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Online Range-Based SLAM Using B-Spline Surfaces

Romulo T. Rodrigues *“, Nikolaos Tsiogkas

Abstract—Range-based SLAM is a well-established technique
for estimating the pose of a mobile robot operating in an unknown
environment. Current state-of-the-art solutions use occupancy-
grid maps to represent the world. While fast and accurate, their
performance is limited by two facts. First, in an occupancy-grid
map measurements have to be discretised into cell resolution. Sec-
ond, online pose estimation, which relies on scan-to-map alignment,
typically requires smoothing/interpolating the discrete grid-map.
This letter presents a SLAM technique that builds on top of a
B-spline surface map. The local properties of splines and the inher-
ent smoothness of their basis function handle the aforementioned
problems, without significant increase in the computational cost.
Through qualitative and quantitative tests using public data sets we
show that the proposed B-spline SLAM is an affordable technique
that delivers accurate results at sensor rate speed.

Index Terms—Localization, range sensing, SLAM.

I. INTRODUCTION

IMULTANEOUS Localisation and Mapping (SLAM) is
S a state estimation technique for concurrently estimating
the pose of a mobile sensor and building a model of its sur-
rounding environment. It has been widely adopted for deploy-
ing sensor-controlled robots whenever an external referencing
system works poorly or is not available. This covers several
robotic applications such as search and rescue, mining, and
indoor service robotics. Since SLAM provides online state
feedback to a number of tasks, from task and motion planning
to motion control, a poor SLAM solution may lead to undesired
behaviours, such as mission failure or equipment damage.
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Fig. 1. Comparing classical (occupancy grid) SLAM and B-spline SLAM.

The top of the image shows a mobile robot equipped with a range sensor.
Measurements are shown in yellow (before scan-matching) and red dots (after
scan-matching). The middle image illustrates the discrete map which is stored
in occupancy-grid SLAM. Typically, for localisation, a smoothed/continuous
version of regions of the map is derived for computing scan-matching using
gradient-based strategies. The bottom image shows the proposed B-spline
SLAM strategy. The map is stored in a B-spline surface and localisation operates
directly on it. The B-spline surface map is less impacted by the misalignment
between cells and scan hits, and potentially yields better scan-to-map alignment
results.

Over the last decades, the SLAM problem has received
considerable attention leading to theoretical and computa-
tional breakthroughs. Different techniques have been success-
fully demonstrated to work, e.g., [1]-[3]. Robustness has been
achieved by relying on a two stage architecture, namely, the
front-end and back-end stages [4]. The front-end stage, also
known as online-SLAM, is responsible for processing the raw
sensor data and providing state estimation at least as fast as
the sensor rate. Then, at lower rates, the back-end optimises
the overall state estimation using graph-based optimisation
techniques. The nodes of the graph to be optimised are the
estimated pose of the robot and the edges are motion constraints
that relate two poses, such as the odometry of the robot. The
front-end provides both pose estimation and motion constraints
for building the graph. Sources such as wheel encoders and
Inertial Measurements Units (IMU) potentially enrich the graph
informativeness leading to better results. This letter focuses on
the front-end of a 2D range-based SLAM. The output of our
method can be used to build a graph which is fed into a back-end
approach such as [5], but graph-optimisation is not covered in
this letter.

The front-end of current state-of-the-art range-based SLAM
algorithms runs a scan matching routine, which searches for the
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most likely pose that matches the current reading against the map
in memory (see Fig. 1). Also called scan-to-map alignment, it
can be solved using brute-force approaches, e.g., [6]. However,
in recent SLAM strategies, such as Google Cartographer [3]
and Hector-SLAM [2], scan matching is formulated as an op-
timisation problem and solved using gradient descent methods.
Performing the optimisation efficiently requires a continuous
map. Thus, when storing the map in a discrete grid, interpolation
techniques come into play, e.g., non-smooth linear approxima-
tion [2] or bi-cubic interpolation [3]. In a nutshell, occupancy
grid-based SLAM converts floating point measurements into
discrete resolution for efficient storage. Later, scan-matching
requires the computation of derivatives and sub-cell accuracy
which is achieved by interpolating the discrete grid. We believe
that such a process leads to loss of information and potentially
degraded performance.

Continuous metric maps that use geometric features such as
lines [7] and curves [8] are able to encode in their storage format
the floating point nature of the data. However, their popularity
is still quite limited within the SLAM community. From our
previous experience with a geometric map-based SLAM [9], we
believe that possible bottlenecks for its acceptance are that merg-
ing geometric primitives is challenging and checking whether
a region is free or occupied - an important query in motion
planning algorithms - can be troublesome.

In this letter we propose an online B-spline SLAM frame-
work that builds on top of the continuous B-spline surface map
presented in [10]. Figure 1 illustrates the main advantages of
a B-spline map over a discrete occupancy-grid map for the
SLAM problem: 1) the impact of an occupied measurement is
greatest at the corresponding point (not cell) of the map, and 2)
smoothness is guaranteed by the inherent properties of splines.
No interpolation is required because the map itself is continuous.
The computational cost for updating/querying the B-spline map
is independent of the size of the map and proportional to the
order of the spline squared (constant). Our results show that a
low budget laptop is able to run public data sets at sensor frame
rate.

A. Contributions

In our previous work [10] we presented a B-spline mapping
framework assuming that the pose of the sensor is known. The
main contributions of this letter are:

1) B-spline SLAM: The core contribution is the novel online
B-spline SLAM algorithm described in Sec. IV and its
comparison with other relevant SLAM algorithms using
public data sets, showing improved results.

2) Open-source code: The theoretical results presented in
this letter are backed up by a publicly available package
with examples, including ROS integration. !

The rest of the letter is organised as follows. In Sec. II, we
discuss previous work on the SLAM problem. Sec. Il introduces
B-splines, the main tool employed in our solution. In Sec. IV,
we present the theoretical development of the proposed strategy.

Thttps://github.com/C2SR/spline-slam
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Then, in Sec. V, we assess the performance of B-spline SLAM
using public data sets and comparing with other relevant SLAM
strategies. Finally, Sec. VI concludes the letter.

II. LITERATURE REVIEW

The state in SLAM encodes the map and the pose of the robot.
Estimating the map is known as mapping, while estimating the
pose of the robot is named localisation. The literature review
presented here focuses mainly on front-end SLAM, from clas-
sical and well-established solutions to more recent approaches
that have shown promising results.

A. Landmarks

Landmark maps store the location of artificial or non-artificial
features of the environment. The landmark based EKF-SLAM
was a pioneering solution proposed by Smith et al. [11]. It
keeps track of the posterior distribution of the SLAM state
using an Extended Kalman Filter (EKF). The main advantages of
EKF-SLAM is that it is simple to implement and the results are
good if the Gaussian model assumptions are not substantially
violated. The main drawbacks are that 1) the computational
effort to incorporate an observation grows quadratically in the
number of landmarks and 2) the method requires data asso-
ciation. Dissanayake and colleagues [12] proposed removing
landmarks based on the information content. This improved the
computational efficiency of EKF-SLAM by keeping the filter
compact.

Murphy [13] was one the first authors to apply Rao-
Blackwellized particle filter (RBPF) to the solution of the SLAM
problem. Few years later, Montemerlo et al. presented Fast-
SLAM [14], an online strategy able to deal with thousands of
landmarks, something that was impossible with EKF-SLAM
approaches. In FastSLAM, a particle (or sample) represents a
hypothesis on the path of the robot - leading to the term multi-
belief or multi-hypotheses filter. For mapping, each particle
keeps track of the position of the landmarks. For path estimation,
particles are propagated in a process called sampling from the
proposal distribution. Each particle has an importance weight
that indicates the likelihood of the observations reported by the
sensor. Based on these weights, a resampling policy decides
which particles will survive or be removed. The key advantages
of RBPF are that it 1) relaxes the Gaussian assumption, 2)
deals better with non-linearities, and 3) is computationally more
efficient than previous approaches. The main drawback is the
particle depletion problem: during the resampling, particles that
are actually good may be eliminated. FastSLAM 2.0 [15] ad-
dressed the particle depletion problem by taking into account the
observations from the measurements for computing an improved
proposal distribution.

B. Occupancy Grid

Occupancy grid maps have been around since 1985, when
Moravec and Elfes [16] proposed them as method for registering
dense range measurements. Its usage in SLAM, was enabled
by the emergence of scan-to-scan alignment methods such as
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the Iterative Dual Correspondence, a two stage search method,
originally presented by Lu and Milios [17]. The first search
minimises the translation error by matching the points that are
the closest and minimising their distance (similar to the Iterative
Closest Point algorithm by Besl and McKay [18]). The second
step refines the previous estimate by matching range points that
are within the same distance in their respective reference frame.
Héhnel et al. [19] presented a scan-to-map alignment method
inspired in IDC that is able to detect, track, and filter out people
in the vicinity of the robot. Locally, scan-to-map alignment
presented good results, but small drifts make it hard to deal with
large loop closure. Degradation of the map quickly deteriorates
localisation and vice-versa. To overcome that multi-belief filters
and offline strategies have been employed.

Hihnel ez al. [20] presented an online grid-based SLAM using
a RBPF. A scan-matching routine transforms a fixed window of
consecutive range measurements into accurate odometry mea-
surements. The range-based odometry has lower variance than
pure wheel encoder odometry and it is employed for generating
a more accurate proposal distribution for the particles. Grisetti
et al. [21] proposed running a scan matching process for each
particle, instead of having a fixed proposal distribution for all the
particles as in [20]. While by doing so their strategy improved
the proposal distribution for an individual particle, the odometry
information was not properly considered. The same authors
proposed the GMapping algorithm in [1], an efficient, mature,
and popular grid-based RBPF that it is still widely employed by
the robotic community. It is an extension of [21] that considers
the odometry information. The enhanced proposal distribution
draws new particles more accurately. GMapping also uses an
adaptive resampling technique that estimates the performance of
a set of particles, which reduces the number of required particles
without compromising the solution.

The popularity of scan-to-map alignment increased with the
advent of modern LiDAR with large angular field of view and
fast frame rate. Kohlbrecher et al. [2] presented Hector-SLAM,
afast single-belief strategy based on scan-to-map alignment that
uses multiple resolution grid maps. Continuous maps and their
gradients are obtained by bi-linear filtering. The method pro-
vides accurate estimation when the sensor rate is high enough.
More recently, Hess and colleagues proposed Google Cartogra-
pher [3]. This method explicitly detects loop closure through a
branch-and-bound approach and performs offline pose optimi-
sation, the front-end is very similar to Hector-SLAM. However,
continuous maps are obtained using bi-cubic interpolation.

C. More Recent Approaches

Range based SLAM is an active research topic. Recent work
has aimed at improving SLAM performance by tackling dif-
ferent fronts, such as the front-end [22], the back-end [23], or
both [24], [25].

Zhao et al. [22] proposed a feature-based SLAM using im-
plicit functions, which allows representing a wide variety of
shapes. The authors formulate SLAM as an energy minimisation
problem, where the optimisation vector describes the pose of the
robot and the changeable parameters of the implicit functions.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021

They show that using implicit functions to represent geometric
features outperforms using pre-fixed geometric shapes such
as lines and ellipses. Xiong et al. [23] presented a two-level
optimisation approach. Local EKF-SLAM filters keep track of
sub-maps, which treat raw laser scans as landmarks. When a
sub-map is completed, it triggers a loop closure detection process
and updates a global graph. A two-level optimisation process
optimises the global graph and refines local sub-maps. Ren and
colleagues [24] proposed a correlative scan matching approach
to improve front-end scan matching in dynamic environments
using occupancy-grid maps. In addition to this, the authors
proposed a back-end that is more robust against false loop
closure detections. Daun et al. [25] use truncated signed distance
functions (TSDFs) instead of a discrete occupancy grid. The
cells in TSDFs describe the distance to the nearest obstacle.
This provides sub-pixel precision and increases the region of
convergence of gradient-descent methods during localisation.
A back-end is responsible for loop closure detection and pose
graph optimisation.

The proposed online B-spline SLAM is inspired by
lightweight single-belief pure front-end approaches like Hector-
SLAM [2]. However, instead of using a discrete grid map, we
use the B-spline surface map presented in [10]. Like TSDFs,
B-spline maps describe the environment more accurately than
discrete grid maps and provide a larger basin of convergence
during localisation. The results show that we can compete
with some of the strategies discussed in this Section, namely
GMapping [1], Hector-SLAM [2], Cartographer [3], two-level
optimisation [23], and TSDF [25].

III. PRELIMINARIES
A. Notation

The following notation is adopted. Scalar values are written in
lower-case letters and vectors in lower-case bold letters. Matrix
and random variables are typed in upper-case letters. Given
a random variable X with probability distribution p(X), the
probability of X = x is shortened as p(x). Throughout the text,
the words spline and B-spline are used interchangeably.

B. B-Spline Function

A B-spline is a vector-valued function b(7) : R — R™ that
spans a polynomial space of degree d and order d + 1. The knot
vector {ti}?géd, with ¢; < t;41, Vi, is said to support the spline
function. Let b¢(7) be the i-th coefficient of b(7), it follows
from the De Boor’s recursive algorithm [26] that

T—t,’ r— fz' r —T
—— )+ (), (D

bl (1) =
! tivr —ti ' tivre1 — Lit1

where, in particular,

=45

From the definition of B-splines stated in (1) and (2), the
following properties hold:

tp <7 <tip
otherwise

@)
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Fig. 2. A cubic B-spline function. Colored circles indicate the non-zero
coefficients of the spline function at the evaluation point specified by the vertical
dashed line. For a cubic spline, only 4 coefficients are non-zero. This is called
the local support and it widely employed in B-spline SLAM for speeding up
computations.

Property 1: (Local support) For T € [t,,,t,41) the function
b(7) has at most d 4+ 1 non-zeros coefficients. These are the
coefficients b%_, ..., b

Property 2: (Continuity) Suppose that the knot ¢, occurs &
times among the knots (ti)ﬁ‘jjf 4> With £ some integer bounded
by 1 < k < d+ 1. Then, the spline function b(7) has continu-
ous derivatives up to order d — k at the knot £,,.

The local support property is shown in Fig. 2 for d = 3. For a
cubic B-spline function only four coefficients are non-zero. Note
that typically d < m, so instead of computing m coefficients,
only d + 1 have to be considered, increasing considerable the
computational efficiency. The SLAM framework presented here
uses uniformly spaced non-clamped knot vectors, which means
that the interval between any two consecutive knots is the
same and the initial/final knots are not repeated. Thus, from
the continuity property, we have that our spline function has
derivatives up to order d — 1.

C. B-Spline Surface

A B-spline surface is a scalar-valued function s(7) : R2 —
R, with 7 = [, 7,]7 € R, defined by the tensor product of
two B-spline functions and the control points {c;; } as follows:

My—1my—1

s(T) = D eyblf(ra)b (1),

i=0 j=0

where d, and d,, are the degrees of the spline functions b, (7;)
and b, (7, ), respectively.

Let C' € R™=*™v be a real matrix with entries c;;. Then, a
B-spline surface can be written in matrix form as

S(T) = by (72)" Cby (). 3)

Now, define vec as the vectorization operator - a linear trans-
formation that stacks the columns of a matrix on top of each
other, yielding a single column-vector. Applying the vectoriza-
tion operator in (3):

5(7') = vec (bw (Tw)Tbe (Ty))
= vec (b, (7,)T @ b, (7.)T) vec (C) “)
= ¢(T)TC’
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Fig.3. Problem setup: a robot equipped with a range sensor detects occupied
space (red dots) at discrete intervals. The points between the robot and the
obstacle are assumed as free space (blue dots) and obtained at sampling intervals
of Ar along a beam. The pose of the robot £ is unknown and has to be estimated
online.

where ¢(7)7 = vec (by (7,)T @ by (12)7), ¢ = vec(C),and ®
stands for the Kronecker product.

For a uniformly spaced knot vector, the spline function is
continuous up to degree d (see Property 2). In this case, the first
derivative of the surface with respect to the parametric variable
exists and can be written in a compact form as:

ds(r) _ de(r)"
dr dr

c=[p.m7 ¢, ¢ ©

where the partial derivatives of the spline tensor are de-
T
fined as: ¢, (7)T = vec (by(7,)T ® db;—T(:”) ) and ¢, (1) =

vee (240" g b, (7,)7).

The control points define the shape of the B-spline surface,
while the knot vectors define the resolution and the rate of change
of the surface. We modify the map by updating the control points.
For higher resolution maps, we decrease the knot interval. The
final property introduced is the convex hull property [27].

Property 3 (Convex hull): A B-spline surface s(7) lies within
the convex hull of its control points (c). That results form the
fact that the B-spline coefficients are non-negative and always
add up to 1, defining a convex combination.

IV. B-SPLINE SURFACE SLAM

Consider an inertial coordinate frame {M } attached to the
origin of the map and a body fixed coordinate frame {B}
attached to the center of mass of a vehicle equipped with a 2D
range sensor, as shown in Fig. 3. For the sake of simplicity,
assume that the sensor lies at the center of mass of the vehicle.
The sensor provides [ range measurements of the environment
(r;)iZh at discrete angle intervals (a;)!Z w.r.t. the x-axis of
{B}. Applying polar to cartesian transformation, we obtain the
coordinates of the end point of the beams:

cos o .
Broce —p |77, Wi=0,...,1—1. 6)
sin «;
The superscript occ indicates that these measurements corre-
spond to occupied space. Equivalently, let & ‘r{ ;¢ be the discrete
samples virtually detected as free space, i.e., not having an

obstacle. For this purpose, we take samples between the end
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point of each beam and the robot:

COoS o4
BT{;ee:nAr ) JA—1,
’ S Qv;

(N

],WO,...

j=0,...,m/Ar —1,

where Ar is an appropriate sampling interval. In total, we
assume that there are m free space virtual measurements. We call
them virtual measurements because free space is not implicitly
detected by the sensor.

The relationship between two coordinate frames is encoded
by &€ = [x,y,9]T. A vector Pr; described in the body frame
is transformed to the map frame through the transformation
function 7":

T(g, BTZ')

cos

_ B__.
- R(i/f) Ti + Sil’lw

cos Y

, with R(¢)) = [ _Smw] ., ®

where R(1)) is a rotation matrix.

This remainder section presents the theoretical development
of the SLAM strategy proposed here. First, in Sec. IV-A we
address the mapping task. Then, the localization method is
discussed in Sec. IV-B.

A. Mapping

Traditionally, spline regression employs ordinary least
squares [27]. It requires solving a linear system, which it is
known to have a computational cost of O(n?®) using the LU
or QR decomposition, where n is the number of samples. A
method with such complexity is inappropriate for solving the
SLAM problem, where data is continuously acquired at high
rates and must be processed online. In [10], we proposed an
approximation using a recursive scheme, which decreases the
computational cost for mapping application to O(n). A brief
introduction to the B-spline mapping is presented here for the
sake of completeness. The interested reader is referred to the
aforementioned letter for details.

Let M; and Z; be discrete random variables that represent
the occupancy state and the sensor perception at T; = [7,, 7, ],
respectively. The occupancy state is either free (M; = 0) or
occupied (M; = 1). Similarly, the report of the sensor can
be either free (Z; = 0) or occupied (Z; = 1). In probabilistic
mapping, the goal is to keep track of the probability of a space
being occupied or free, i.e., p(M; = 1) and p(M; = 0). Using
Bayes theorem and log odds probabilities, we can obtain the
well-known recursive grid cell update:

log odds (m;) = logodds (1;) + , ©)

where log odds (17;) is the posterior, log odds (17;) is the prior,
and « is a constant map update factor that takes a positive value
for occupied space measurement and a negative value for free
space measurement. The B-spline map approximates (9) as

log odds(m;) ~ s(7;) = ¢(1:) " c, (10)
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where c are the control points that define the spline surface map.
The control points are updated when new measurements arrive
as

b(Ti)
[p(Ti)lI2

To avoid an unbounded control points growth they are satu-
rated:

o>

(1)

A similar clamping technique is described in [3]. From Prop-
erty 3, it follows that the B-spline surface is also within the
limits defined by ¢ and cpax.

¢ = min(max (67 Cmin)7 Cmax)-

B. Localization

The localization stack computes an estimate of the pose of
the robot via scan-to-map alignment. For that, we define the
cost function.?

[ —s(Ti(&)),

=0

J(€) =

where 7;(€) = T(£,” 79°) is the estimated map coordinate of
the endpoint of a beam, i.e., occupied space. The scan-to-map
cost function describes how well a pose estimate aligns the
current scan measurements and the map. Given an initial guess
£, we decompose the pose as é = & + A¢ and formulate the
localization problem as

n

H&iﬁn [1—s(T:(& + A€))2

=0

12)

For solving this non-linear least square problem, we assume
that the dynamic of the sensor is fast enough such that the
displacement A& is small. In this case, the non-linear function
can be approximated using a Taylor expansion around A¢ = 0,
that is,

s(rile+ 8) = s(ri@) + N ae a3
£=¢
Define the variables e¢; and h; as
e; = 1—s(1:(8)), (14)
0s(1;(§))
h! = =/ 5
e (15)

Approximating the non-linear function in (12) by (13) and
substituting (14) and (15), yields

n—1
i ; — hT A€ 16
rrAué:n;[e TAg] (16)

2For simplicity of the presentation, we adopted a quadratic loss function.
The proposed approach supports other functions like the robust loss functions
Cauchy, German-McClure, and Welsch [28].
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Algorithm 1: B-spline SLAM algorithm

input : Prior pose é prior map €, range scans
-1
(ri)izo R
output : Posterior pose &, posterior map ¢
initialize : AJ < oo, #iterations < 0, A < 1

parameters: AJ,,;, max_iterations,

1: Remove spurious measurements
2: Range scans to Cartesian coord.: {E12¢¢}1_ | « (6)

3 1=

// Localization
for each map resolution (low to high) do
while AJ > AJ,,, and #iterations <

max_iterations do
3: Local to global frame via &: {70 o
®)
4: Scan-to-map alignment error: {¢;}*; +(14)
5: Jacobian: {h;}1; < (18),(19),(5)
6: Pose update: AE < (17)
7: Cost improvement: AJ + J(€+A¢&) — J(€)
if AJ <0 then
8.1: £ + € + MAE
8.2: A« 1.5\
else
L 8.3: A+ .5A

L 9: #iterations < #iterations + 1

10: Update posterior: é — €

// Mapping

for each map resolution do
11: Detect free space: {BTZ{;66 m. ()
12: Transform free and occupied space to global
coord. frame using &: {72} {r/°}m (8)
13: Update the B-spline map: ¢ <(11)
14: Clamp control points: ¢ <—(10)

The least squares solution can be obtained by derivating the
cost function in (16) with respect to A€ and equating to zero,
yielding after some algebraic manipulations

n—1 -1 n—1
AE = — <Z hihiT> > hie;.
=0 =0

For the sake of completeness, we derive the term h;. From
the definition of a spline surface in (4), its derivative w.r.t. £ is

7 0¢(1i(§)) o [00(Ts) 0T
by = <" EIE L:é_c [—an 35“5_57 (18)
0¢(7i)

where o is as defined in (5) and

a7)

& o 1

or; 1 0 7BTimSin97BTinOSQ
5 s 0 (9)
Tiz €080 — Py sinf
The B-spline SLAM algorithm is described in Algorithm 1.
When solving the optimization problem described in (12) via
the Gauss-Newton method, we use an adaptive step A. The stop
criterion are the maximum number of iterations and AJ;,,;.
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(a) (b)

Fig. 4. B-spline SLAM map for TU Darmstadt dataset: (a) Dagstuhl and
(b) RoboCup 2010.

TABLE 1
MAIN FEATURES OF COMPARED METHODS

Map Belief ~ Loop-closure Back-end
B-spline SLAM B-spline single no no
RBPF discrete grid multi yes! no
Cartographer discrete grid single yes yes
Two-level landmarks single yes yes
TSDF TSDF single yes yes

LParticles that do not explain the loop closure are likely to be removed.

The former parameter ensures that the solver finishes in an
online-acceptable time. The latter parameter describes the max-
imum value required in improving the objective function before
accepting a solution. Moreover, we use a multi-map resolution
approach, similar to [2]. The resolution of a B-spline map is
given by the knot interval: the smaller the interval, the higher
is the resolution. A solution to the scan-matching problem is
first computed for the lowest map resolution. Then, the obtained
solution is used as a “hot start” for the next map resolution. We
follow these steps from the lowest to the highest resolution. This
increases the robustness of the localization stack against local
minima.

V. EXPERIMENTS

The proposed algorithm was evaluated using public data sets
that provide different sensors and odometry measurements. In
our tests, the main characteristic that has an impact on our
algorithm is the sensor rate. The higher the rate of the sensor, the
better the assumption that the pose displacement between two
readings is small holds, i.e., A& = 0. Therefore, when using low
rate sensors more map resolutions are required to avoid getting
trapped in a local minimum during localisation. The parameters
of the proposed algorithm are the same for all experiments,
except for the number of map resolutions, which is clearly stated.
For visualisation, the B-spline surface is sampled at 0.05 m
interval and displayed as a gray-scale image. The darker a pixel
is, the more likely it is to correspond to an occupied area.

A. TU Darmstadt Data Set

(Map resolutions: 1, knot interval: 5 cm) The TU Darmstadt
data set contains data recorded using an IMU and a Hokuyo
UTM-30LX LIDAR (45 Hz). The resulting map for two scenar-
ios computed by B-spline SLAM are shown in Fig. 4. The two
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TABLE II

INFORMATION WAS PROVIDED BY THE AUTHORS FOR THAT DATA SET

COMPARISON USING THE METRICS PROPOSED IN [30]. FOR EACH METRIC, BEST RESULTS ARE HIGHLIGHTED IN BOLD. DASHES INDICATE THAT NO

B-spline SLAM

RBPF (50 part)

Cartographer

Two-level opt.

TSDF

Aces

Absolute translational (1m)
Squared translational (m?)
Absolute rotational (deg)
Squared rotational (degz)

0.0404 + 0.0452
0.0036 + 0.0127
0.340 £ 0.392
0.270 £ 1.657

0.060 + 0.049
0.006 + 0.011
12 £ 13
3.1 +£7.0

0.0375 £ 0.0426
0.0032 + 0.0285
0.373 £ 0.469
0.359 +£ 3.696

0.0283 £ 0.0397
0.0027 £ 0.0100
0.351 £ 0.428
0.294 + 1.253

Intel

Absolute translational (m)
Squared translational (m?)
Absolute rotational (deg)
Squared rotational (deg?)

0.0262 + 0.0281
0.0014 + 0.0066
0.445 £+ 0.969
1.137 £+ 6.654

0.070 £ 0.083
0.011 £ 0.034
3.0£53
36.7 + 187.7

0.0229 + 0.0239
0.00114 0.0040
0.453 £ 1.335
1.986 + 23.988

0.0150 £ 0.0204

0.0009+ 0.0009
0.390 £ 0.402
1.629 £ 9.736

MIT Killian Court
Absolute translational (1)
Squared translational (1m?)
Absolute rotational (deg)
Squared rotational (deg?)

1.0379 + 2.5719
7.6918 + 24.8118
0.779 + 1.246
2.160 + 5.652

0.122 + 0.386!
0.164 + 0.814!
0.8 + 0.8¢
0.9 + 1.7}

0.0395 £ 0.0488
0.0039 + 0.0144
0.352 £ 0.353
0.248 £ 0.610

0.0367 £ 0.0473
0.0031£ 0.0134
0.294 + 0.275
0.218 + 0.439

0.0276 £ 0.0235
0.0013 £ 0.0095
0.2807 £ 0.2462
0.1394 + 0.26865

MIT CSAIL

Absolute translational (1m)
Squared translational (1m?)
Absolute rotational (deg)
Squared rotational (deg?)

0.0268 + 0.0223
0.0012 £ 0.0041
0.315 £+ 0.274
0.175 £ 0.306

0.049 4 0.0491
0.005 4+ 0.0131
0.6 £+ 1.2F
1.9 + 17.31

0.0319 £ 0.0363
0.0023 + 0.0099
0.369 £ 0.365
0.270 £ 0.637

Freiburg bldg 69
Absolute translational (1m)
Squared translational (m?)
Absolute rotational (deg)

0.0410 £ 0.0315
0.0027 + 0.0044
0.420 + 0.472
0.399 £ 1.310

0.061 + 0.0441
0.006 + 0.020"
0.6 + 0.6
0.7 £ 2.0t

0.0452 £ 0.0354
0.0033 + 0.0055
0.538 £ 0.718
0.804 £ 3.627

0.0421 + 0.0349
0.0029 + 0.0048
0.483 £ 0.571
0.682 + 1.533

0.0382 + 0.0292
0.0023 + 0.0044
0.4245 £+ 0.4610
0.3926 + 1.2308

Squared rotational (deg?)

LOdometry was improved using a pre-processing scan-matching step (see [30]).

sensors (IMU and LiDAR) were assembled in a handheld kit.
For instance, the data from the Dagstuhl building (Fig. 4(a))
was acquired by a human walking through the environment
carrying the sensors by hand. The sensor was subject to roll,
pitch, and vertical oscillations breaking the planar movement
constraint. The results presented in [2] (Hector-SLAM) correct
the measurements by incorporating the IMU data to obtain a
stabilised coordinate frame. In our SLAM framework we do
not take the IMU data into account. Since no ground truth
is provided, it is hard to assert whether a mapping structure
presented in our solution but not in [2] represents an advantage
or disadvantage. Given that both maps in Fig. 4 are coherent, we
conclude that our results are good in a qualitative sense.

B. Radish Data Set

(Map resolutions: 3, knot interval: 5, 12.5, 30 cm) The
Robotics Data Set Repository (Radish) [29] contains odometry
data and range scan measurements (~5 Hz). Figure 5 shows
the qualitative results using the proposed algorithm in four of
the five scenarios evaluated. For quantitative results, we use the
metric proposed by Kummerle ez al. [30]. The authors show that
using global pose (i.e., a fixed reference frame) is sub-optimal for
comparing SLAM algorithms. Instead, they propose comparing
the translational and rotational errors between two relative poses
(absolute and squared errors). For the Radish data set, a fair
ground truth for several relative poses were obtained by human
operators with knowledge of the building [30].

Tables I and II show the comparison of our algorithm with
others in the literature. Table I describes the properties inherent
to each strategy. Table II quotes the results for RBPF with 50
particles (GMapping) [30], Cartographer [3], two-level opti-
misation [23], and TSDF [25]. In bold, we highlight the best

Fig. 5. B-spline SLAM output using the Radish data set [30]: (a) ACES
Bulding, (b) Intel Research Lab, (c) MIT CSAIL building, and (d) Freiburg
building 69. The blue dashed line is the path travelled by the robot.

results and a dash indicates no information was provided by
the authors for the corresponding data set. The methods being
compared use the odometry data available in the log files. We
tried to obtain results using Hector-SLAM but unfortunately it
was failing to produce a correct map despite extensive tuning
efforts. It is hypothesized that the high angular displacement
between consecutive readings did not allow the correct operation
of that SLAM method. On the other hand, B-spline SLAM
fails only in the MIT Killian Court due to the long and narrow
corridors which result to the infinite corridor problem. Other
than this, it performs well. In the RBPF (50 part) algorithm
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there are 50 particles, and for each particle a scan matching
on a discrete occupancy grid map is performed. The fact that
we are consistently better than RBPF shows the potential of
B-spline based SLAM. Comparing with more recent methods
that run back-end optimisation, the proposed strategy is still
competitive: it outperforms Cartographer for the MIT CSAIL
data set and it is able to achieve either the smallest absolute or
squared rotational error in the ACES, Intel, and Freiburg bld 69
data sets. It is likely that the accuracy of the proposed SLAM
comes from the fact that the continuous B-spline maps are more
accurate than discrete maps (see [10]) and allow for a larger
basin of convergence when performing scan-matching. There is
still room to improve B-spline SLAM, since in contrast to these
other methods we do not perform any loop-closure mechanism
or back-end optimisation.

The implementation of the proposed algorithm can process
the Radish data set 1.5 to 2 times faster than the sensor rate
(evaluated on a computer with an Intel Core i5-3317 U 1.7 GHz).
For the mapping task, updating or evaluating the map has com-
putational complexity O(1). Regardless of the size of the map,
by exploiting the local property of B-spline, only 16 control
points (for d = 3) have to be evaluated or updated. For the lo-
calisation task the computational cost is similar to the front-end
of Cartographer or any other grid-based method that relies on
bi-cubic interpolation. The complexity grows linearly with the
number of iterations of the nonlinear least squares solver. In the
worst case, the computational time is limited by the maximum
number of iterations.

VI. CONCLUSION

This letter presents an online B-spline SLAM strategy for
range based sensors. In contrast to classical SLAM solutions
that use discrete maps to represent the environment, the pro-
posed solution relies on a B-spline surface map. In general,
B-spline maps are more accurate than discrete maps as they
do not require discretising floating point measurements into cell
resolution. This has a direct impact on the outcome of SLAM.
Although we do not perform explicit loop closure, the results
using public data sets show that our SLAM framework is able to
build accurate maps at sensor rate speed. Quantitative results
also show that B-spline SLAM outperform multi-hypothesis
grid-based SLAM and it is able to compete with state-of-the-art
solutions that perform offline optimisation. The performance of
B-spline SLAM can be further improved by adding loop closure
detection and offline optimisation.
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