
A general discrete-time method to achieve resilience in consensus algorithms

Guilherme Ramos, Daniel Silvestre, Carlos Silvestre

Abstract— In this paper, we approach the problem of a set
of network agents reaching resilient consensus in the pres-
ence of a subset of attacked nodes. We devise a generalized
method, with polynomial time complexity, which receives as
input a discrete-time, synchronous-communication consensus
algorithm, a dynamic network of agents, and the maximum
number of attacked nodes. The distributed algorithm enables
each normal node to detect and discard the values of the
attacked agents while reaching the consensus of normal agents
for the input consensus algorithm. Hence, the proposed method
adds an extra layer of resilience to a given discrete-time and
synchronous-communication consensus algorithm. Finally, we
demonstrate the effectiveness of the method with experimental
results, showing some attack circumstances which we can
counter, where the state-of-the-art methods fail.

I. INTRODUCTION

The study of cybersecurity in networked control systems
(NCS) is of utmost importance. We face a change of
paradigm with the IoT (Internet of Things) with networked
control systems often being connected to the Internet. This
setting opens the door to malicious attacks that can drive
systems to dangerous states, translating to physical faults
or serious accidents. An example of NCSs is the collective
agreement among a set of agents in a network (regarding
temperature, computer loads, power generation, to name a
few) referred to as consensus problems.
Consensus algorithms (CAs) [1] exchange messages in order
to have agents agreeing on an outcome in a distributed way.
Moreover, this is a problem arising in diverse areas with
examples ranging from: distributed optimization [2], [3];
motion coordination tasks like flocking, leader following [4];
rendezvous problems [5]; and resource allocation in com-
puter networks [6]. Thus, the problem of consensus is the
common denominator of crucial applications, such as the
development of Distributed Kalman Filters to estimate the
motion of a target in 2D, see [7].
Resilient algorithms for multi-agent systems have been de-
veloped in the literature and can be categorized into two
main paths. The first one is fault detection and isolation,
i.e., normal agents detect and isolate attacked nodes to reach
consensus. The second one tries to obtain consensus ignoring
suspicious agents that may or may not be attacked nodes.

G. Ramos (gramos@fe.up.pt) is with Dep. of Electrical and
Computer Engineering, Faculty of Engineering, University of Porto, Por-
tugal. He acknowledges the support of Institute for Systems and Robotics
(ISR), Instituto Superior Técnico, University of Lisbon, Portugal, through
scholarship BL112/2019. D. Silvestre and C. Silvestre are with the Dep. of
Electrical and Computer Engineering, Faculty of Science and Technology,
University of Macau, China. D. Silvestre is also with ISR. C. Silvestre is
on leave from Instituto Superior Técnico/University of Lisbon, Portugal.
This work was partially supported by project MYRG2018-00198-FST of
the University of Macau, by the Portuguese Fundação para a Ciência
e a Tecnologia (FCT) through ISR, under Laboratory for Robotics and
Engineering Systems (LARSyS) project UIDB/50009/2020 and by FCT
project POCI-01-0145-FEDER-031411-HARMONY.

A fault-tolerant algorithm for Byzantine consensus in asyn-
chronous networks is proposed in [8], [9]. The method uses
a less restrictive topological condition, and it can cope with
synchronous networks, delay in the network communication,
and time-varying graph networks.
In related work, authors have added a detection overlay to
attain resilience in the CA. In [10], a gossip algorithm
capable of dealing with worst-case and stochastic faults is
developed. The approach may also be used to reach resilient
consensus on a value in the intersection of the estimates
that each node keeps for the other agents [11]. In [12], the
work is extended to a larger family of gossip algorithms.
These systems have fast convergence, but it suffers from
an exponential time complexity in the isolation of attackers,
contrasting with the proposed polynomial-time method.
To deal with misbehaving agents, the work of [13] sought
two parameter-independent fault-tolerant CAs: (i) adaptively
estimates the number of faulty agents which, in the presence
of f faulty nodes, converges when the network of non-faulty
agents is (f + 1)-robust; (ii) a non-parametric method that
converges if the network of non-faulty nodes is (f+1)-robust
and all normal nodes hold the same number of in-neighbors.
In [14], the vulnerabilities of consensus-based distributed
optimization protocols when facing nodes deviating from
the designated update rule and the performance limitations
of any distributed optimization algorithm in the presence of
adversaries are studied. With the notion of maximal f -local
sets of graphs for cases where there are at most f attacked
nodes in every agent neighborhood, lower bounds on the
distance-to-optimality of feasible solutions are given.
To be robust to misbehaving agents, [15] presents a second-
order sampled-data CA where: (i) each normal agent updates
its state utilizing local information; (ii) malicious nodes
may execute their updates arbitrarily. The authors detail a
resilient CA, assuming that the (unknown to normal agents)
network is sufficiently connected and that each normal node
knows the maximum number of malicious agents. To avoid
the effect of attacked nodes, each normal agent ignores
neighbors having large and small position values. The work
in [16] extends those mentioned above, yielding a clock
synchronization CA for wireless sensor networks.
Similarly, in [17], the author allows each node in a network
to ignore a possibly distinct number of extreme neighbors
and show graph conditions that ensure network consensus.
In [18], the authors introduced a resilient leader-follower
consensus to arbitrary reference values. Under the same idea,
where an agent ignores a number of the largest and the small-
est received values, their work assures a consensus value
belonging to the convex hull of initial nodes states. In this
line, [19] designs a resilient CA for time-varying networks
of dynamic agents; [20] deals with the case of quantized
transmissions. In [21], a consensus+innovations estimator
where each agent thresholds the gain of its innovations term
is proposed, with polynomial convergence rate when there

2020 59th IEEE Conference on Decision and Control (CDC)
Jeju Island, Republic of Korea, December 14-18, 2020

978-1-7281-7447-1/20/$31.00 ©2020 IEEE 2702

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2021 at 23:09:07 UTC from IEEE Xplore. Restrictions apply.

are less than half of the attacked nodes.
Usually, resilient consensus approaches let each agent discard
a set of larger and smaller neighbor values. Thus, sending a
value in a specific range may still affect the consensus.
In this work, we say that an attacked node or attacked agent
in a consensus network is an agent that tries to drive the
regular agents’ states to a desired, by the attacker, value. We
also refer to such a node as a faulty agent or faulty node.
Main contributions: For discrete-time CAs with syn-
chronous communication, and dynamic networks, we: (i)
introduce a general distributed algorithm that allows each
normal agent to identify, in polynomial-time, whenever there
exist attackers in the network; (ii) we propose a general
polynomial-time distributed method that receives as inputs a
CA and the maximum number of attacked agents and is capa-
ble of identifying and ignoring the attacked agents’ values.
Lastly, we study the computational complexity of the pre-
sented methods and prove their soundness and completeness.
In summary, we propose general methods that receive as
input a discrete-time CA with synchronous communication
and add an extra layer of resilience to the CA. One of the
proposed methods aims to detect the existence of attacked
nodes, and the other method aims to both detect attacked
agents and correct the normal agents’ states, disregarding
the attacked agents’ shared values.
Preliminaries and Notation: We denote by N the set of
positive integers and by N0 the set of non-negative ones.
Next, we revise graph theory concepts [22]. A digraph G is
a pair G = (V, E), where V is a set of n > 1 nodes, and E ⊆
V×V is a set of edges. Edges are ordered pairs representing
an accessibility relationship between nodes. If u, v ∈ V and
(u, v) ∈ E , then node v directly accesses information shared
by node u. We also call the digraph by network and the
nodes by agents. A digraph is a complete digraph when each
node can directly access information of all the other nodes.
Let v ∈ V , we define the neighbors of v as Nv = {v} ∪
{u : (u, v) ∈ E}, and they are the set of nodes that v can
directly access information. The in-degree of a node v ∈ V
is dv = |Nv|, i.e., it is the number of neighbors of v. The
out-degree of a node v ∈ V is ov = |{u : v ∈ Nu}|.
Given a digraph G, we define a path as a sequence of nodes
(v1, v2, . . . vk) with (vi, vi+1) ∈ E , for all i = 1, . . . , k−1. G
is strongly connected if for any nodes u, v ∈ V there exists
a path from u to v. A helpful way to describe a digraph
is by its adjacency matrix, A ∈ Rn×n. For a digraph G =
(V, E), Au,v = 1 if (u, v) ∈ E , and Au,v = 0, otherwise.
A subgraph/subnetwork, H = (V ′, E ′), of G = (V, E) is a
digraph with V ′ ⊂ V and E ′ ⊂ E . Let A ⊂ V , we define
H = G \A as the subgraph of G, with H = (V \A, E ′), and
E ′ = {e ∈ E : e = (u, v) and u, v /∈ A}.
From this point on, we use the discrete-time variable t ∈
N0. Given a sequence of values {s(t)}t∈N0 or a function
f : R → R, if the sequence or the function has limit,
i.e., limt→∞ s(t) = a or limt→∞ f(t) = b, then we write
compactly that s(t) → a or f(t) → b. For a set S ⊂ N, we
define its subsets by ℘(S). We identify all permutations of a
set in ℘(S) with its sorted version, e.g., we identify {7, 2, 5}
with {2, 5, 7}. For example, if S = {1, 2, 3}, then ℘(S) =
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. We denote
the subsets of S of size i ≤ |S| by ℘(S, i) = {w ∈ ℘(S) :
|w| = i}. For v ∈ Rn, we denote its i-th entry by v[i] for
i ∈ {1, . . . , n}. When useful, we index vector positions by

keys (as to define dictionaries in computer science), e.g. for
v ∈ R8 and for the above ℘(S), we may index the entries
of v by the elements of ℘(S), e.g. v[∅] or v[{2, 3}].
Finally, we use the standard universal and existential quan-
tifiers, ∀ and ∃. Also, we use the “exists one and only one”
quantifier, ∃!x.ϕ(x) ≡ ∃x.ϕ(x) ∧ ∀y 6=x.¬ϕ(y).

II. PROBLEM STATEMENT

In this work, we are interested in the case where an attacker
(malicious entity) has a particular goal (not only trying to
prevent consensus convergence). To this end, an attacker
wants to deviate the consensus of a network to a specific
value a that may be harmful to the system. Remark that
the attacker may actuate agents to transmit distinct values to
several neighbors, it may act as a Byzantine node, as much
as the values are converging asymptotically to a. Let the set
of attacked nodes of network G = (V, E) be denoted by A,
with A ⊂ V . The goal is to create an algorithm that receives
as input a CA, a network of agents and the maximum number
of attacked agents and allows normal agents to identify the
attacked nodes, ignoring their values in the final agreement.
In other words, the objective is to devise a method that
adds an extra layer of resilience to a given discrete-time and
synchronous-communication consensus algorithm.
In what follows, we denote by C a discrete-time and syn-
chronous communication CA. C receives as input a (possibly
dynamic) digraph G(t) = (V, E(t)) and the number of time
steps to run the CA N ∈ N. C outputs a vector with size |V|
with the state that each node arrived after N time-steps.
Problem 1: Let C be a CA to run for N ∈ N time steps,
a network of agents G = (V, E), A ⊂ V a set of attacked
nodes such that if u ∈ A then x

(t)
u → a (a is unknown for

the normal nodes). The goal is that normal nodes, v ∈ V \A:
1) identify the presence of attacked nodes, i.e. if |A| > 0;
2) compute the consensus resulting from C for N time steps
considering the subnetwork without attacked agents, G \ A.
By detection of an attack, we mean that a normal agent is
capable of identifying the existence of attacked agents (but
they may not know which ones are the attacked agents). In
this paper, we assume that we deal with attacks that can be
detectable. By detectable, we mean that we do not consider
the possibility of having an initial set of agents’ states
without attacked nodes and another initial set of agents’
states with attacked nodes, that only change their initial
states, yielding the same execution trace of the CA. To
approach Problem 1, we require further assumptions.
Assumption 1: Let G = (V, E) be a digraph, A a set of
attacked agents and C a CA and C(G, N) be the consensus
value of nodes V \ A resulting from applying C for N ∈
N time steps. Let ε > 0 denote the precision utilized for
computations. For all v ∈ V \A and for all u ∈ V it follows
that limt→∞ |C(G \ {u}, t)− x

(t)
v | > ε. �

Assumption 1 only requires that no agent has a state equal
to the consensus of the subnetwork excluding that agent.
Assumption 2: Let G = (V, E) be a digraph, A a set of
attacked agents and C a CA. The CA C converges for every
subgraph H of G with H = G \ V ′, where |V ′| ≤ |A|. �
Assumption 2 is a more general assumption. Essentially, we
require the network without attacked agents to be connected
in order to reach consensus. A usual and more restrictive

2703

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2021 at 23:09:07 UTC from IEEE Xplore. Restrictions apply.

robustness assumption is, for example, the one presented
in [23]. The authors define more restrictive notions of
robustness called r-robustness and (r, s)-robustness, which
sometimes are computationally hard to verify. Further, As-
sumption 2 is also fair since we expect that C converges for
the network without attacked nodes. From now on, we work
under the Assumptions 1 and 2.
Our goal is to develop an algorithm ensuring that
∀u∈V\A limt→∞ xu(t) = x∞ for the value x∞ that depends
on the underlying CA, denoting the consensus state. Also, the
problem should be solved distributedly resorting only to the
network dynamics information and the state values obtained
using the CA at each point in time.

III. ON THE F-RESILIENCE OF CONSENSUS ALGORITHMS

Now, we present an algorithm to solve Problem 1. The
current proposal allows each normal agent to detect all the
attacked agents and to correct the consensus value.
The intuition of the algorithm that we formalize next is
that each agent receives a value from its neighbors and
updates an internal vector. The first entry of the vector is the
result of computing an additional step of the CA C with the
information received from all its neighbors. The subsequent
entries correspond to computing one iteration of algorithm
C discarding the values received for each possible subset of
nodes, using the dictionary order, up to subsets of size f .
After this update to its internal vector state, the node selects
its next state to be the entry of that vector that it decides to
correspond to the consensus state that excludes the attacked
nodes if its internal vector already allows to pinpoint the
attack agents. In the initial time steps, it cannot discern if
there are attacked nodes and selects the first entry to be the
next value it shares to its neighbors. For f maximum number
of possible attacked agents, |A| ≤ f , and a computational
precision ε > 0, the algorithm goes as follows.
Alg. 1: Let G = (V, E) be a network of agents, C be a CA, and
N ∈ N be the time steps for which we run C. Given f ∈ N0 and
ε > 0, let F =

⋃f
i=0 ℘(V, i) be the set of all subsets of agents

with sizes from 0 to f . For each time step t ∈ N, the algorithm
has the following three steps:
1. (State Vector Initialization) Each agent v sets c(0)v [F [i]] = x

(0)
v ;

2. (State Vector Update) For each time instance, t ∈ N, each agent
u ∈ V communicates a vector c(t)u with size |F|, where at the i-th
entry c

(t)
u [F [i]] is the result of applying algorithm C for agent u for

one iteration, utilizing the i-th entries of the last received vectors
c
(t−1)
v , v ∈ Nu, excluding the nodes in Nu that are in the F [i];
3. (Selection of the Consensus State Among the State Vector
Values) For each t ≤ N every normal agent u ∈ V \A selects x

(t)
u

to be the j-th entry of c(t)u , x(t)
u = c

(t)
u [j], where j is given as

(i) if ∀
S∈F,S6=∅

∣∣∣c(t)u [∅]− c(t)u [S]
∣∣∣ ≥ ε, then j = 1, i.e. agent u

considers the information of all neighbors;
(ii) else

j = argmin
1<j′≤|F|

|F [j′]|

s.t. F [j′] ∈ ℘(V, i)∣∣∣c(t)u [∅]− c
(t)
u [F [j′]]

∣∣∣ < ε

∀
S∈℘(V,i),S6=F[j′]

∣∣∣c(t)u [∅]− c(t)u [S]
∣∣∣ ≥ ε.

That is, agent u identifies F [j′] as the smallest set (with i attacked
agents, F [j′] ∈ ℘(V, i)) that contains all the attacked nodes and
selects the state as the entry of c(t)u which discards the information
of the agents in F [j]; •

In step 1., each agent v ∈ V sets all the entries of its
initial vector state to be its initial value x

(0)
v . In step 2., the

agents communicate their vector states to their neighbors,
and they update their vector states following one step of
the CA C for each entry of the received vector states. This
update corresponds to refreshing the consensus state (each
entry of the state vector) for each subnetwork of agents that
excludes, at most, f of the network nodes. Intuitively, in step
3.(i) of Alg. 1, each normal agent verifies if its state vector
has different values when considering distinct subsets of
agents. If so, it decides that there are not attacked agents and
considers all neighbors information. Otherwise, in step 3.(ii)
of Alg. 1, each normal agent searches for the set of agents
that does not contain attacked nodes. To do so, it searches its
vector state and, for each entry of the vector corresponding
to a number of discarded agents, it checks if there is a unique
value different from the remaining ones and from the value
that corresponds the entire network information.
To illustrate the algorithm, we consider a discrete-time and
synchronous communication CA, considering the complete
digraph with three agents G = (V, E), where V = {1, 2, 3}
and E = {(i, j) : i, j ∈ V and i 6= j}. Additionally, suppose
that f = 1 and that agent 3 is the attacked agent, i.e.
A = {3}, and ε = 0.05. For illustrative purposes, agent 3
always share the same value, i.e., x3(t) = 0.1 and c3[F [j]] =
0.1, for any t ∈ N and for any j = 1, . . . ,

∑f
i=0 ℘(V, i).

Therefore, the set F is F = {∅, {1}, {2}, {3}}. Last,
consider that x1(0) = 0 and x2(0) = 1. In Table I, we

□

□
□ □ □ □

□ □ □ □ □ □ □ □ □

♢

♢
♢ ♢ ♢ ♢

♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

2 4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

Time

C
on
se
ns
us
V
al
ue

□ x1 ♢ x2 ○ a3

Fig. 1: State evolution of agents V using Alg. 1 to a discrete-time and
synchronous communication CA, with G and set of attacked agents A =

{3}. c3[F [i]] = c3[F [j]] for any i, j = 1, . . . , |F|.

illustrate the execution of Alg. 1 for the first 7 time steps.
The evolution of each agent state is also depicted in Fig. 1.
In a more realistic scenario, the attacker may select dis-
tinct values for the attacked node to share in vector
c
(t)
a , a ∈ A. To illustrate this, consider the upper men-

tioned example, but with the attacked node 3 sharing,
for each time instance, the values obtained as: c

(t)
a =

[0.1+2−t 0.1−0.2(1.7−t) 0.1+0.6(1.5−t) 0.1+0.5(1.2−t)]
ᵀ
.

The proposed algorithm allows the detection and correction
of the consensus state of each normal agent, see Fig. 2.

Another noticeable point is how less restrictive Assumption 2
is when compared to the usual robustness requirements.
In fact, Alg. 1 allows detecting and discarding attacked
nodes even when more than half of the network nodes are
controlled by an attacker. To illustrate this, consider the
complete network with 5 agents, G, and the set of attacked
agents A = {3, 4, 5}, with initial states represented in Fig. 3.
Even though more than half of the agents are trying to deviate
the consensus state of the normal agents, Alg. 1 with f = 3
and ε = 0.05 allows agents 1 and 2 to recover from such
situation and achieve the consensus state which is the average

2704

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2021 at 23:09:07 UTC from IEEE Xplore. Restrictions apply.

c
(t)
u c

(t)
u [p] t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

c
(t)
1 [∅] 1.0 0.37 0.28 0.22 0.18 0.15 0.14 0.12

c
(t)
1 c

(t)
1 [{1}] 1.0 0.55 0.32 0.21 0.16 0.13 0.11 0.11
c
(t)
1 [{2}] 1.0 0.05 0.08 0.09 0.09 0.1 0.1 0.1
c
(t)
1 [{3}] 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5
c
(t)
2 [∅] 0.0 0.37 0.28 0.22 0.18 0.15 0.14 0.12

c
(t)
2 c

(t)
2 [{1}] 0.0 0.55 0.32 0.21 0.16 0.13 0.11 0.11
c
(t)
2 [{2}] 0.0 0.05 0.08 0.09 0.09 0.1 0.1 0.1
c
(t)
2 [{3}] 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

c
(t)
3 c

(t)
3 [∅] = c

(t)
3 [{1}] = c

(t)
3 [{2}] = c

(t)
3 [{3}] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

TABLE I: Illustrative example of the proposed method to reach resilient consensus, with network of agents G, attacked node A = {3} and ε = 0.05.
The state of x(t)

u is the value in bold of the vector c(t)u .

□

□

□ □ □ □ □ □ □

□ □ □ □ □ □

♢

♢

♢ ♢ ♢ ♢ ♢ ♢ ♢

♢ ♢ ♢ ♢ ♢ ♢

○

○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

× × × × × × × × × × × × × × ×

+
+

+
+ + + + + + + + + + + +

▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

0 2 4 6 8 10 12 14

0.0

0.5

1.0

1.5

Time

C
on
se
ns
us
V
al
ue

□ x1 ♢ x2 ○ c3[F[1]] × c3[F[2]]

+ c3[F[3]] ▽ c3[F[4]]

Fig. 2: State evolution of normal agents (V \ A) and of the vector
shared by the attacked agent, c(t)3 , using Alg. 1 and a discrete-time and
synchronous communication CA, with G and A = {3}.

□

□

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
×
× × × × × × × × × × × × × × × × × ×

□

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○
○○○○○○○○○○○○○○○○○○

×

×

× × × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□ □
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□

□

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○○○○○○○○○○○○○○○○○○○

×

×

× × × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○
○○○○○○○○○○○○○○○○○○○○

×

×

×
× × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢
♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○
○○○○○○○○○○○○○○○○○○

×

×

× × × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×

×
× × × × × × × × × × × × × × × × × ×

□

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×

×
× × × × × × × × × × × × × × × × × ×

□

□

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○○○○○○○○○○○○○○○○○○○○○
× ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○○○○○○○○○○○○○○○○○○○
× ×

□

□

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
×
× × × × × × × × × × × × × × × × × ×

□

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○
○○○○○○○○○○○○○○○○○○

×

×

× × × × × × × × × × × × × × × × × × ×

□

□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢

♢

♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○

○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□ □
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○

○
○○○○○○○○○○○○○○○○○○○

×

×
× × × × × × × × × × × × × × × × × × ×

□

□

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢
★

★
★
★★★

★

★

★★★★★★★★★★★★★

� � �� �� ��

���

���

���

���

���

���

������ �� ����������

�
�
�
�
�
�
�
�
�
�
�
��
�

★ �� ��

Fig. 3: State evolution of normal agents (V \A = {1, 2}), and evolution
of the shared by the attacked agents vector, A = {3, 4, 5}, using Alg. 1
and a discrete-time and synchronous communication CA, with complete
network of agents, G.

of x(0)
1 and x

(0)
2 , see Fig. 3. The values in red correspond to

the different entries of the vectors c
(t)
v , t ∈ N0, for v ∈ A.

If the goal of the method is just detecting the existence of
attacked agents, instead of which are attacked nodes and
without state correction, then we show a simplified and more
efficient version of Alg. 1. In this case, we do not need to
have a parameter f , and we can consider the set F to be
F = {∅, {1}, . . . , {|V|}}, see Alg. 2.
Alg. 2: Let G = (V, E) be a network of agents, C be a CA, and
N ∈ N be the number of time steps for which we run C. Let ε > 0
and F = {∅, {1}, . . . , {|V|}}, and hence |F| = |V|+ 1 = n+ 1.
The detection algorithm consists in the following three steps:
1. (State Vector Initialization) Each agent u sets c(0)u [F [i]] = x

(0)
u ;

2. (State Vector Update) For each time instance, t ≤ N , each
agent u ∈ V communicates a vector c

(t)
u with size |F| = |V|+ 1,

where the i-th entry c
(t)
u [F [i]] is the result of algorithm C for agent

u, utilizing the i-th entries of the last received neighbor vectors
c
(t−1)
v , v ∈ Nu;
3. (Detection of Attacked Agents from the Vector State) For
t ≤ N every agent u checks if
(i) if ∀

S∈F,S6=∅

∣∣∣c(t)u [∅]− c(t)u [S]
∣∣∣ < ε or

(ii) ∃!
S∈F,S6=∅

∣∣∣c(t)u [∅]− c(t)u [S]
∣∣∣ ≥ ε, then it detects the existence

of attacked agents and outputs TRUE;

(iii) else it does not detect attacked nodes and outputs FALSE. •
Next, we show that Alg. 2 detects the existence of attacked
nodes, and the soundness and completeness of Alg. 1. That
is, if there are several attacked agents, not exceeding f , then
we detect them and achieve the consensus value discarding
the malicious agents, and that if detection occurs with
robustness parameter f , then there are at most f attacked
agents. Next, we show that any normal agent outputs TRUE,
if there are attacked agents and FALSE, otherwise.
Proposition 1: Let G = (V, E) be a digraph with n nodes,
C be a CA and A = {v1, . . . , vk} ⊂ V be a set of k nodes
attacked by a malicious agent making each of their values
converge to a value a, verifying Assumption 1, and ε >
0 be the computational precision used. Using Alg. 2 with
robustness f ≥ |A|, each agent v ∈ V \ A identifies after
some time steps if there are attacked agents. ◦

Proof: If there are attacked agents (|A| = k > 0) the
consensus of each agent in G using C converges to a. Each
v ∈ V \ A has a state vector with: a consensus value of
considering all the nodes (first entry), all nodes except one
(for a fixed ordering of the nodes) in the next n entries (for
each set of nodes of the form V \ {u}, u ∈ V). If k > 0,
after some time steps, for each normal node, either there is
at most one of the consensus vector values that is different
by at least ε (there is one attacked agent) or every consensus
value is equal (they converged to the attacker value), step
3.(i). In both cases, v ∈ V \ A outputs TRUE. If A = ∅, by
Assumption 1, the consensus value that each node computes
for the entire graph is different (by at least ε) from the value
for each subgraph without one of the nodes, and each v ∈
V \ A does step 3.(iii), outputting FALSE.
A core issue when evaluating a resilience method is its added
complexity. As discussed, methods removing smaller and
larger received values have constant additional complexity,
but do not detect some attacking cases. Next, we state the
computational complexity of the Alg. 2. As a trade-off of
the increased detection capabilities, our proposal increases
linearly with the number of nodes the complexity.
Proposition 2: If the computational complexity of the CA C
to run for N ∈ N time steps is C(N), then Alg. 2 has time
complexity of O(nC(N)). ◦

Proof: Let C(N) be the computational complexity of the
CA C to run for N ∈ N time steps and let |V| = n, then
Alg. 2 is equivalent to run C n+1 times, in step 2. (i.e., the
number of entries of cu for u ∈ V), and the remaining steps
(1. and 3.) have lower time complexity, more specifically
O(n). Totaling a time complexity of O(nC(N)).
A similar analysis can be performed for Alg. 1 which,
besides the detection, allows each normal agent to recover

2705

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2021 at 23:09:07 UTC from IEEE Xplore. Restrictions apply.

and to converge to the correct steady state.
Theorem 1: Let G = (V, E) be a digraph with n agents, C
be a CA, and A = {v1, . . . , vk} ⊂ V be a set of k agents
attacked by a malicious entity which makes these agents
share values converging to a. Let ε > 0 be the precision
utilized to do comparisons between values. In this scenario,
Alg. 1 with robustness f ≥ k identifies, after a number of
time steps, the attacked agents in A, and the agents v ∈ V\A
converge to the consensus value of G \ A from the CA C.

Proof: If k = 0, then each non attacked agent u ∈ V \
A holds a vector c

(t)
u converging to a vector with entries

all distinct from each other, since from Assumption 2 the
consensus of each subgraph of G with n−1 nodes is distinct
and different from the consensus of all nodes. Thus, agent
u selects x

(t)
u = c

(0)
u [F [1]], where F [1] = ∅. If |A| = k

and 0 < k ≤ f , then there is A′ ∈ ℘(V, k) that is precisely
the set of attacked agents, i.e., A′ = A. That is, there is a
smallest set of agents that, if excluded from the consensus
computations, leads to a consensus value different from the
attacked agents’ values by at least ε, after a certain number
of time steps. Further, every other subset in

⋃k
j=0 ℘(V, j)

has some attacked agent, implying that the normal agents
converge to a. Hence, every agent v ∈ V \ A outputs the
consensus of the subgraph G \ A, which is that results of
using C for a certain number of time steps, and v correctly
identifies A as the set of attacked agents.
By Theorem 1, any normal node identifies and corrects its
state. So, we check if the detection may yield false positives.
Proposition 3: Consider the digraph of n agents G = (V, E)
and a CA C. By using Alg. 1 with f ≥ k = |A| if, after
some time steps, a node v ∈ V finds k ≤ f attacked nodes,
then there exist k attacked nodes. ◦

Proof: Let v ∈ V identify k ≤ f attacked nodes. Then, in
step 3 of Alg. 1 the else occurs with i = k and there is one
and only one subgraph with k agents, V ′ ⊆ V , that converges
to a consensus distinct from the network consensus. The
other subgraphs have attacked nodes. Thus, if agent v finds
k attacked nodes, then G has exactly k attacked nodes.
Next, we do the computational complexity analysis of Alg. 1.
For each agent to be able not only to detect the existence
of attacked nodes but also to identify which are the attacked
agents and correct the consensus value, Alg. 1 has time com-
plexity worse than the Alg. 2. However, it has polynomial
time complexity, for a fixed f .
Proposition 4: Let the CA C have a computational complex-
ity of C(N) to run for N ∈ N time steps, then the worst-case
time complexity of Alg. 1 is O(C(N)nf). ◦

Proof: Suppose that the CA C has time complexity C(N)
to run for N ∈ N time steps. Thus, in step 3, Alg. 1 calls∑f

i=0

(
n
i

)
times C. Since

(
n
i

)
= 1

i!

∏i−1
j=0(n − j) = O(ni),

it follows that O(
∑f

i=0

(
n
i

)
) = O(max{n, n2, . . . , nf}) =

O(nf). As it is the larger computational complexity step,
Alg. 1 has O(C(N)nf) complexity for N time steps.
Proposition 4 says that Alg. 1 has polynomial complexity in
the number of nodes, if C has polynomial complexity.
Corollary 1: Let the C have a computational complexity of
C(N) to run for N ∈ N time steps, and let k ≤ f be the
number of attacked agents. Then, the time complexity of
Alg. 1 is O(C(N)nk) to run for N time steps.

IV. ILLUSTRATIVE EXAMPLES

In the following illustrative examples, we use the networks
in Fig. 4 and ε = 0.05. In order to simplify the visualization
of the examples, in what follows, the attacker shares a vector
with all entries having the same value. This simplification is
not needed, as we depicted in Fig. 2, but it would overload
the figures with information. Also, the choosen CA C simply
updates the value of node v ∈ V as xv = 1

|Nv|
∑

u∈Nv
xu.

(a) Network G2 (b) Network G[t<9] (c) Network G[t≥9]

Fig. 4
Attacked Agents: Next, we explore the digraph of agents
G2 = (V1, E1). We consider two agents under attack, A2 =
{1, 3}, sharing the values, at time t, given by the functions
7 − 2−0.3t and 7 + 2−0.3t, respectively. Alg. 2 with f ≥ 2
allows each agent to correctly detect the presence of network
corrupted nodes. We depict the value of the unresilient
consensus (f = 0) in Fig. 5 (a). When each agent u ∈ V2\A2

uses Alg. 1 with f ≥ 2, it pinpoints exactly 1 and 3 as the
attacked agents, converging to the correct consensus of the
subnetwork G2 \ A2, see Fig. 5 (b).

□□

□

♢

♢♢♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

♢♢♢♢♢♢♢

○○
××

××××××××××××××××××××××××××××××××
×××××

□
□□□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

□□□□□□□

10 20 30 40
0

5

10

15

Number of Iterations

C
on
se
ns
us
Va
lu
e

□ a1 ♢ x2 ○ a3 × x4 □ x5

□□

□

♢

♢♢♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○○
××

×××××××××××××××××××××××××××××××××××××

□
□□□

□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□

10 20 30 40
0

5

10

15

Number of Iterations

C
on
se
ns
us
Va
lu
e

□ a1 ♢ x2 ○ a3 × x4 □ x5

(a) Consensus result of C, with the network of agents
G2 and A = {1, 3}; each agent converges to the
attackers’ values.

(b) Output consensus of Alg. 1, with CA C, network
of agents G2 and A = {1, 3}; after some time, each
normal agent detects agents 1 and 3 (a1 and a3) as
the attacked nodes and it chooses the correct consensus
value (ignoring the attackers’ values).

Fig. 5

(a) Consensus result of C, with the network of agents
G(t) and attacked node 2; each agent converges to the
attackers’ values.

(b) Output consensus of the online version of Alg. 1,
with CA C, network of agents G(t) and A = {2};
after some time, each normal agent detects agent 2 (a2)
as the attacked node, choosing the correct consensus
value.

Fig. 6

the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked

(a) Consensus result of using the state-of-the-art for
resilient consensus, with A = {5} and network G3.
Normal agent do not reach the correct consensus,
although after a number of steps they eliminate the
attacker’s information. The attack succeeds.

(b) Consensus resulting from Alg. 1, with CA C,
attacked agent 5 and network of agents G3; after some
time, each normal agent detects node 5 (a5) as the
attacked agent and corrects the consensus value.

Fig. 7

agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[6] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[7] P. Alriksson and A. Rantzer, “Experimental evaluation of a distributed
kalman filter algorithm,” in 46th IEEE Conference on Decision and
Control (CDC), Dec 2007, pp. 5499–5504.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

(a) Consensus result of C, with the network of agents
G2 and A = {1, 3}; each agent converges to the
attackers’ values.

(b) Output consensus of Alg. 1, with CA C, network
of agents G2 and A = {1, 3}; after some time, each
normal agent detects agents 1 and 3 (a1 and a3) as
the attacked nodes and it chooses the correct consensus
value (ignoring the attackers’ values).

Fig. 5

(a) Consensus result of C, with the network of agents
G(t) and attacked node 2; each agent converges to the
attackers’ values.

(b) Output consensus of the online version of Alg. 1,
with CA C, network of agents G(t) and A = {2};
after some time, each normal agent detects agent 2 (a2)
as the attacked node, choosing the correct consensus
value.

Fig. 6

the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked

(a) Consensus result of using the state-of-the-art for
resilient consensus, with A = {5} and network G3.
Normal agent do not reach the correct consensus,
although after a number of steps they eliminate the
attacker’s information. The attack succeeds.

(b) Consensus resulting from Alg. 1, with CA C,
attacked agent 5 and network of agents G3; after some
time, each normal agent detects node 5 (a5) as the
attacked agent and corrects the consensus value.

Fig. 7

agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[6] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[7] P. Alriksson and A. Rantzer, “Experimental evaluation of a distributed
kalman filter algorithm,” in 46th IEEE Conference on Decision and
Control (CDC), Dec 2007, pp. 5499–5504.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

Fig. 5: (a) Consensus of C, with the network G2 and A = {1, 3}; each
agent converges to the attackers’ values. (b) Output consensus of Alg. 1,
with CA C, network G2 and A = {1, 3}; after some time, each normal
agent detects the attacked nodes 1 and 3 (a1 and a3), and corrects the
consensus value.

Attacked Agents & Dynamic Network: Here, we demon-
strate the main results in the scenario where there is a fixed
set of nodes V in the network that evolve over time. We
explore a set of nodes with a dynamic network that changes
between two digraphs. When t < 9 the network is G(t) =
G[t<9], see Fig. 4(b), and the network is G(t) = G[t≥9], see
Fig. 4(c), otherwise. We render, in Fig. 6, the outcome of the
consensus in the cases: (a) unresilient consensus (f = 0); (b)
consensus using Alg. 1, with f = 1.
Alg.1 vs. Benchmark Resilient CAs: The conventional path
to attain resilience to f attacked nodes in CAs builds upon
the idea that each node rejects the set of the f largest and
smallest of its neighbor states. We can easily note that an
attacker in the former approach can still effectively tamper
with the consensus value and drift it to the desired value
or close to it. The attacker only needs to keep its state
within the range of values of other nodes. This observation

2706

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2021 at 23:09:07 UTC from IEEE Xplore. Restrictions apply.

(a) Consensus result of C, with the network of agents
G2 and A = {1, 3}; each agent converges to the
attackers’ values.

(b) Output consensus of Alg. 1, with CA C, network
of agents G2 and A = {1, 3}; after some time, each
normal agent detects agents 1 and 3 (a1 and a3) as
the attacked nodes and it chooses the correct consensus
value (ignoring the attackers’ values).

Fig. 5

(a) Consensus result of C, with the network of agents
G(t) and attacked node 2; each agent converges to the
attackers’ values.

(b) Output consensus of the online version of Alg. 1,
with CA C, network of agents G(t) and A = {2};
after some time, each normal agent detects agent 2 (a2)
as the attacked node, choosing the correct consensus
value.

Fig. 6

the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked

(a) Consensus result of using the state-of-the-art for
resilient consensus, with A = {5} and network G3.
Normal agent do not reach the correct consensus,
although after a number of steps they eliminate the
attacker’s information. The attack succeeds.

(b) Consensus resulting from Alg. 1, with CA C,
attacked agent 5 and network of agents G3; after some
time, each normal agent detects node 5 (a5) as the
attacked agent and corrects the consensus value.

Fig. 7

agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[6] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[7] P. Alriksson and A. Rantzer, “Experimental evaluation of a distributed
kalman filter algorithm,” in 46th IEEE Conference on Decision and
Control (CDC), Dec 2007, pp. 5499–5504.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

(a) Consensus result of C, with the network of agents
G2 and A = {1, 3}; each agent converges to the
attackers’ values.

(b) Output consensus of Alg. 1, with CA C, network
of agents G2 and A = {1, 3}; after some time, each
normal agent detects agents 1 and 3 (a1 and a3) as
the attacked nodes and it chooses the correct consensus
value (ignoring the attackers’ values).

Fig. 5

(a) Consensus result of C, with the network of agents
G(t) and attacked node 2; each agent converges to the
attackers’ values.

(b) Output consensus of the online version of Alg. 1,
with CA C, network of agents G(t) and A = {2};
after some time, each normal agent detects agent 2 (a2)
as the attacked node, choosing the correct consensus
value.

Fig. 6

the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked

(a) Consensus result of using the state-of-the-art for
resilient consensus, with A = {5} and network G3.
Normal agent do not reach the correct consensus,
although after a number of steps they eliminate the
attacker’s information. The attack succeeds.

(b) Consensus resulting from Alg. 1, with CA C,
attacked agent 5 and network of agents G3; after some
time, each normal agent detects node 5 (a5) as the
attacked agent and corrects the consensus value.

Fig. 7

agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[6] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[7] P. Alriksson and A. Rantzer, “Experimental evaluation of a distributed
kalman filter algorithm,” in 46th IEEE Conference on Decision and
Control (CDC), Dec 2007, pp. 5499–5504.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

□

□
□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

♢ ♢○ ○×
× ×

5 10 15 20
0

5

10

15

Number of Iterations

C
on
se
ns
us
Va
lu
e

□ x1 ♢ x2 ○ a3 × x4

□

□
□
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □
♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢

♢ ♢ ♢ ♢

○ ○×
× × × × × × × × × × × × × × × × ×

× × × ×

5 10 15 20
0

5

10

15

Number of Iterations

C
on
se
ns
us
Va
lu
e

□ x1 ♢ x2 ○ a3 × x4

Fig. 6: (a) Consensus result of C, with the network of agents G(t) and
attacked node 2; each agent converges to the attackers’ values. (b) Output
consensus of Alg. 1 and with CA C, network G(t) and A = {2}; after
some time, each normal agent detects the attacked agent 2 (a2), choosing
the correct consensus value.

is depicted with the network of nodes G3 = (V, E), where
V = {1, . . . , 5} and E = {(i, j) : i, j ∈ V and i 6= j}.
In G3, the attacker selects node 5 (A = {5}) to make it
perpetually forward the value 1. In this case, see in Fig. 7 (a)
the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

(a) Consensus result of C, with the network of agents
G2 and A = {1, 3}; each agent converges to the
attackers’ values.

(b) Output consensus of Alg. 1, with CA C, network
of agents G2 and A = {1, 3}; after some time, each
normal agent detects agents 1 and 3 (a1 and a3) as
the attacked nodes and it chooses the correct consensus
value (ignoring the attackers’ values).

Fig. 5

(a) Consensus result of C, with the network of agents
G(t) and attacked node 2; each agent converges to the
attackers’ values.

(b) Output consensus of the online version of Alg. 1,
with CA C, network of agents G(t) and A = {2};
after some time, each normal agent detects agent 2 (a2)
as the attacked node, choosing the correct consensus
value.

Fig. 6

the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked

(a) Consensus result of using the state-of-the-art for
resilient consensus, with A = {5} and network G3.
Normal agent do not reach the correct consensus,
although after a number of steps they eliminate the
attacker’s information. The attack succeeds.

(b) Consensus resulting from Alg. 1, with CA C,
attacked agent 5 and network of agents G3; after some
time, each normal agent detects node 5 (a5) as the
attacked agent and corrects the consensus value.

Fig. 7

agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[6] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[7] P. Alriksson and A. Rantzer, “Experimental evaluation of a distributed
kalman filter algorithm,” in 46th IEEE Conference on Decision and
Control (CDC), Dec 2007, pp. 5499–5504.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

(a) Consensus result of C, with the network of agents
G2 and A = {1, 3}; each agent converges to the
attackers’ values.

(b) Output consensus of Alg. 1, with CA C, network
of agents G2 and A = {1, 3}; after some time, each
normal agent detects agents 1 and 3 (a1 and a3) as
the attacked nodes and it chooses the correct consensus
value (ignoring the attackers’ values).

Fig. 5

(a) Consensus result of C, with the network of agents
G(t) and attacked node 2; each agent converges to the
attackers’ values.

(b) Output consensus of the online version of Alg. 1,
with CA C, network of agents G(t) and A = {2};
after some time, each normal agent detects agent 2 (a2)
as the attacked node, choosing the correct consensus
value.

Fig. 6

the state-of-the-art methods result, with robustness parameter
f = 1. Thus, the attacker successfully deviated the consensus
state of the network. The proposed method, Alg. 1, also with
f = 1, allows the normal agents to detect the attacked node
and correct their states, see Fig. 7 (b).

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked

(a) Consensus result of using the state-of-the-art for
resilient consensus, with A = {5} and network G3.
Normal agent do not reach the correct consensus,
although after a number of steps they eliminate the
attacker’s information. The attack succeeds.

(b) Consensus resulting from Alg. 1, with CA C,
attacked agent 5 and network of agents G3; after some
time, each normal agent detects node 5 (a5) as the
attacked agent and corrects the consensus value.

Fig. 7

agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[2] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[3] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[4] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[5] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[6] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[7] P. Alriksson and A. Rantzer, “Experimental evaluation of a distributed
kalman filter algorithm,” in 46th IEEE Conference on Decision and
Control (CDC), Dec 2007, pp. 5499–5504.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

□

□ □
♢
♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢♢

○○○○○○○○○○○○○○○○○○○○○○○×
× ×

5 10 15 20
0

5

10

15

Number of Iterations

C
on
se
ns
us
Va
lu
e

□ x1 ♢ x2 ○ a3 × x4

□

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

□ □ □ □ □
♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢ ♢

♢ ♢ ♢ ♢ ♢

○ ○×

× × × × × × × × × × × × × × × ×

× × × × ×

5 10 15 20
0

5

10

15

Number of Iterations

C
on
se
ns
us
Va
lu
e

□ x1 ♢ x2 ○ a3 × x4

Fig. 7: (a) Consensus of using the state-of-the-art for resilient consen-
sus, with A = {5} and network G3. Normal agents do not reach the
correct consensus. The attack succeeds. (b) Consensus with Alg. 1 and
CA C, attacked node 5 and network G3; after some time, each normal
agent detects the attacked node 5 (a5) and corrects the consensus value.

V. CONCLUSIONS & FUTURE RESEARCH

We approached the problem of resilient discrete-time and
synchronous communication consensus, when a malicious
entity attacks a set of agents to make each of them converge
to an attacker’s desired value. We devised a general algorithm
to tackle this problem that is suitable for an extensive range
of CAs, which may be utilized for static and dynamic
networks of agents. Our method enables normal nodes of a
network to distinguish the set of attacked nodes. Each normal
node, using our approach, is able to correct its state to the
value of the consensus of the subnetwork without attacked
agents. Furthermore, the algorithm we proposed possesses
polynomial-time complexity. Future research involves in-
vestigating the concept behind the presented algorithm and
improve resilience to different sorts of attacks.

REFERENCES

[1] D. Silvestre, J. P. Hespanha, and C. Silvestre, “Broadcast and gossip
stochastic average consensus algorithms in directed topologies,” IEEE
Transactions on Control of Network Systems, vol. 6, no. 2, pp. 474–
486, June 2019.

[2] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE
Transactions on Automatic Control, vol. 31, no. 9, pp. 803–812,
September 1986.

[3] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson,
“Subgradient methods and consensus algorithms for solving convex
optimization problems,” in 47th IEEE Conference on Decision and
Control (CDC), Dec 2008, pp. 4185–4190.

[4] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rules,” IEEE
Transactions on automatic control, vol. 48, no. 6, pp. 988–1001, 2003.

[5] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1289–
1298, 2006.

[6] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: A mathematical theory of network
architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312,
2007.

[7] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
46th IEEE Conference on Decision and Control (CDC), Dec 2007,
pp. 5492–5498.

[8] A. Haseltalab and M. Akar, “Approximate byzantine consensus in
faulty asynchronous networks,” in American Control Conference
(ACC), July 2015, pp. 1591–1596.

[9] ——, “Convergence rate analysis of a fault-tolerant distributed con-
sensus algorithm,” in 54th IEEE Conference on Decision and Control
(CDC), Dec 2015, pp. 5111–5116.

[10] D. Silvestre, P. Rosa, R. Cunha, J. P. Hespanha, and C. Silvestre,
“Gossip average consensus in a byzantine environment using stochas-
tic set-valued observers,” in 52nd IEEE Conference on Decision and
Control, Dec 2013, pp. 4373–4378.

[11] D. Silvestre, P. Rosa, J. P. Hespanha, and C. Silvestre, “Finite-
time average consensus in a byzantine environment using set-valued
observers,” in American Control Conference, June 2014, pp. 3023–
3028.

[12] ——, “Stochastic and deterministic fault detection for randomized
gossip algorithms,” Automatica, vol. 78, pp. 46 – 60, 2017.

[13] H. Y. Öksüz and M. Akar, “Distributed resilient consensus: a non-
parametric approach,” Transactions of the Institute of Measurement
and Control, p. 0142331218785673, 2018.

[14] S. Sundaram and B. Gharesifard, “Distributed optimization under
adversarial nodes,” IEEE Transactions on Automatic Control, pp. 1–1,
2018.

[15] S. M. Dibaji and H. Ishii, “Consensus of second-order multi-agent
systems in the presence of locally bounded faults,” Systems & Control
Letters, vol. 79, pp. 23–29, 2015.

[16] Y. Kikuya, S. M. Dibaji, and H. Ishii, “Fault tolerant clock synchro-
nization over unreliable channels in wireless sensor networks,” IEEE
Transactions on Control of Network Systems, pp. 1–1, 2018.

[17] S. Sundaram, “Ignoring extreme opinions in complex networks: The
impact of heterogeneous thresholds,” in 55th IEEE Conference on
Decision and Control (CDC), Dec 2016, pp. 979–984.

[18] J. Usevitch and D. Panagou, “Resilient leader-follower consensus to
arbitrary reference values in time-varying graphs,” IEEE Transactions
on Automatic Control, vol. 65, no. 4, pp. 1755–1762, 2019.

[19] D. Saldana, A. Prorok, S. Sundaram, M. F. M. Campos, and V. Kumar,
“Resilient consensus for time-varying networks of dynamic agents,”
in American Control Conference (ACC), May 2017, pp. 252–258.

[20] S. M. Dibaji, H. Ishii, and R. Tempo, “Resilient randomized quantized
consensus,” IEEE Transactions on Automatic Control, 2017.

[21] Y. Chen, S. Kar, and J. M. F. Moura, “Attack resilient distributed
estimation: A consensus+innovations approach,” in American Control
Conference (ACC), June 2018, pp. 1015–1020.

[22] B. Bollobás, Modern graph theory. Springer Science & Business
Media, 2013, vol. 184.

[23] S. M. Dibaji and H. Ishii, “Resilient consensus of second-order
agent networks: Asynchronous update rules with delays,” Automatica,
vol. 81, pp. 123 – 132, 2017.

2707

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 11,2021 at 23:09:07 UTC from IEEE Xplore. Restrictions apply.

		2021-01-09T13:14:37-0500
	Preflight Ticket Signature

