F :
R™" — R¥<¢ js given by Dx (F(X)) := dvec (F(X)) /dvec (X)
for each X € R™", where vec(X) = [e/X' enTXT]T.
The domain of a set-valued mapping M : R" = R™ is given by
domM = {x € R" : M(x) # @}. The range of M is the set
rgeM := {y € R" : 3x € R™ such that y € M(x)}. A hybrid system
‘H defined on R" can be represented by

{ x € F(x)

xt e Gx)

xeC 5
xeD ()
where C C R" is the flow set, F : R" = R" is the flow map,
D Cc R"and G : R*" = R" with D C domG is the jump map,
as defined in Goebel et al. (2012). The maps F and G are set-
valued maps satisfying C € domF and D C dom G, respectively.
Loosely speaking, solutions to hybrid systems are hybrid arcs that
are compatible with the data of the hybrid system, i.e., functions
(t,J) — ¢(t,j) defined on a hybrid time domain E C R>¢ x Ny
that satisfy éb(t,j) € F(¢(t, j)) for almost all t > 0 and ¢(t, j) € D,
o(t,j+ 1) € G(gp(t, j)) for every ¢(t, j) and ¢(t,j+ 1) belonging to
dom ¢. We say that a solution ¢ to (5) is maximal if it cannot
be extended, it is complete if its domain is unbounded, it is
discrete if dom¢ C {0} x N and it is Zeno if it is complete and
sup, dom¢ < +oo (for a more rigorous description of solutions
to hybrid systems see Goebel et al. (2012)). Under the assumption
of completeness of maximal solution to #, a compact set A is said
to be: stable for #, if for each € > 0 there exists § > 0 such that
for each solution ¢ to # with |¢(0, 0)| , < & satisfies |¢(t, )| 4 <
e for each (t, j) € dom ¢; attractive for H if lim4j_ o0 [9(t, )| 4 =
0, where [x| 4 = minye4 |x —y| and |x|] = +/(x,x) for each
x € R". A set A is globally asymptotically stable for # if it is
both globally attractive and globally stable for H. We say that a
compact set A C R" is exponentially stable in the t-direction
from U if there exists k, A > 0 such that sup, dom¢ = oo and
lp(t, j)l 4 < kexp(—At)|¢(0, 0)| 4 for each maximal solution ¢ to
the hybrid system with ¢(0, 0) € U and (t, j) € dom ¢.

3. Synergistic potential functions on S"

In this section, we design a hybrid controller that globally
exponentially stabilizes a given reference r € S" = {x €
R™1 : xTx = 1} for the system (1) using the notion of centrally
synergistic potential functions given next.

Definition 1. A function h, : S" — R is said to be a potential
function on S" relative to r if it is continuously differentiable and
positive definite relative to r € S7, i.e., h;(x) > 0 for each x € S"
and h.(x) = 0 if and only if x = r. We denote the collection of
potential functions on S" relative to r by &2,.. O

Definition 2. Given a compact set Q, a functionV : §" x 9 —
R is said to be a centrally synergistic potential function on S"
relative to r if the following hold: (1) Foreachy € 9, VW is a
potential function on S" relative to r, where VY(x) := V(x, y) for
each x € S"; (2) There exists § > 0 such that

wx, y) =Vix,y)—viX) >4 (6)

for each (x,y) € &(V) = {(x,y) € S" x Q@ : I(X)VVY(x) =0,x #

r}, where

v(x) = minV(x, y). (7)
yeQ

We denote the collection of centrally synergistic potential func-

tions on S" relative tor by Q .. O

Given a centrally synergistic potential function V, the function
(x,¥) = u(x,y)is referred to as the synergy gap of V at (x, y). The
synergy gap measures the difference between the current value
of the function and all other potential functions in the collection.
If (6) holds, we say that V has synergy gap exceeding 8. Given
V € Q,, we define the hybrid controller with output @ € R*!,
state y € @ and input x € S" as follows:

yff):o—v Vy(")} (xy)eCi={(xy) e X :pu(x.y) <8}  (8a)
V€ o) (xy)eD={(xy) € X:puxy) =8,  (8b)
where X :=S" x Q and

= i V 9 y .
o(x) aryger;m (x,¥) 9)

The interconnection between (1) and (8) is represented by the
closed-loop hybrid system H := (C, F, D, G), given by

(;) = Fixy) = (‘” w7 Vy(X)) (xy)ecC

x+ X
<y+> € G(X! y) = (Q(X))

The parameter & that is used in the hybrid controller (8) is
central to the construction of synergistic potential functions and
it defines a hysteresis gap which prevents chattering. This con-
struction is similar across many earlier works on synergistic
hybrid feedback (see e.g., Mayhew and Teel (2013a, 2013b)) and
it guarantees global asymptotic stability of x = r for the hybrid
system (10), as shown next.

(10)
(x,y) eD.

Theorem 1. Given r € S" and a compact set Q, if there exists
8 > 0 such that V € Q , has synergy gap exceeding 3, then the set
A in (4) is globally asymptotically stable for the hybrid system H
in (10).

Proof. It follows from Proposition A.1 that Goebel et al. (2012,
Assumption 6.5) is satisfied. From computations similar to May-
hew and Teel (2013a), we conclude that the growth of V along
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solutions to (10) is bounded by uc, up, where

— @V VX if (x.y) € C
_ 11
uc(x,y) {_oo otherwise, (1)
-5 if(x,y)eD
_ 11
up(x, y) {_oo otherwise Y

for each (x,y) € S" x Q. It follows from the assumption that V is
a synergistic potential function relative to r that u(x,y) > ¢ for
each (x,y) € £&(V), hence uc(x,y) < 0 for each (x,y) € S" x 9 \A.
Since up(x,y) < 0 for all (x,y) € S" x Q, it follows from Goebel
et al. (2012, Corollary 8.9) that A is globally pre-asymptotically
stable for (10). Since G(D) C CUD =S" x 9, S" x Q is compact
and, for each (x,y) € C\D, F(x, y) belongs to the tangent cone to
C at (x,y), it follows from Goebel et al. (2012, Proposition 6.10)
that each maximal solution to (10) is complete. O

We are also able to show that, under some additional condi-
tions, the set (4) is globally exponentially stable in the t-direction
for the hybrid system (10).

Theorem 2. Given r € S" and a compact set Q, if there exists
V € 9, with synergy gap exceeding § > O satisfying the following
conditions

alx—rP <Vxy)<alx—rlP
(VV(x,y), F(x,y)) = —AV(x,y)

V(x,y) €e CUD,
V(x,y) e C,

for some p, o, &, . > 0, then the set (4) is globally exponentially
stable in the t-direction for the hybrid system (10).

Proof. It follows from the proof of Theorem 1 that (10) satis-
fies (Goebel et al., 2012, Assumption 6.5), each of its maximal
solutions is complete and V is nonincreasing during jumps. Since
u(g) = 0 for each g € G(D), we have that G(D)ND = . It follows
from (12) that the conditions of Casau, Sanfelice and Silvestre
(2017, Theorem 1) are satisfied, thus A is globally exponentially
stable in the t-direction for the hybrid system (10). O

3.1. Construction of centrally synergistic potential function on S™

Given r € S", we construct a centrally synergistic potential
function on S" using the height function: h,(x) :== 1 — r"x for all
xeS" Letk >0,V :=8"xS"\{(r, )}, and define V : v — R for
all (x,y) e v as

hy(x) 1—r'x
Vix,y) = = . 13
(*x.) he(x) +khy(x)  1—rTx+k(1-yTx) (13)
We now provide some differential properties of V, which follow
from elementary calculation and some tedious manipulation, so
they are presented without proof.

Lemma 1. The function V : V — [0, 1] defined in (13) satisfies
kv(x, y)y — (1 = V(x, y)r
vV = 1T—rTx+k(1-yTx) (142)
_ T
ITGw Vy(x)|2 _ 2kV(x,y) (1= V(x,y) (1—rTy) (14b)

(1—rTx+k(1- yTx))2

Given y € R satisfying —1 < y < 1, we define the set 9 C S"
as

o ={yes":rly<y}. (15)
The boundary of Q is 90 = {y eS" :rTy= y}.

Lemma 2. Givenr € S"and y € [—1, 1), let Q be given by (15).
The following hold for the function V given in (13)

o) ifx=r
—x ifrix>—y
o= yo (M) Ier oo (16a)
——— " qa(r'x)x if —1<rx<-y
[T (x)r| ')
90 ifrix=—1.
1—-r'x
_ ifrix>—y
T
v = 1T - (16b)
ifrix < —
1—rTx+k(1—a(rTx)) y Y
for each x € S", where a(v) = yv — /(1 —2?)(1—y?) and

o) = yv/1—=v2 4+ vy/1—y2 foreach v € [-1,1], and v, o
are defined in (7) and (9), respectively. O

Proof. Suppose that x = r. Then, according to (A.1) of Lemma A.1,
V(x,y) = O forally € Q. Thus, any y € @ attains the
minimum of y — V(r,y) = 0. If r'x > —y, it follows
that —x € Q. In this case, (A.2) of Lemma A.1 yields that the
unconstrained minimizer of y — V(x,y), which is —x, is also
the minimizer of y — V(x,y) when y is constrained toy € Q.
When x = —r, we have that V(—r,y) = 2/(2 + k(1 + rTy)).
Clearly, y — V(—r,y) is minimized by maximizing rTy. When
y is constrained to Q, the maximum value of r'y is y, which
is attained by any y satisfying r'y = y, or equivalently, y €
9Q . We now examine the case when —1 < r'x < —y. Since
—x ¢ @, it suffices to study the solutions to the constrained
minimization problem min {y x:1—y"y=0,r"y —y =0} by
means of Lagrange multipliers. O

Using (16b), we may compute (6), from which the next result
follows.

Corollary 1. For any given r € S" and y € (—1,1), the
function (13) is a centrally synergistic potential function relative to
r with synergy gap exceeding 8, for any

1
S e <0, _1+r ) .
2/k+1+y
Proof. This result follows from the fact that
min{u(x, y) : (x,y) € crit V'\{r} x Q}
. 1+y
T 2/k+14y]

In addition to global asymptotic stability of A for (10), we also
show below that the function (13) satisfies (12), thus it follows
from Theorem 2 that global A is also globally exponentially stable
in the t-direction for (10). It follows from the fact that &(V) =
V=1(1) (cf. Lemma A.1) and from &(V) C D, with D given in (8),
that V* € R, given by V* = max)ec V(x, y), with C given in (8)
satisfies 0 < V* < 1. We note that V* exists since V is continuous

on the compact set C. The next theorem follows naturally from
these considerations

Theorem 3. The function V e CY(S" x Q) given in (13)
satisfies (12) with

a =214+ k+/142ky +k2)7, (17a)

=020 4+k—+/142ky +k2))7! (17b)
2k(1 - V*)(1—y)

A= (17¢)

5
(1+k+\/1+2k)/+k2)
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Therefore, the set (4) is globally exponentially stable in the
t-direction for (10).

Proof. Since h,(x) = 1 —r1'x = |x—r|*>/2 for every x € S,
it follows from (A.5) that (13) satisfies (12a) with @ and @ given
by (17a) and (17b), respectively. Since r Ty < y for each (x,y) €
S"x Q,then1—1Ty > 1— y. It follows from the fact that
V(x,y) < V* for each (x,y) € C and from Lemma A.2 that

|0V V)| = 2k(1—V*) (1 —y)
(1+k+VTT 2k 1)

which proves that (12b) is satisfied. Global exponential stability
of (4) for (10) follows from Theorem 2. O

5 V(X ),

3.2. Minimal geodesics

We have shown that the proposed synergistic potential func-
tion (13) ensures not only global asymptotic stability of .A for (10),
but also global exponential stability. Moreover, there is a third
property of this function that is worth mentioning: for each xy €
D, the flows generated by the gradient vector field [7(x)V Ve®*0)(x)
converge to r through the minimal geodesic, i.e., the path of
minimum distance between xq and r, as proved next. For every
pair of points p, g € M, where M is a compact manifold, there is
¢ : R - M with c(a) = p and c(b) = q for some a, b € R such
that the length of c, given by L (c) = fab |9 (7)| dx, is the lowest
among all other paths with endpoints p and q (cf. Burns and Gidea
(2005)). If a path p : [0, 00) — M is Lebesgue integrable, then
its length is given by L (p) = [, |%(z)| dr. Considering the

Riemannian manifold S" with the standard Euclidean metric, its
(unit-velocity) geodesics are of the form x(t) = acost + bsint,
for each t € R, with a, b € S" satisfying (a, b) = 0, as shown
in Petersen (2006, Example 30). Given r € S", one verifies that the
minimal geodesic between r and any given point xo € S"\{r, —r}
is given by c(t) = xgcost + IT(xo)rsint/|I1(xo)r|, for each t €
[0, arccos(xgr)]. If xo = —r, then each minimal geodesic from xg
to r is given by c(t) = xo cost+x* sint, for each t € [0, ], where
xt e {y € S": (y,x) = 0}. In particular, if xq is antipodal to r
and n > 1 then there are uncountably many minimal geodesics
from xo to 1.

It is possible to verify that, for every solution (x, y) of (10) and
each (t,j), (t,j + 1) € dom(x, y), the following holds: x(t,j) =
x(t,j + 1). Therefore, x).(t) := x(t,](t)), is defined for each
t € [0, sup,dom(x,y)), for each solution (x,y) to (10), where
with J(t) := max{j : (t,j) € dom(x, y)}. Moreover, it is absolutely
continuous, hence L* (x| ;) is well-defined. Choosing V in (13),
we show next that the solutions to the hybrid system (10) that
start in the jump set have minimal length.

Lemma 3. Consider the function V e C'(S" x Q) given in (13).
For each solution (x,y) to (10) with initial condition (xq, Yo) € D,
we have that L (x;) = L (cx,.r), where ¢y, denotes the minimal
geodesic from xg to .

Proof. This result follows from the fact that the vector field
I1(x)V Ve&)(x) is tangent to the geodesic connecting r and x, and
from Theorem 3 which shows that solutions converge tor. O

Note that function h, induces a gradient-vector field that
generates flows along geodesics for almost all initial conditions.
However, unlike the aforementioned continuous feedback law,
the controller presented in this section exponentially renders
a reference point globally asymptotically stable, which is not
possible with continuous feedback. Moreover, if we resolve the
ambiguity at x = —r by means of some discontinuity, we still

are left without any guarantees of robustness to small mea-
surement noise. Since the hybrid controller presented in this
section satisfies the hybrid basic conditions (Goebel et al., 2012,
Assumption 6.5), the property of global asymptotic stability of .A
for (10) is endowed with robustness to small measurement noise,
as discussed in Goebel et al. (2012).

4. Application to trajectory tracking for a quadrotor

In this section, we apply the controller proposed in Section 3 to
the problem of trajectory tracking for a quadrotor vehicle, i.e., an
aerial vehicle with four counter rotating rotors that are aligned
with a direction which is fixed relative to the body of the vehicle,
as described in Hamel et al. (2002). The dynamics of a thrust
vectored vehicle such as a quadrotor can be described by

p=v (18a)
V=Rru+g (18b)
R = RS(w) (18¢)

where p € R? and v € R? denote the position and the velocity of
the vehicle with respect to the inertial reference frame (in inertial
coordinates), R € SO(3) := {R € R®>*3 : RTR = I3, det(R) = 1} is
the rotation matrix that maps vectors in body-fixed coordinates
to inertial coordinates, g € R® represents the gravity vector and
res?:={xeR3:|x = 1}is the thrust vector in body-fixed
coordinates. Furthermore, the inputs to (18) are w € R> and u ¢
R which represent the angular velocity in body-fixed coordinates
and the magnitude of the thrust, respectively. The dynamical
model (18) is a simplification of the one provided in Hamel et al.
(2002) that better suits our experimental setup, since there the
Blade 200 QX quadrotor that is used in the experiments has
an embedded controller that tracks angular velocity and thrust
commands. Furthermore, we assume that the reference trajectory
satisfies the following assumption.

Assumption 1. The reference trajectory t — p4(t) is defined for
each t > 0 and there exist M, € (0, |g|) and M3 > O such that

Ba(t)] < M and ‘pﬁf)(t)‘ < M; forall ¢ > 0.
Given a path that satisfies Assumption 1, we define the track-

ing errors as P := p — pg and ¥ := v — pg, whose dynamics can be
derived from (18) and are given by:

P=7, V=Rru+g—pq. (19)
Given w : R — R3, we define
,O(Z) =

lw(p, v) — & + Pl
ku(z, R) := r R (w(P, D) — g + pa) (20b)
for each z == (pg,P,?) € MoB x R® and R € SO(3). Note that, if
Rr = p(z) and u = ky(z, R), we obtain

(20a)

p=7. v=uw{7) (21)
from (19), provided that
w(p, V) — g + pa # 0. (22)

On the other hand, if Rr # p(z), then «,(z, R) is the solution to
the least-squares problem:

min{|Rru + g — pg — w(P, V) : u € R}).

The mismatch between Rr and p(z) may lead to an increase in
the position and velocity tracking errors until the thrust vector Rr
is aligned with p(z). The controller design is a two-step process,
where we start by designing a feedback law (p,v) — w(p,?)
that exponentially stabilizes the origin of (21) and then we design
a partial attitude tracking controller that exponentially stabilizes
p(z) for the dynamics of the thrust vector Rr.
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4.1. Controller for the position subsystem

We show next that it is possible to satisfy (22) and exponen-
tially stabilize the origin of (21) from an arbitrary compact set U
using a continuously differentiable saturated linear feedback law

w(f, ¥) = Sat, (K [5T %‘T]T) (23)

satisfying Saty(x) = x for all [x| < b and |Saty(x)] < |g| — M,
for each x € R3 where b € (0, |g| — M,). Defining £2p(¢) =
{x € R" : x"Px < £} for P € R™" and £ > 0, if we select
(H,¢y) € Sio X R.g such that £2y(£y) is a bounding ellipsoid
for U, then we guarantee that the bounds =+b of the saturation
function (23) are not reached if there exist (P, £p) € Sio x Rog
and K e R3*8, such that £2p(¢p) is forward invariant for every
solution to (21) from U and

U C 2u(ty) C 2p(Lp) C 247 (b%). (24)

For each compact set U C RS, it is possible to select controller
parameters that satisfy (24) as well as

(A+BK)'P+P(A+BK)< —Q —K'RK (25)

where

[t 1) o-[3)

thus guaranteeing also the exponential stability of the origin
of (21) from U, as stated in the proposition below.

Proposition 1. For each compact set U C RS, b > 0, ¢p > 0,
¢y > 0,Re S andH € S8, there exist K € R3*6 andQ,P e %,
such that the conditions (24) and (25) are satisfied.

Proof. This result follows from the application of Saberi, Stoor-
vogel, and Sannuti (2012, Lemma 4.20). O

The previous proposition is very important to the following
theorem, which constitutes the main result of this section.

Theorem 4. For each b € (0, |g| — M,), and each compact set
U C R, there exists K € R>*® such that the origin of the closed-loop
system resulting from the interconnection between (21) and (23) is
exponentially stable from U. Moreover, each solution to (21) from

U, denoted by t — (5, 7)(t), satisfies ‘K [B()" m)T]T( < b for
eacht > 0.

Proof. Choosing a positive definite matrix H € SGO such that
2y(1) is a bounding ellipsoid for U, it follows from Proposition 1
that there exist K € R3*¢ and Q,P € S, such that the
conditions (24) and (25) hold for any positive definite matrix
ReR¥3 and any £p > 0. Let V,(§, ) := [T vT]P[PT ?)'T]T,
for each (P, V) € R®, which is a positive definite function relative

to {(p,V) € R® : p =V = 0} and satisfies: (V V,(, V), (P, D)) <
~[" ¥7]@ + KTRK) [p 77]", where f,(5. %) = (,
K[p" FT]T for each (p,7) € $2p(£p). It follows from the
conditions (24), that every solution t — (p,?) (t) to (21) from

p(t)
K [’ﬂ(r)]

4.2. Partial attitude tracking

U satisfies

<b<|g| —Myforallt>0. O

In this section, we develop a controller for (18) that tracks a
reference trajectory satisfying Assumption 1. The desired accel-
eration, imposed by the reference trajectory upon the vehicle, is

achieved by aligning the thrust vector Rr with the direction of the
desired acceleration. We refer to this as partial attitude tracking
because we do not control rotations around the thrust vector. For
controller design purposes, let us assume the following.
Assumption 2. Given § > 0, there exists a function V € 9,
with synergy gap exceeding § that satisfies

alx—rP <Vx,y)<alx—r[> VY(xy)eCUD

TV VX)|* = 4V(xy) Vxy)eC.

for some «, o, A1 > 0, where
C:={xy) eS*xQ :ulx,y) <8}, (26a)
D:={xy) €S x Q : u(x,y) > 8} (26b)

Under Assumption 2, the application of the controller devel-
oped in Section 3 yields the closed-loop system # := (Cy, Fy, D1,
G1) with state ¢ :=(z, R, y) € Z := M,B x R® x SO(3) x @, given
by

Fi(¢) = {(F(0Y, €), RS(k1(p, £)), 0) : p¥ € M5B}
(eCG={tez:(R p()y)eC} 27)
Gi(¢) = (2, R, o(R" p(2)))

¢ eDy={¢ € Z:(R"p2),y) € D}
where Fp(pf), )= (pf), v, Rricy(z, R)+g —pg) for each (pif), ¢) e
MsB x Z, the inputs u and w were assigned to «,(z, R) and

(py’ §) = S(RT p(2)) (RTD: (p(2)) Fo(py - ¢) (28)
k1 + k" (@)Y V(R p(2)) ),

for each (pff), {) € M3B x Z, respectively, with k; > 0, k, > 0
and

2 1 -~ .
V'(2) = N ([0 13]P7> lw(®, ) — g + Pal

for each z € MuB x R®. The closed-loop system represented by
‘Hy in (27) inherits the switching logic from (8) but not the same
feedback law. The feedback law (28) is comprised of negative
feedback of the attitude tracking error as in (8), but also a feed-
forward term that takes into account the fact that the reference
we wish to track is not a constant. Moreover, the function v*
is used to increase the gain of the attitude controller as the
position error increases. Given a reference trajectory satisfying
Assumption 1, compact set of initial conditions U C R® for the
position and velocity errors and a synergistic potential function
satisfying Assumption 2, the controller design is as follows:

(C1) Select H € %, such that £2;(1) is a bounding ellipsoid for
>0
U;
(C2) Select kp, ki > 0 so that
k I_(l)\.] > 1 (29)

where 1, is given in Assumptlon 2;
(C3) Given b € (0, |g| — M) and Rest 2o Select &y = £p =

(14 9)?, where
b=k | max V(x,y)
(*y)es?xQ

and a € Sio small enough and so that the constraints (24)
and (25) are feasible;

(C4) Compute the controller gain K by means of the optimiza-
tion problem min{trace(P) : (P,K) € x} where x repre-
sents the constraints (24) and (25).

This controller design enables exponential stability, as proved
next.
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Theorem 5. Let Assumptions 1 and 2 hold. For each compact set
U C RS, if (C1)-(C4) are satisfied, then Ay = {{ € Z : P =
v = 0, p(z) = Rr} is exponentially stable in the t-direction from
M,B x U x SO(3) x Q for the hybrid system (27).

Proof. Firstly, we prove that the hybrid system (27) satisfies the
hybrid basic conditions. It follows from Proposition A.1 that u is
continuous, thus both C; and D; are closed because they corre-
spond to the inverse image of a closed set through a continuous
map. It follows from b € (0, |g| — M;) and the properties of the
saturation function that D, (p(z)) is continuously differentiable
for each z € MyB x RS, hence F; is outer semicontinuous and
locally bounded relative to C;. It follows from the outer semicon-
tinuity of o that G; is outer semicontinuous relative to D; and,
since o takes values over a compact set, G; is locally bounded
relative to D;. Let

Wi(¢) = V(. D) + kiy/V(x,y) Vi €z

with P := Y~! and x := R" p(z). It follows from Assumption 2
that

min{y/Amin(P), k1/@} (B, ¥V, x — )] < Wi(¢)

=y Amax(P) + kza I(p, ,x—r)|.

for each ¢ € C; U Dy. It follows from the assumptions that
min(Q +KTRK) s

W1(§§f1) Zm Vp(pa V) 30)
B klklkh/V(x,y
2
for each f; € Fi(¢), ¢ € Q= {cez: W) <1+vL1t

follows from (24) that (p,v) € $£24(1) implies (P, V) € $£2p(1),
hence, for each solution from M,B x U x SO(3) x Q, we have
V,(p(0, 0), (0, 0)) < 1 and, consequently, W;(£(0,0)) < 1+ v.
From (29) and (30), we have W?(¢; fi) < —AW;(¢) for each
fieF(¢)¢ e £ with A := min [ A"‘Z“lﬁgm%ﬂm, Fikidy } Note that
V is a synergistic potential function relative to r by assumption,
thus it satisfies V(x,g,) < V(x,y) — 6 for each g, € o(x) and
¢ e Dy by construction, and G1(D1) N D; = ¥ because u(x, gy) =
0 < & for each g, € o(x) for each ¢ € D,. Each solution
(t,J) — ¢(t,j) to (27) from MpB x U x SO(3) x Q is such
that the initial condition ¢(0, 0) belongs to the compact set 2.
Since W is strictly decreasing during flows and jumps of (27),
it follows that £ is forward invariant for each solution from
M;B x U x SO(3) x Q. Since Gy(D1) C C; UD; and F;(¢) belongs
to the tangent cone to C; at ¢ for each ¢ € C;\D,, it follows
from Goebel et al. (2012, Proposition 6.10) that each maximal
solution to #H4 from M,B x U x SO(3) x Q@ is complete, hence A; is
exponentially stable in the t-direction from M,B x U x SO(3) x Q
for the hybrid system (27). O

It should be pointed out that, underlying the controller design
described in (C1) through (C4), there is a trade-off to be resolved:
if k, <« 1, then the position controller is going to have a low
gain K which results in large deviations from the reference; on
the other hand, if controller gain K is large, the function v*
might increase the gain on the attitude controller beyond what
is acceptable in practical terms.

5. Conclusions

In this paper, we have demonstrated that the existence of
synergistic potential functions on S" is a sufficient condition

for the asymptotic stabilization of systems evolving on the n-
dimensional sphere. Moreover, if these functions and their deriva-
tives satisfy some additional bounds, it is possible to achieve
global exponential stability. We provided a construction of syner-
gistic potential functions which generates flows along geodesics
upon switching. The proposed controller was then applied to
trajectory tracking for a vectored thrust vehicle.
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Appendix. Auxiliary results

Proposition A.1. Let r € S" and let Q be a compact set. Given
V € 9, the following hold:

(1) r € crit(VY) foreachy € Q ;
(2) The function (6) is continuous and the map (9) is outer
semicontinuous.

Proof. This result follows from the application of the Maxi-
mum Theorem in Sundaram (1996) and computations similar
to Mayhew and Teel (2013a, Proposition 1). O

Lemma A.1. The function V : V — R satisfies

argmin V(x, y) = V_1(0) = {(r, y) € V}

(xpev ] (A1)
argmaxV(x,y) =V (1) = {(x,x) € V)

x,y)ev

Moreover, V(x,y) is positive definite on V relative to {(r,y) € V}
and for each x € S",

. —X ifx#£r
argmin V(x,y) = { ; (A2)
yesn S"™\{r} ifx=r
1—r"x
v A3
Jrfrelgll . y) = 2k+1—r1Tx (A3)

Proof. Since h;(x) > 0 for all x € S" and h,(x) = 0 if and only if
x =r, it follows that h.(x) 4+ khy(x) > 0 on V. Setting V(x,y) < 0,
we find that h;(x) < 0, which can only be satisfied (with equality)
when x = r. That is, V attains its minimum value of zero on the
set {(r,y) € V}. Similarly, V(x,y) > 1 if and only if hy(x) < 0,
which is again satisfied (with equality) only when x = y and thus,
V attains its maximum value of one on the set {(x,x) € V}. To
prove (A.2) and (A.3), we note - from our previous observations
- that

1—r"x

min V(x, —.
yesn . y) = 1—rTx + kmaXyegn(1 — yTx)

Since, for each x € S", 1 —y " x attains its maximal value of two at
y = —x, this choice minimizes y +— V(x, y) for each x € S" \ {r};
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however, whenx = r, V(x,y) = 0 forany y € S"\{r}, thus proving
(A.2). Eq. (A.3) follows from evaluating V(x,y) withy = —x. O

Corollary A.1. Giveny € S", define V¥ : S" — R for each x € "
as VY(x) = V(x,y), with V given by (13). Then,
. {r.y} ifr#y
V=
enit {S" otherwise.

Proof. By definition, x € crit V¥ if and only if I7(x)V V¥(x) = 0, or
equivalently, [IT(x)V VY(x)| = 0. Noting that VY(x) = V(x, y) for
each x € §", it follows that V VY(x) = V3V(x, y) for each x € S".
By (14b) of Lemma 1, it follows that x € crit V¥ if and only if

V)1 = VX)) 1—r1Ty)=0. (A4)

Clearly, (A.4) is satisfied in three cases: VY(x) =0, 1 — V¥(x) =0,
or 1—rTy =0.When 1—rTy =0, or equivalently, when r =y,
it follows that every point in S" is a critical point, since (A.4) is
satisfied for every x € S". In fact, when r =y, VY(x) = 1/(1 + k),
so that for all x € S", V V¥(x) = 0 and obviously I7(x)V VY(x) = 0.
We now examine the remaining cases. When V¥(x) = 0, it follows
from the definition of V¥(x) = V(x,y) that 1 —r'x = 0, or
equivalently, x = r. If V¥(x) = 1, a short calculation yields
1 —y'™x = 0, or equivalently, x = y. Thus, when r # y,
critV¥ ={r,y}. O

Lemma A.2. The following holds

0<14+k—/14+2ky+k2 <1—rTx+k(1—-y"x)
< 1+k+/1+2ky + K2

(A5)
forall (x,y) e S" x Q.

Proof. The upper and lower bounds on (A.5) follow from the
solution to the optimization problem min/max{J(x,y): 1—y'y =
0,1—x"x=0,r"y—y =0} withJ(x,y)=1—r"x+k(1—y"x)
for each (x,y) € S" x 9, by means of Lagrange multipliers. O
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