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?Abstract—In this paper, we present the design of trajectory
tracking controllers for multirotor aerial vehicles that have
the ability to operate both with and without thrust reversal.
We follow a hierarchical control approach, in the sense that
we start by designing a common saturated controller for the
position subsystem and use it to provide a reference to an
attitude tracking controller. The controllers for each operating
mode are able to achieve global asymptotic stability as well as
semiglobal exponential stabilization of the zero tracking error
set. We demonstrate the capabilities of the proposed controllers
in a simulation that performs a throw-and-catch maneuver.

I. INTRODUCTION

Nowadays, Uninhabited Aerial Vehicles (UAVs) can be

bought in consumer electronic stores and piloted by the
whisk of a smartphone. High power density batteries opened

the skies to these remotely operated aerial vehicles and the

development of new sensors, processors and actuators is
fueling further innovation. A few of the areas of soaring

research include: parcel delivery, video capture, entertain-

ment, surveillance, infrastructure inspection and transporta-
tion (c.f. [1], [2], [3] and [4]). The class of UAVs known

as multirotor aerial vehicles is one of the most popular
solutions to these applications. These vehicles are equipped

with several propellers that produce thrust and torque (see

Figure 1). The simplicity of their mechanical design is in
deep contrast with the control challenges that it poses. These

difficulties lead to a decade long research effort described

in [5] and [6] and that we summarize below.

The contributions in [7], [8] and [9] focus on the develop-

ment and validation of dynamical models for multirotor aerial
vehicles. In these papers, the controller has a PID structure

with gains that are tuned for a limited region of the flight

envelope. In this paper, we follow a control design approach
that is more closely related to [10] and the line of research

that originated from it. The main features of said line of

research consist of a combination of hierarchical control with
geometric feedback as described below:
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1) Hierarchical Control Architecture: given a desired

(smooth) position trajectory, the hierarchical control archi-

tecture consists of designing a virtual feedback law at the
acceleration level and using it to define an attitude reference

that is to be tracked by an inner attitude tracking controller.

2) Geometric Feedback: we say that the feedback law is

geometric if it takes into account the topology of the space

of the attitude representation unlike linearization approaches,
which discard that information.

Some important contributions to multirotor control

that share the aforementioned characteristics are given
in [11], [12], [13] and [14]. The proposed approach differs

from solutions that focus solely on attitude stabilization, such

as the ones in [15] and [16]. For an in-depth comparison
between mutirotor control strategies, we refer the reader

to [17].

Off-the-shelf multirotor vehicles usually have a number
of different modes of operation. For example, the Blade

200qx quadrotor vehicle has the following operating modes:

1) position stabilization mode; 2) angle stabilization mode;
3) aerobatic mode. Depending on the operating mode, the

internal controller maps Radio Frequency (RF) commands to
position, angle or angular velocity commands. It is seldom

the case that off-the-shelf multirotor vehicles allow for direct

torque control, much less individual rotor control.

In this paper, we develop higher level controls for off-
the-shelf multirotor vehicles that have similar functions to

the Blade 200qx quadrotor of Figure 1. Namely, we assume
that the input to the system is comprised of the thrust and

angular velocity commands and we assume that the vehicle

is capable of operating with or without thrust reversal. Using
the concept of synergistic potential functions that was intro-

duced in [18] we expand the contributions in [19] and [20]

in the following ways: 1) we provide a smooth saturated
feedback law for the position subsystem whose parameters

can be selected to simultaneously achieve global asymptotic

stabilization and semiglobal exponential stabilization of the
zero tracking error set; 2) we demonstrate these stability

properties can be extended to the full dynamical system by

Fig. 1. Blade 200qx quadrotor in inverted flight.
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means of synergistic hybrid feedback. In particular, we use

different synergistic potential functions when thrust reversal
is available and when it is not, which lead to very different

behavior of the closed loop system. The behavior of the

closed-loop systems is illustrated with simulations of throw-
and-catch maneuvers.

This paper is organized as follows: Section II presents the
notation and mathematical concepts that are used throughout

the paper; Section III formally introduces the problem at
hand; Section IV presents the design of the controller for

the position subsystem; Section V completes the controller

design for the full system using synergistic hybrid feedback
with and without thrust reversal; Section VII presents the

conclusions of the paper. The proofs of the results in this

paper were omitted due to space constraints, but will appear
elsewhere.

II. PRELIMINARIES AND NOTATION

N denotes the natural numbers and 0. Given n,m ∈ N:

R
n denotes the n-dimensional Euclidean space with norm

|x| :=
√
x⊤x for each x ∈ R

n; 1n ∈ R
n denotes an

n-dimensional vector of ones; 0n ∈ R
n denotes the n-

dimensional zero vector; ei ∈ R
n is defined for each

i ∈ {1, 2, . . . , n} and represents a vector whose entries are all
zero except for the i-th component which is equal to 1; Rm×n

denotes the space of m × n matrices; In denotes the n× n
identity matrix 0m×n denotes an m× n matrix of zeros; the
special orthogonal group is SO(n) := {R ∈ R

n×n : R⊤R =
In, det(R) = 1}; the n-dimensional sphere is represented

by S
n := {x ∈ R

n+1 : x⊤x = 1}; a set-valued mapping
M from R

m to R
n is denoted by M : R

m
⇒ R

n and

it is a function that maps vectors in x ∈ R
m to subsets

of R
n, i.e., M(x) ⊂ R

n for each x ∈ R
m; the closed

n-dimensional ball centered at c with radius γ is denoted

by c + γbB := {x ∈ Rn : |x− c| ≤ γ}. Given a set
S ⊂ R

n, we define S+ γbB :=
⋃

s∈S(s+ γbB). Given v =
(v1, v2, . . . , vn) ∈ R

n, the mapping v → diag(v) represents

the diagonal matrix whose diagonal entries are the compo-
nents of v. If vi < 0 for each i ∈ {1, 2, . . . , n}, then we write

v ≺ 0n. Given a set-valued mapping M : Rm
⇒ R

n, we

define rgeM := {y ∈ R
n : ∃x ∈ R

m such that y ∈ M(x)}.
Let P ∈ R

n×n. if P = P⊤, then P is said to be symmetric.

Real symmetric matrices have real eigenvalues and we denote
the highest and lowest eigenvalue of P by λmax(P) and

λmin(P), respectively. A symmetric matrix P ∈ R
n×n is

said to be positive definite if all of its eigenvalues are positive,
in which case we write P ≻ 0n×n. A symmetric matrix P
is said to be positive semidefinite if all of its eigenvalues

are nonnegative, in which case we write P � 0n×n. Given

A ∈ R
m×n, vec(A) =

[

e1
⊤A⊤

e2
⊤A⊤ . . . en

⊤A
]⊤

.

Given a continuously differentiable function F : Rm×n →
R

p×q , DF (X) :=
∂ vec(F )

∂ vec(X)⊤
(X) for each X ∈ R

m×n A

function V : Rn → R≥0 is said to be positive definite relative

to A if V(x) = 0 ⇐⇒ x ∈ A, where R≥0 represents the
nonnegative real numbers. If A = {0}, then we say that V is

positive definite and if, for each sequence {xi}i∈N satisfying

|xi|A → +∞, we have V(xi) → +∞ then we say that V
is radially unbounded, where |x|A = inf{|x− y| : y ∈ A}
represent the minimum distance between x ∈ R

n and A.

Definition 1. Given compact sets Q and A ⊂ Sn × Q, a

continuously differentiable function V : Sn × Q → R≥0 is

said to be a synergistic potential function on Sn relative to

A if it is positive definite relative to A and there exists δ > 0
such that

µV(x, q) := V(x, q) −min{V(x, q) : q ∈ Q} > δ (1)

for each (x, q) ∈ EV\A, with EV := {(x, q) ∈ Sn × Q :
Π(x)∇V(x, q) = 0n+1} and Π(x) := In+1 − xx⊤ for each

x ∈ Sn and ∇V(x, q) := ∂V
∂x

(x, q) for each (x, q) ∈ Sn ×Q.

In addition, if (1) is verified, we also say that V has synergy

gap exceeding δ.

Given a synergistic potential function on Sn relative to

A ⊂ Sn ×Q with synergy gap exceeding δ, we define:

CV := {(x, q) ∈ S
n ×Q : µV(x, q) ≤ δ}, (2a)

DV := {(x, q) ∈ S
n ×Q : µV(x, q) ≥ δ}. (2b)

III. PROBLEM SETUP

The dynamics of a thrust vectored vehicle can be described

by

ṗ = v (3a)

mv̇ = RrT +mg (3b)

Ṙ = RS(ω) (3c)

where S(ω) is such that S(ω)v = ω × v for all ω, v ∈ R
3,

p ∈ R
3 and v ∈ R

3 denote the position and the velocity of the

vehicle with respect to the inertial reference frame (in inertial

coordinates), R ∈ SO(3) is the rotation matrix that maps
vectors in body-fixed coordinates to inertial coordinates,

g ∈ R
3 represents the gravity vector and r ∈ S2 is the

thrust vector in body-fixed coordinates. Furthermore, the

inputs to (3) are ω ∈ R
3 and T ∈ R which represent the

angular velocity in body-fixed coordinates and the magnitude
of the thrust, respectively. The dynamical model (3) is a

simplification of the one provided in [10] that better suits

our experimental setup. Suppose that we are given a reference
trajectory satisfying the following assumption.

Assumption 1. The reference trajectory t 7→ pd(t) is a thrice

continuously differentiable path defined for each t ≥ 0 that

satisfies rge p
(3)
d ⊂ R3 for some compact and convex set

R3 ⊂ R
3 and rge p̈d ⊂ R2 for some compact set R2 ⊂ R

3.

Given a reference trajectory that satisfies Assumption 1,

we define the tracking errors

ep := p − pd (4a)

ev := v − ṗd (4b)

whose dynamics can be derived from (3) and are given by:

ėp = ev, ėv =
RrT

m
+ g − p̈d . (5)

If we assume that we have full control over R ∈ SO(3) and
T ∈ R, then it is possible to reduce the trajectory tracking

problem to the problem of stabilizing a double integrator.

This is the approach that we follow in the next section.
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IV. CONTROLLER FOR THE POSITION SUBSYSTEM

Let ℓ := (ℓ1, ℓ2, ℓ3) ∈ R
3 denote a vector with positive

components and let σ(u) :=
[

σ1(u1) σ2(u2) σ3(u3)
]⊤

represent a function that is defined for each u :=
(u1, u2, u3) ∈ R

3, with σi continuously differentiable,

strictly increasing and satisfying

σi(ui) = ui ∀ui ∈ [−ℓi, ℓi] (6)

for each i ∈ {1, 2, 3}.

Example 1. Given ℓ := (ℓ1, ℓ2, ℓ3) ∈ R
3 and M :=

(M1,M2,M3) ∈ R
3 satisfying ℓi < Mi ∀i ∈ {1, 2, 3}, the

function

σi(ui) :=















−ℓi +
2(Mi−ℓi)

π
arctan

(

π(ui+ℓi)
2(Mi−ℓi)

)

if ui < −ℓi

ui if |ui| ≤ ℓi

ℓi +
2(Mi−ℓi)

π
arctan

(

π(ui−ℓi)
2(Mi−ℓi)

)

if ui > ℓi

is defined for each ui ∈ R and it is strictly increasing,

continuously differentiable and satisfies (6).

The function σ can be used to generate a reference for the
thrust vector as follows

rd(p̈d , e) :=
η(p̈d , e)

|η(p̈d , e)|
(7)

with e := (ep, ev) ∈ R
6,

η(p̈d , e) = σ(Ke) + g − p̈d (8)

for each (p̈d , e) ∈ R2 × R
6 such that η(p̈d , e) 6= 0 and

K ∈ R
3×6. The following assumption guarantees that rd

in (7) is always well-defined.

Assumption 2. Given g ∈ R
3 as in (3) and a reference

trajectory satisfying Assumption 1, the following holds

σ(u) + g − p̈d 6= 03 ∀(u, p̈d) ∈ R
3 ×R2.

If RrT/m ≡ η(p̈d , e), then (5) can be written as

ė = Ae +Bσ(Ke), (9)

with

A :=

[

03×3 I3
03×3 03×3

]

B :=

[

03×3

I3

]

.

Using ep = (ep,1, ep,2, ep,3), ev = (ev,1, ev,2, ev,3) and

K =





k1,1 0 0 k1,2 0 0
0 k2,1 0 0 k2,2 0
0 0 k3,1 0 0 k3,2



 , (10)

with ki := (ki,1, ki,2) ≺ 02 for each i ∈ {1, 2, 3}, the

system (9) becomes a collection of three parallel double
integrators, each of which is characterized by the dynamics

ėi = (ev,i, σi(k
⊤
i ei)) where ei := (ep,i, ev,i) ∈ R

2 for each

i ∈ {1, 2, 3}. In the next lemma, we present a Lyapunov
function candidate for each double integrator that has a

number of properties that are used in the sequel.

Lemma 1. For each i ∈ {1, 2, 3}, ℓp,i > 0, ℓi > 0 and

ki ≺ 02, there exists Pi ≻ 02×2 such that:

(P1) The function Vp,i, defined for each ei ∈ R
2, as follows:

Vp,i(ei) :=
ǫi
2

[

σi(k
⊤
i ei)

ev,i

]⊤

Pi

[

σi(k
⊤
i ei)

ev,i

]

+ ǫi

∫ k⊤

i ei

0

σ(τ)dτ

with

ǫi =
2ℓp,i
ℓ2i

is continuously differentiable, positive definite and radi-

ally unbounded;

(P2) There exists a positive definite function Wp,i : R2 →
R≥0 such that

DVp,i(ei)

[

ev,i
σi(k

⊤
i ei)

]

≤ −Wp,i(ei)

for each ei ∈ R
2;

(P3) Each ei in

ΩVp,i
(ℓp,i) := {ei ∈ R

2 : Vp,i(ei) ≤ ℓp,i} (11)

satisfies
∣

∣k⊤i ei
∣

∣ ≤ ℓi;

(P4) There exists λp,i > 0 such that DVp,i(ei)

[

ev,i
σi(k

⊤
i ei)

]

≤
−λp,iVp,i(ei) for all ei ∈ R

2 satisfying k⊤i ei ≤ ℓi;
(P5) There exist αi ≥ α

i
> 0 such that α

i
|ei|2 ≤ Vp,i(ei) ≤

αi |ei|2 for all ei ∈ R
2 satisfying k⊤i ei ≤ ℓi;

(P6) There exists a continuous function ρi : R
2 → R≥0 such

that ∣

∣

∣

∣

∂Vp,i(ei)

∂ev,i

∣

∣

∣

∣

(Vp,i(ei))
− 1

2 ≤ ρi(ei)

for each ei ∈ R
2.

Properties (P1) and (P2) can be used to prove that the

origin of (9) is globally asymptotically stable. Together with

property (P3), we have that solutions to (9) starting in
the sublevel set (11) do not exceed the bounds ℓi in (6).

Properties (P4) and (P5) allow for semiglobal exponential

stability, as shown in the following sections.

V. GLOBAL ASYMPTOTIC TRACKING

A. With Thrust Reversal

We start the controller design with the construction of a

synergistic potential function on S2.

Lemma 2. Let δ1 ∈ (0, 2), Q1 := {−1, 1} and A1 :=
{(x, q1) ∈ S2 ×Q1 : x = q1r} with r ∈ S2 given in (3). The

function V1(x, q1) := 1 − q1x
⊤r is a synergistic potential

function on S2 relative to A1 with synergy gap exceeding δ1.

Moreover, there exists λ1 > 0 such that

|Π(x)∇V1(x, q1)|2 ≥ λ1V1(x, q1)

for each x ∈ CV1
.

Let z1 := (p̈d , e, R, q1) ∈ Z1 := R2 ×R
6 × SO(3)×Q1.

We define the hybrid controller

q̇1 = 0 z ∈ C1 := {z1 ∈ Z1 : (R⊤rd(p̈d , e), q1) ∈ CV1
}

q+1 = −q1 z ∈ D1 := {z1 ∈ Z1 : (R⊤rd(p̈d , e), q1) ∈ DV1
},
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where µV1
is given in (1) and CV1

, DV1
are given in (2).

Given σ as in Section III, K ∈ R
3×6 as in (10) and

Vp(e) :=

3
∑

i=1

Vp,i(ei)

for each e ∈ R
6, we assign the input T of (3) to

T1(p̈d , e, R) = mr⊤R⊤η(p̈d , e)
∀(p̈d , e, R) ∈ R2 × R

6 × SO(3)
(13)

with η(p̈d , e) given in (8), hence T can take both positive
as well as negative values. Moreover, we assign the input ω
of (3) to

ω1(p
(3)
d , z1) = −S(r)2

(

q1β1S(r)R
⊤rd(p̈d , e)

− q1ν(p̈d , e, R)

α
+ S(R⊤rd(p̈d , e))

R⊤η̇1(p
(3)
d , p̈d , e)

|η(p̈d , e)|
)

∀(p(3)d , z1) ∈ R3 ×Z1

with α, β1 > 0,

η̇1(p
(3)
d , p̈d , e) ≡ Dη(p̈d , e)





p
(3)
d

ev
RrT1(p̈d ,e,R)

m
+ g − p̈d





and ν(p̈d , e, R) := |η(p̈d , e)| S(r)R⊤B⊤DVp(e)
⊤ for each

(p̈d , e, R) ∈ R2 × R
6 × SO(3). The closed-loop system is

given by the hybrid system H1 := (C1, F1, D1, G1)
1 with

F1(z1) :=









































p
(3)
d

ev
RrT1(p̈d , e, R)

m + g − p̈d

RS(ω1(p
(3)
d , z1))

0















: p
(3)
d ∈ R3



























for each z1 ∈ C1 and G1(z1) := (p̈d , e, R,−q) for each z1 ∈
D1. The next result asserts the global asymptotic stability of

the zero tracking error set for the closed-loop system H1. We
refer the reader to a similar proof in [22].

Proposition 1. Let Assumptions 1 and 2 hold and let K be

given by (10). The set

B1 := {z1 ∈ Z1 : e = 0, (R⊤rd(p̈d , e), q1) ∈ A1}
is globally asymptotically stable for H1.

In addition to global asymptotic stability of B1 for H1,
we also show that B1 is: 1) locally exponentially stable for

H1, because there exists a neighborhood of B1 from which

solutions converge exponentially to B1; 2) semiglobally ex-

ponentially stable for H1, because, for each compact set of

initial conditions (e,R)(0, 0) ∈ Ω ⊂ R
6×SO(3), there exists

a controller gain K that guarantees exponential convergence

to B1 for solutions starting in that set.

Proposition 2. Let Assumptions 1 and 2 hold and let K
be given by (10). There exist c, λ, γ > 0 such that, for each

solution φ to H1 with initial condition φ(0, 0) ∈ (B1+γbB)∩
Z1, the following holds

|φ(t, j)|B1
≤ c |φ(0, 0)|B1

exp(−λt) (14)

1For more details on the framework of hybrid dynamical systems, we
refer the reader to [21].

for all (t, j) ∈ domφ.

Proposition 3. Let Assumptions 1 and 2 hold and let K be

given by (10). For each compact set Ω ⊂ R
6 × SO(3) there

exist c, λ > 0 and ki ∈ R
2 for all i ∈ {1, 2, 3} such that,

for each solution φ to H1 with initial condition φ(0, 0) ∈
R2 × Ω ×Q1, (14) holds for all (t, j) ∈ domφ.

Semiglobal exponential stability is achieved in Proposi-
tion 3 through a low gain design, meaning that it is possible to

encompass larger and larger compact sets of initial conditions

choosing smaller and smaller control gains K, but this
has adverse effects on the convergence rate of the position

subsystem. In the next section, we design a controller for the

case without thrust reversal.

B. Without Thrust Reversal

We start with the assumption that there exists a synergistic

potential function relative to r.

Assumption 3. Given a compact set Q2 and A2 := {r}×Q2

with r ∈ S2 as in (3), there exists a synergistic potential

function V2 : S2 × Q2 → R≥0 relative to A2 with synergy

gap exceeding δ satisfying

c1 |(x, q2)|2A2
≤ V2(x, q) ≤ c2 |(x, q2)|2A2

∀(x, q2) ∈ S
2

(15a)

|Π(x)∇V2(x, q2)|2 ≥ c3V2(x, q2) ∀(x, q2) ∈ CV2

(15b)

for some c1, c2, c3 > 0, where CV2
is given in (2a).

Example 2. It is shown in [18] that the function

V2(x, q2) :=
1− r⊤x

2− r⊤x− q⊤2 x
∀(x, q2) ∈ S

2 ×Q2

with Q2 := {q2 ∈ S2 : q⊤2 r ≤ 0} satisfies Assumption 3.

Under Assumption 3, let z2 := (p̈d , e, R, q2) ∈ Z2 :=
R2 × R

6 × SO(3)×Q2 and the hybrid controller

q̇2 = 0 z2 ∈ C2

q+2 ∈ ̺(R⊤rd(p̈d , e)) z2 ∈ D2,

with

z2 ∈ C2 := {z2 ∈ Z2 : (R⊤rd(p̈d , e), q2) ∈ CV2
}

z2 ∈ D2 := {z2 ∈ Z2 : (R⊤rd(p̈d , e), q2) ∈ DV2
}

and ̺(x) := arg min{V2(x, q) : q ∈ Q2} for each x ∈ S2.

Let α > 0 and ν2 denote a continuous function satisfying

α
√
c1c3ν2(p̈d , e) ≥ |η(p̈d , e)| ρ(e)

for each (p̈d , e) ∈ R2 × R
6 with

ρ(e) :=

3
∑

i=1

ρi(ei) ∀e ∈ R
6

and ρi given in Lemma 1. Given η in (8), we assign the input
T in (3) to

T2(p̈d , e) = m |η(p̈d , e)| ∀(p̈d , e) ∈ R2 × R
6
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and the input ω in (3) to

ω2(p
(3)
d , z) = S(R⊤rd(p̈d , e))

(R⊤η̇2(p
(3)
d , z2)

|η(p̈d |
+ (β2 + ν2(p̈d , e))∇V2(R

⊤rd(p̈d , e), q2)
)

for each (p
(3)
d , z2) ∈ R3 ×Z2, with β2 > 0 and

η̇2(p
(3)
d , z2) ≡ Dη(p̈d , e)





p
(3)
d

ev
RrT2(p̈d ,e,R)

m
+ g − p̈d



 .

The closed-loop system is given by the hybrid system

H2 := (C2, F2, D2, G2) with data

F2(z2) :=









































p
(3)
d

ev
RrT2(p̈d , e, R)

m + g − p̈d
RS(ω2(p

(3)
d , z2))

0















: p
(3)
d ∈ R3



























for each z2 ∈ C2 and G2(z2) := (p̈d , e, R, ̺(R⊤rd(p̈d , e))
for each z2 ∈ D2. The following proposition shows that the
zero tracking error set is globally asymptotically stable for

the closed-loop system H2.

Proposition 4. Let Assumptions 1 and 2 hold and let K be

given by (10). For each ki ≺ 02 and each i ∈ {1, 2, 3}, the

set

B2 := {z2 ∈ Z2 : e = 0, (R⊤rd(p̈d , e), q2) ∈ A2}
is globally asymptotically stable for H2.

Proposition 5. Let Assumptions 1 and 2 hold and let K be

given by (10). For each ki ≺ 02 and each i ∈ {1, 2, 3}, there

exist c, λ, γ > 0 such that, for each solution φ to H2 with

initial condition φ(0, 0) ∈ (B2 + γbB) ∩ Z2, the following

holds

|φ(t, j)|B2
≤ c |φ(0, 0)|B2

exp(−λt) (18)

for all (t, j) ∈ domφ.

Proposition 6. Let Assumptions 1 and 2 hold and let K be

given by (10). For each compact set Ω ⊂ R
6 × SO(3) there

exist ki ∈ R
2 for all i ∈ {1, 2, 3} and c, λ > 0 such that,

for each solution φ to H2 with initial condition φ(0, 0) ∈
R2 × Ω ×Q2, the (18) holds for all (t, j) ∈ domφ.

VI. SIMULATION RESULTS

In this section, we present simulation results for the closed-
loop systems that result from the interconnection between the

dynamical system (3) and the controllers that are presented

in Sections (V-A) and V-B. In these simulations, we consider
that the acceleration of gravity is g := (0, 0, 9.81) m/s2 and

that the thrust vector is given by r := (0, 0,−1) in body-fixed
coordinates. For controller design purposes, let us consider

that the maximum acceleration and jerk are (2πf)2r◦ and

(2πf)3r◦, respectively, corresponding to the acceleration and
jerk of a circular trajectory of radius r◦ > 0 and rotations

per second f ∈ R. Assumption 1 is satisfied with R2 =
{p̈d ∈ R

3 : |p̈d | ≤ (2πf)2r◦} and R3 = {p̈d ∈ R
3 : |p̈d | ≤

(2πf)3r◦}. Using the function σ in Example 1, we have that

|σ(u)| < |M| for each u ∈ R
3, thus the bound

|Ti(p̈d , e)| < m(|M| + |g| + (2πf)2r◦) (19)

holds for the given reference trajectory and for all i ∈
{1, 2}, corresponding to the thrust commands (13) and V-B,
respectively. Given that the quadrotor in our experimental

setup weighs m = 0.216 kg and its thrust is limited to

Tmax = 1.3m |g|, it follows from (19) that M, r◦ and
f must satisfy |M| + (2πf)2r◦ < 0.3 |g| for the control

signal to be within the actuator constraints. To strike a good
balance between trajectory tracking and compensation of

position/velocity tracking errors we restrict the analysis to

reference trajectories whose acceleration does not exceed that
of a circular path with a maximum acceleration equal to

0.1 |g| and we select M := 0.2 |g| 13 and ℓ := 0.1 |g| 13.

Note that such choice implies that Assumption 2 is also
satisfied.

We select the controller gain K as the solution

to the LQR problem considering RLQR := I3 and

QLQR := diag(
[

1
⊤
3 0.01 1

⊤
3

]⊤
). More specifically, K :=

−R−1
LQRB

⊤PLQR, where PLQR ≻ 06×6 is the solution to

the Algebraic Riccati Equation

A⊤PLQR+PLQRA−PLQRBR−1
LQRB

⊤PLQR+QLQR = 0.

In order to test the controllers of Sections V-A and V-B,

we carry out an input driven throw-and-catch maneuver
for both closed-loop systems by means of a simulation

that takes into consideration the dynamics of ω, given by

ω̇ = 12π(ωi(p
(3)
d , zi) − ω) for each i ∈ {1, 2}. More

specifically, we consider that the position reference is the

origin of the inertial reference frame and that there is an

open-loop command ωd(t) = (18.5, 0, 0) rad/s for each
t ∈ [1, 1 + π/18.5] corresponding to a half flip around

the body-fixed x-axis during which the trajectory tracking

controller is switched off. The controllers are switched back
on at t ≥ 1 + π/18.5 s and we analyze the capabilities of

each closed-loop system to stabilize the desired setpoint. The

initial condition is p(0, 0) = 03, v(0, 0) = 03, R(0, 0) = I3,
the attitude control gains are α = 100 and β1 = β2 = 1, and

the function V2 is given in Example 2. The initial values of

the logic variables q1 and q2 are 1 and −r, respectively.

Figure 2 represents the attitude tracking error and the

angular velocity from t = 0.8 s up to t = 2 s. The open-

loop command ωd(t) starts at t = 1 s and ends roughly at
t = 1.3 s, as represented by the shaded region. It is possible

to verify that: 1) the behavior of the closed-loop systems is

indistinguishable up until the end of the half flip; 2) at the
end of the half flip, the controller from Section V-A performs

position stabilization in inverted flight while the controller

from Section V-B has to perform another half flip to return
to upright flight condition. Figure 3 represents the thrust

commands for both controllers and it is possible to check
that both signals are identical before the throw maneuver,

but converge to symmetric values after the half flip. Note

that immediately after the half flip, there is a time period
in which the controller with no thrust reversal accelerates

towards the ground leading to increased position tracking

errors as represented in Figure 4.
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Fig. 2. Simulation results depicting the evolution over time of the distance of
the thrust vector to the reference and of the angular velocity of the vehicle for
a half flip. The shaded region spans the time in which open-loop command
ωd(t) is active.
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Fig. 3. Simulation results depicting the evolution over time of the com-
manded thrust. The shaded region spans the time in which open-loop
command ωd(t) is active.

VII. CONCLUSIONS

In this paper, we provided trajectory tracking controllers

for multirotor aerial vehicles that are capable of operating

with or without thrust reversal. We have shown that is
possible to attain global asymptotic stabilization as well as

semiglobal exponential stabilization of the zero error set

in both operating modes. We compared the behaviour of
the closed-loop systems by means of the simulation of a

throw-and-catch maneuver, namely their ability to recover

hovering flight from the disadvantaged conditions at the end
of the maneuver. Further research on this topic will focus

on the validation of the proposed controllers by means of
experimental results.
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[5] L. R. G. Carrillo, A. E. D. López, R. Lozano, and C. Pégard, Quad
Rotorcraft Control: Vision-Based Hovering and Navigation. Advances
in Industrial Control, Springer London, 2012.

[6] A. L’Afflitto, R. B. Anderson, and K. Mohammadi, “An Introduction
to Nonlinear Robust Control for Unmanned Quadrotor Aircraft: How
to Design Control Algorithms for Quadrotors Using Sliding Mode
Control and Adaptive Control Techniques [Focus on Education],” IEEE
Control Systems Magazine, vol. 38, pp. 102–121, jun 2018.

[7] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a
large quadrotor robot,” Control Engineering Practice, vol. 18, no. 7,
pp. 691–699, 2010.

[8] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. Tomlin, “Pre-
cision flight control for a multi-vehicle quadrotor helicopter testbed,”
Control Engineering Practice, vol. 19, no. 9, pp. 1023–1036, 2011.

[9] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Switching model predic-
tive attitude control for a quadrotor helicopter subject to atmospheric
disturbances,” Control Engineering Practice, vol. 19, no. 10, pp. 1195–
1207, 2011.

[10] T. Hamel, R. Mahony, R. Lozano, and J. Ostrowski, “Dynamic
Modelling and Configuration Stabilization for an X4-Flyer.,” IFAC
Proceedings Volumes, vol. 35, no. 1, pp. 217–222, 2002.

[11] T. Lee, M. Leok, and N. H. McClamroch, “Nonlinear Robust Tracking
Control of a Quadrotor UAV on SE(3),” Asian Journal of Control,
vol. 15, no. 2, pp. 391–408, 2013.

[12] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and
control for precise aggressive maneuvers with quadrotors,” Springer
Tracts in Advanced Robotics, vol. 79, pp. 361–373, 2014.

[13] M.-D. Hua, T. Hamel, P. Morin, and C. Samson, “Control of VTOL
vehicles with thrust-tilting augmentation,” Automatica, vol. 52, pp. 1–
7, 2015.

[14] R. Naldi, M. Furci, R. G. Sanfelice, and L. Marconi, “Robust Global
Trajectory Tracking for Underactuated VTOL Aerial Vehicles Using
Inner-Outer Loop Control Paradigms,” IEEE Transactions on Auto-
matic Control, vol. 62, no. 1, pp. 97–112, 2017.

[15] A. Tayebi and S. McGilvray, “Attitude stabilization of a VTOL
quadrotor aircraft,” IEEE Transactions on Control Systems Technology,
vol. 14, no. 3, pp. 562–571, 2006.

[16] Y. Chen and N. O. Perez-Arancibia, “Lyapunov-based controller syn-
thesis and stability analysis for the execution of high-speed multi-flip
quadrotor maneuvers,” Proceedings of the American Control Confer-
ence, pp. 3599–3606, 2017.

[17] M. D. Hua, T. Hamel, P. Morin, and C. Samson, “Introduction to
feedback control of underactuated VTOL vehicles,” IEEE Control
Systems, vol. 33, no. 1, pp. 61–75, 2013.

[18] P. Casau, C. G. Mayhew, R. G. Sanfelice, and C. Silvestre, “Global
exponential stabilization on the n-dimensional sphere,” in Proceedings
of the 2015 American Control Conference (ACC), pp. 3218–3223,
2015.

[19] P. Casau, R. Sanfelice, R. Cunha, D. Cabecinhas, and C. Silvestre, “Ro-
bust global trajectory tracking for a class of underactuated vehicles,”
Automatica, vol. 58, pp. 90–98, 2015.

[20] P. Casau, C. G. Mayhew, R. G. Sanfelice, and C. Silvestre, “Robust
global exponential stabilization on the n-dimensional sphere with ap-
plications to trajectory tracking for quadrotors,” Automatica, vol. 110,
2019.

[21] R. Goebel, R. Sanfelice, and A. Teel, Hybrid Dynamical Systems:
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[22] P. Casau, R. Cunha, R. G. Sanfelice, and C. Silvestre, “Hybrid
Control for Robust and Global Tracking on a Smooth Manifold,” IEEE
Transactions on Automatic Control, vol. PP, no. c, pp. 1–1, 2019.

3827

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 12,2021 at 09:11:41 UTC from IEEE Xplore.  Restrictions apply. 


