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Global Trajectory Tracking for a Quadrotor through Event-Triggered
Control: Synthesis, Simulations, and Experiments*

ZHU Xuan-Zhi', Pedro Casau? and Carlos Silvestre3

Abstract— This paper presents an event-triggered controller
that solves the problem of trajectory tracking for an aerial
vehicle with a thrust actuation in a single body-fixed direction
and full angular velocity actuation. Under the framework of
hybrid dynamical systems, we first design a globally stabilizing
hybrid control law and then derive an appropriate event-
triggering mechanism for sampling of actuation signals. We
prove that bounded reference trajectories are rendered globally
asymptotically stable for the closed-loop system. To enable prac-
tical implementation of the proposed event-triggered controller
on digital platforms, we provide a modified event-triggering
mechanism that achieves practical stability while avoiding Zeno
solutions. The results are illustrated by numerical simulations
and further verified by experiments.

I. INTRODUCTION

In recent decades, motion control of small aerial vehicles,
especially quadrotors, has seen emerging techniques in an
attempt to fully exploit their high maneuverability. Among
different motion control tasks, trajectory tracking problem
is a fundamental one, for which there exist a variety of
strategies, including: proportional-integral-derivative (PID)
feedback [1], feedback linearization [2], sliding-mode control
[3], integral backstepping [4], and adaptive control [5], to
name a few. Digital implementation of these controllers
requires sufficiently fast periodic sampling of both measure-
ment signals and actuation signals in order to preserve the
stability of the closed-loop system. However, the requirement
of a sufficiently small sampling period may not be satisfied in
some circumstances, such as: limited communication band-
width for signal transmission, transmission delay, and low
computational power for operating the controllers. Besides, it
can lead to redundant samples at instants that are not actually
needed to achieve the desired stability property.

The advent of event-triggered control allows less frequent
sampling while guaranteeing desired levels of performance of
the closed-loop system, see [6] and [7] for early approaches.
Various Lyapunov-based event-triggering mechanisms have
been proposed for the stabilization of continuous-time non-
linear plants. The work in [8]-[10] relies on the existence of

*This work was partially supported by the projects MYRG2018-
00198-FST and MYRG2016-00097-FST of the University of Macau; by
the Macau Science and Technology, Development Fund under Grant
FDCT/026/2017/A1 and by Fundagdo para a Ciéncia e a Tecnologia
(FCT) through Project UID/EEA/50009/2019, and LOTUS PTDC/EEI-
AUT/5048/2014 and grant CEECIND/04652/2017.

1ZHU Xuan-Zhi is with the Institute for Systems and Robotics, Insti-
tuto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. Email:
xuanzhi.zhu@tecnico.ulisboa.pt.

2P. Casau is with the Department of Electrical and Computer Engineering
at Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. E-
mail address: pcasau@isr.tecnico.ulisboa.pt.

3C. Silvestre is with the Department of Electrical and Computer Engi-
neering, Faculty of Science and Technology, University of Macau, Taipa,
Macau, on leave from Instituto Superior Técnico, Universidade de Lisboa,
Lisboa, Portugal. Email: csilvestre@um.edu.mo.

978-1-5386-8266-1/$31.00 ©2020 AACC

an input-to-state (ISS) Lyapunov function. The work in [11]
removes the ISS requirement by just focusing on stabilizing
the plant state. Event-triggered controllers are feasible only if
it can be shown that there exists a positive lower bound to the
inter-event time. This has been achieved either by temporal
regulation [12]-[14] or by turning off the sampling events
near the set to be stabilized [15].

In the context of the trajectory tracking problem of un-
deractuated vehicles, several results achieve position and/or
attitude stabilization by event-triggered control. The work
in [16] presents an event-triggered feedback law for the
trajectory tracking control of a planar vehicle with practical
stability and provide sufficient conditions for the absence
of Zeno solutions, i.e. those having infinite jumps within
finite flow time. The papers [17] and [18] present the design
of an event-triggered quaternion-based controller that locally
asymptotically stabilize a quadrotor around a desirable fixed
attitude while avoiding Zeno solutions, utilizing the results
for nonlinear systems affine in the control [19]. The event-
triggered PID controller proposed in [20] drives a quadrotor
to a fixed position under the assumption that a lower bound
for the sampling interval is available. However, control
parameters have to be selected carefully to guarantee stability
of the system due to the discretization of measured states
and the local linearization representation of the orientation,
i.e. Euler-angles. The aforementioned works promise local
results only, therefore limiting the possibility for inverted
flight as one of the aggressive maneuvers. In fact, there
exists the inherited topological obstruction to continuous
global stabilization of rotational motion [21]. In light of this
restriction, we employ hybrid feedback proposed in [22] that
helps achieve global asymptotic stability, which results in
what is referred to as a hybrid controller.

In this paper, we depart from existing strategies by pro-
viding a full description of the controller design for global
asymptotic trajectory tracking of a quadrotor vehicle. The
main contributions are (i) proposing a synthesized control
strategy for trajectory tracking of a quadrotor vehicle by
combining a globally stabilizing hybrid controller and an
event-triggering mechanism; (ii) presenting both simulation
and experimental results to demonstrate the performance of
the proposed control law, where the globally asymptotically
stabilizing property is tested with both upright flight mode
and inverted flight mode; (iii) excluding Zeno solutions to
enable digital implementation of the proposed controller. The
remainder of the paper is organized as follows. Math prelimi-
naries are presented in Section II. A dynamical model for the
quadrotor and the control objective are introduced in Section
II1. Section IV focuses on the design of a trajectory tracking
controller, followed by simulation results in Section V and
experimental results in Section VI. Section VII summaries
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this paper.

II. PRELIMINARIES

Let R>¢ := [0,00][, Ry :=]0,00[, Z>¢ := {0,1,2,...},
Z~o :={1,2,...}. The Euclidean n-space is denoted by R™,
wherein the inner product (x,y) := x "y for each x,y € R"
and the Euclidean norm |x| := 4/(x,x) for each x € R".
In R”, the unit vector whose i-th component is 1 and the
vector whose all entries equal to 0 are denoted as e; and O,
respectively. Matrices in R™*"™ are represented by regular
uppercase characters. In R™*" the identity matrix and the
matrix whose all entries are equal to 0 are denoted as I,
and 0, respectively. The distance of a vector x € R" to a
set A C R™ is denoted by |x|4 := inf{|x —y|:y € A}.
The unit open ball centered at the origin is denoted as B :=
{x € R" : |x| < 1}. The unit n-sphere centered at the origin
is denoted as S := {x e R"™' : |x| = 1}.

We make use of the definitions of: a hybrid system; a
solution to a hybrid system; stability of a closed set for a
hybrid system; and attractivity of a closed set for a hybrid
system. These concepts are formalized in [23]. The following
definition is made to capture consecutive jumps.

Definition 1: Given a set-valued mapping G : R = R"
and a set D C R", we define G! := G and Gl (x) =
G (DN G*(x)) for cach x € R™ and for each k € Z.

The following lemma deals with joint behavior of two set-
valued mappings that evolve concurrently.

Lemma 1: Given two set-valued mappings M; : R" =
R™ and M5 : R® = R", and two sets A7, 45 C R™ that are
closed relative to R", if M is outer semicontinuous (locally
bounded) relative to A; and My is outer semicontinuous
(locally bounded) relative to As, then the set-valued mapping
M :R™ =2 R”, given by

Ml(x) if xe .A1\A2,
M(X) = MQ(X) if xe AQ\Al,
Ml(X)UMQ(X) if xe AN A,

is outer semicontinuous (locally bounded) relative to .4; U
As.

Proof: Outer semicontinuity is preserved due to closed-
ness of the graph of M relative to (A; U.Az) x R™. Local
boundedness of M trivially follows. [ |

The following lemma provides a sufficient condition for
the absence of Zeno solutions to a class of hybrid dynamical
system.

Lemma 2: Suppose that a hybrid system H =
(F,C,G,D) in R™ meets the hybrid basic conditions [23,
Assumption 6.5] and there exists some K € Z-( such that
GE (D)ND = 0, where G¥ is defined in Definition 1. Then
each precompact solution ¢ to H is not Zeno.

Proof: See the proof of [24, Lemma 2.7] and apply the
same argument therein for each G* with k € {1,2,..., K}.

|

III. PROBLEM STATEMENT

Consider a fixed orthonormal inertial frame {Z} and an
orthonormal body-fixed frame {B} that is attached to the
center of mass of the vehicle. We follow the formulation in

[25] of the kinematics and dynamics of the rigid body vehicle
given by

1 .
p:Va v = _ERTe3+ge3a R:RS(UJ), (1)

where (p,v) € RS represents the position and the linear
velocity of the vehicle in {Z}, respectively, R € SO(3) :=
{ReR*3:RTR =1I5,det(R) = 1} represents the rota-
tion matrix that maps vectors in {B} to {Z}, the mapping S is
such that S(a)b := axb for each a,b € R? with x denoting
the cross product, w € R? represents the angular velocity of
the vehicle in {B}, m € Ry represents the mass of the
vehicle, T' € R represents the thrust, g € Ry represents the
local gravitational acceleration. By the second equation of
(1), we define A := Rez € S? for each R € SO(3), which
aligns with the thrust direction in {Z}. Manipulation of (1)
gives rise to the following set of differential equations:

1 .
p=v, v=-—AT+ges, A=-SAN@, (2
m
where and w
vehicle in {Z}.
A reference trajectory is a precompact solution ¢ —
r(t) := (pa(t),pa(t),Pa(t)) for each t € Ry to the

differential inclusion ¥ € Fy(r) := £y (r,pff))_: p((f) €

rﬁ}, where € Ry and f; (r, pg?’)) = (pd, Pd, pg?’)) for

each (r, pg?’)

compact set S; C R, and the set-valued mapping Fy(r)
satisfies!

:= Rw defines the angular velocity of the

€ R% x rB, therefore rger C S, for some

Fa(r) N Ts,(r) #0 €)

for each r € Sy, where Tg, (r) is the tangent cone to the set
Sy at r € RY, see [23, Definition 5.12]. Such observation
is crucial in proving completeness of maximal solutions to a
hybrid system. Moreover, we make the following assumption
in order to impose continuity of control laws.

Assumption 1: The set Sq satisfies sup,cg, [Pa| < g

With the definitions above, we present the problem state-
ment as follows.

Problem 1: To design an event-triggered controller that
globally asymptotically stabilizes a reference trajectory sat-
isfying Assumption 1 for the dynamical system (2).

IV. CONTROLLER DESIGN

A. Global asymptotic stabilization of both the position and
the linear velocity dynamics

First, we design a feedback control law for both the
position and the linear velocity error system given a reference
trajectory r = (P4, Pd, Da).- We define the position error and
the linear velocity tracking error as

Z) = P — Pd,
Z2 =V — pda
whose time derivatives are given by
(4a)

(4b)

Zl = Z2,

) 1 ..

z3 = —— AT + ges — Py,
m

'Equation (3) follows from [23, Lemma 5.26] by continuity of fg,
compactness and convexity of rB, implying outer semicontinuity and local
boundedness of F; relative to Sy.
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which can be regarded as a system driven by the virtual input
AT. Let z := (z1,22) and

p(r,z) == B(k(z)) + ges — Pa
for each (r,z) € Sy x RS, where k(z) := kpz1 + kyzo for
each z € R% with kp, kv € Ry, and the saturation function

B : R® — R? is such that 3(&) := (B1(&1), B2(&2), B3(€3))

for each & = (&,62,&) € R3, with 3; : R — R
continuously differentiable and verifying
0<VgBi(§) < Mg, foreach ¢£eR, (52)
Bi(0) = 0, (5b)
lim B;(¢) = £Kp, (5¢)
E—+oo
for some Mg = (MﬁlvMﬁwMﬁS)a Kg =
(Kg,, Kg,, Kg,) € Rso x Ryp X Ry and for each
ie€{1,2,3}.
Lemma 3: Suppose Assumption 1 holds, if
[Kg| < g— sup |Pal, (6)
reSy

then for each (r,z) € Sy x R®, |u(r,z)| > 0.
Proof: Using the triangular inequality, the conclusion
follows from the properties of the saturation function 3. B
Suppose the inequality (6) holds onwards, then it is
eligible to define the desired direction Ay

u(r,2)
(7

u(r, 2)]

for each (r,z) € S; x RS and a feedback control law for the

thrust 1" as

Aa(r,z) :=

T(r,z,A) == mA" p(r, 2) (®)

for each (r,z,A) € Sy x RS x S2.

By assigning the functions defined in (7) and (8) to the
virtual input in (4b), i.e. AT = Aq(r,2z)T (r,2, A4(r,2)),
we obtain the following closed-loop system

z1 = 7, (9a)
z2 = —B(k(2)). (9b)

The following Lemma concerning the stability of the
system (9) resembles [26, Lemma 1] but is reproduced to
make this paper self-contained.

Lemma 4: The origin of (9) is globally asymptotically
stable.

Proof: The unique equilibrium point for the system
(9) is the origin z = 0. We choose a Lyapunov function
candidate V : R® — R, given by

rio -3 (4 [52] o 54)

=1
ki (z)
+ / ﬁi(T)dT> ,
0
T

where r;(z) := e k(z) for each z € R® and for each

ky _
i€{1,2,3}, D:= {kﬂ 7
. s
definite. The resulting time derivative of the Lyapunov func-

tion candidate evaluated along the solution to the differential
equations (9) is

(e | gl ) =

with y € ]0, ky[ is positive

for each z € RS, where W(z) = Y0, ((ky —

D)+ Vi) (ke i) ) 2

0 for each z € Rpﬁ, for which the equality holds if and only
if z = 0 due to the choice of « and by the property (5a).

It follows from [27, Theorem 4.2] that the origin is
globally asymptotically stable for the system (9). [ |

B. Global asymptotic stabilization of (2) by hybrid feedback

Built upon the controller in Section IV-A, we first develop
a feedback control law for the angular velocity and then make
it globally asymptotically stabilize the complete dynamics by
means of hybrid feedback.

From now on, we take into account the attitude kinematics.
The error system consisting of the third equation of (2) and
(4), driven by T' and w, is written as

1 .
——AT + ges — Pa
m

A

where the function f is defined for each (r,z, A\, T,w) €
S;x RO xS x R x R3.

For global asymptotic tracking of the reference trajectory,
we employ synergistic hybrid feedback [22] to overcome the
topological obstruction to global stabilization of rotational
motion, A in our case, by continuous state feedback [21].
In this direction, we make use of a logic variable ¢ €
Q = {-1,1}, define x¢ := (r,2, A, q), and choose a new
Lyapunov function candidate

V,(r,z,X) :=V(z) + ¢ (1 - qAT)\d(IUZ)) (10)

that is continuously differentiable on some open set contain-
ing the set Sy, 1= Sy x R® x §% x Q, where € € R+.
Following a backstepping approach, a feedback law for
the angular velocity can be chosen as
0.17
3

& (xo,pgﬁ) — i|u(r,z)|8()\) M YV (2)

+%S()\))\d(r z) + Wy (r z, A p(g))

Z3
= f (r5 Z7 A? T7 ‘I)) 3

(11)

for each xo,pl(f) € Sy, x B, where k,, € Rsq, the

first term counteracts the position and linear velocity errors,
the second term penalizes the deviation of A from +Ay,
the third term represents the desired anfular velocity given

by wd(r z, A p(3)) = Sarz) Jg(n(z))(k:sz -

[1(r,z)]
ky (B (k(z) + S(A)Qu(r,z))) - pﬁf’)) for each

(r z, AP )) € Sy x RS x §% x rB, where Jg(k(z)) is
the Jacobian matrix of the saturation function 3 evaluated
at k(z).

To represent the closed-loop dynamics driven by the
feedback control laws (8) and (11), we define

fy (r,pl(f))
f, (X07p23)) = | (r,z,)\,T(r,Z,A),G’ (Xovpl(f)))
0
12)
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(3)

for each (xo, Py ) € Sy, X rB such that the time derivative

of xg +— V,(r,z,A) evaluated along the solution to the
differential equation (12) is obtained as

W (r,2,0) = (VVy(r,2,0). 8o (%0, ))
=~ W(z) — ko [SA)Aar,2)|> (13)

for each (r,z,\) € Sq x R x S2, which equals zero if and

only if (z,A) = (0 :l:|322 gZ\
For global asymptotic stabilization, we define the the

hybrid system Ho := (Fo, Co, Go, Do) given by
{fo (xo,pl(i )) : (3) S TB}

o - if xo € Co:={xp € Sx, : A(x0) <1},
Xg S gO(XO) = (r,Z, )‘7 _Q)
if X € DQ = {XO € Sxo : A(XO) Z 77}1

where dom Fy = dom Gy = Sx,, A(xg) := V(r,2,A\) —
min,co V,(r,z, A) for each x € Sx,, and 1 € |0, 2¢[ such
that {V, },co is synergistic with synergy gap exceeding 7,
see [22] for detail.

Lemma 5: Suppose Assumption 1 holds, then the set
Ay = {xo € Sy, 12 =0\ = g1 Pdl} is globally
asymptotically stable for the hybrid system #H, defined by
(14).

Proof: Due to space constraint, we omit the details but
provide a sketch of the proof: #y meeting the hybrid basic
conditions [23, Assumption 6.5] by the maximum theorem
[28, Theorem 9.14]; each maximal solution to Hy being
precompact by [23, Proposition 6.10]; Ag being globally
attractive for H, by [23, Corollary 8.4]; stability of 4 for
Ho by [23, Theorem 3.18]. [ ]

Xg € fo(Xo) =

(14)

C. Event-triggered implementation of the hybrid controller
in Section IV-B

Now, we consider the effect of sampling of actuation
signals, namely synchronized sampling of both thrust 7" and
the angular velocity w, resulting from zero-order-hold de-
vices. We denote the sampled thrust and the sampled angular
velocity as s; and sa, respectively. Let x := (X0, $1,82). To
make the control law event-triggered, consider the following
the hybrid system H := (F,C,G, D) given by

. fa (r’ pﬁf’)) 3)
% € F(x):= 0 |£(r,z,,51,80) | ‘Pa 7B
H 0
’ if XEC::(210627
xt € G(x) := G1(x) U Ga(x))
if xe€D:=D;UDy,
(15)

where dom F = domG = Sy 1= Sx, X R x R3, C; :=
Co xR xR3 Dy :=Dy xR x R3,

Cy = {x € Sx: e <V‘7¢1(X)au> < oW (X)} ,
(9730.u) = oW ()}

where the function x V,(x) is an extension of the function
(10) such that V,(x) = V,(r,z,A) for each x € Sx and

. Imax

Dy = {X € Sx
ucF(x)

is continuously differentiable on some neighborhood of Sy,
the function x — W (x) is an extension of the function
(13) such that W(x) = W(r,z,A) for each x € Sx and
is continuously differentiable on some neighborhood of Sk,
o €]0, 1] intended to allow some flow time for sampling,

G1(x) := (Go(x0), 51,82)
triggers a switching event of the logic variable with
dom Gy = D4, and
X0
Ga(x) := T(r,z, ?‘2 pgg) erB
w (Xo, P,

triggers a sampling event with dom Go = Ds.
Theorem 6: Suppose Assumption 1 holds, then the set

A=Ixe 8 :2=0x= qggggji is globally
asymptotically stable for the hybrid system H defined by
(15).

Proof: This proof follows similar lines as the proof of
Lemma 5 with some differences: proving that H meets the
hybrid basic conditions uses, in addition, [23, Lemma 5.15],
[28, Proposition 9.9], and Lemma 1. [ |

Remark 1: The global convergence of error state z to the
origin corresponds to trajectory tracking, while the global
convergence of A corresponds to the fact that the thrust
direction tends to align itself with the desired one, which
solves the Problem 1.

D. Avoidance of Zeno solutions for the controller in Section
w-C

To have a positive lower bound on the inter-event time,
which implies the absence of Zeno behavior of solutions,
is essential for practical implementation of our proposed
controller on digital platforms, and the following corollary
provides a method that ensures absence of Zeno solutions by
modifying H. Notice that for the controller in Section IV-B,
Go(Do) C Co\Dy, which implies that Go(Dg) N Dy = 0,
which implies the existence of some positive lower bound be-
tween consecutive jumps for each maximal solution to Hg by
[24, Lemma 2.7]. For the controller in Section IV-C, multiple
jumps are possible at the same flow time. In fact, because the
nonempty set G¥ (D)N'D C A for each k € {4,5,...} with
Gk given in Definition 1, there exists a complete discrete
solution at A, e.g. x(0,j + 1) = G2(x(0,7)) such that the
solution x(0, j) € A for each j € Z>¢. A straightforward
fix for this problem is to remove the possibility of any jumps
within an arbitrarily small neighborhood .4, as formalized in
the following corollary. R

Corollary 1: Suppose Assumption 1 holds. Let A :=

i‘x € Sx: Vy(x) < 5} with some § € Ry and consider
the hybrid system

H = (F,CinCa,G, Dy UDy), (16)

where él =C U A, ég = C U A, 'ﬁl =D N SX\A,
Dy : =Dy N Sk \.A g( ) —gl( )Ugg( ) and F, Cq, Co,
gl, Go, Dy, and D5 are given in Section IV-C. Then, the set
Ais globally asymptotically stable for the hybrid system A
and H has no Zeno solutions.
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Proof: Proof of global asymptotic stability of the set A
for the hybrid system H follows similar lines as in Theorem
6. In particular, G*(D1\D2) = 0, G*(D2\D;) = 0, and
G3(D1 N D) C G(D2\Dy). As a result, G3(D) N D C
(C\D) NS \AND = (. Therefore, G*(D)ND = () for each
k € {3,4,...} and it follows then from Lemma 2 that there
exists a positive lower bound between consecutive jumps for
each maximal solution to #, which implies the absence of
Zeno solutions. u

Remark 2: We notice the trade-off between achieving
global asymptotic stabilization and avoidance of Zeno solu-
tions. For practical consideration, we can choose § arbitrarily
small such that practical stability is guaranteed.

V. SIMULATION RESULTS

In order to verify the performance of the proposed control
scheme, this section presents simulation results by making
use of MATLAB/Simulink software with the hybrid equa-
tion solver [29]. A circular trajectory parametrized in flow
time is chosen to be the position reference, i.e. pg(t) =
(& cos(t), S sin(t),—0.5) m for each ¢ € Rxo, such that
Assumption 1 holds. For each i € {1,2,3}, the §; function

in (5) is chosen as 3;(§) = 217{7‘31' arctan (g%jl 5) for
each ¢ € R, where Mg, K5, € Rsp. In each subsequent
simulation, the initial states are chosen in Sx and the hybrid
systems are simulated with a hybrid time horizon of 20
seconds and 1500 times. Parameters used in subsequent
simulations are m = 0.2kg, ¢ = 9.8ms™2, k, = 2,
kv = 2, v = 08, ko = 5, Mg = (1,1,1), Kg =
(1,1,1), e = 20, n = 36, 0 = 0.01, and § = 1073,
such that the inequality (6) holds. The initial state x(0,0) €
C N'Dy, wherein z1(0,0) ~ (4.2835, —0.4902, —0.9571) m,
z2(0,0) ~ (—0.4590,0.0881,—0.4070) ms~% A(0,0) =~
(0.0004, —0.4388, —0.8986), ¢(0,0) = 1, s1(0,0) = ON,
$2(0,0) = 0s7 1. R

Two possible solutions to the hybrid system 7 defined in
(16) with the same initial state x(0,0) are shown in Fig. 1
and Fig. 2, denoted by x and x*. x in solid line undergoes
one switching for the value of ¢, i.e. ¢(t,j) = —1 for each
(t,7) € domx\ {(0,0)}, while x* in dashed line undergoes
no switching for the value of ¢*, i.e. ¢*(¢,5) = 1 for each
(t,7) € domx*. Despite the difference in the time evolution
of these two solutions, they both approach the set A, with
x converging faster than x* due to a smaller initial angular
distance with respect to the set 4. x represents the case
when the vehicle performs trajectory tracking in inverted
flight mode, i.e. s1(t,j) < 0 for each (¢,5) € domx.
On the contrary, x* manifests a thrust direction reversal
for the vehicle at ¢ ~ 0.4s, witnessed by a surge of |s}],
and eventually achieves trajectory tracking in upright flight
mode. It is interesting to note that the proposed controller
reacts against increasing error norms by increasing number
of jumps, e.g. t = 5s.

VI. EXPERIMENTAL RESULTS

The rapid prototyping and testing setup at the SCORE
laboratory [30], University of Macau, was used to exper-
imentally validate our control strategy. Experiments were
conducted in a MATLAB/Simulink environment that inte-
grated an optical motion capture system [31], and radio

8F T — ]
T Gk -zl
RN 5 \ N i - i
0 . ‘ : CAL/CH
4 r— ; ;
N N — |z2|
woof Tl RN -z -
ok | N_- =~
. Tl
1.5h q d(r,z) ]
17: __'17(]*)\*T)\d(r*,z*) i
0.5 1
0 -
0 2 4 6 g 10 12 14 16 18 20
t[s]
Fig. 1. Time evolution of the norms of position errors,

velocity errors, and the angular errors for two possible
solutions x and x* to H in (16) with the same initial state
x(0,0).

‘
— |s2]
---|s3|

ok @ N
—= ]

A T S 0 A T 3
‘ ‘ ‘ ‘ ‘ ‘ " x Jumps'of x
hﬂTWTﬂT A0 000 TRT)TTTTTTTH

0 2 4 6 8 tl[(;} 12 14 16 18 20

Fig. 2. Time evolution of the sampled thrust, the sampled
angular velocity, and the jumps for two possible solutions
x and x* to 7{ in (16) with the same initial state x(0,0).

communication with the quadrotor. The quadrotor used for
the experiments is a radio controlled BLADE 200QX [32].
The vehicle has a flying weight of 0.216 kg (batteries, radio
receiver, and motion capture markers included), and has four
brushless motors which drive four propellers located at the
end of each arm. The experimental quadrotor lacks on-board
sensors and the state of the quadrotor must be estimated
resorting to external sensors. To this effect, we placed
six motion capture markers with which the position and
orientation information can be obtained through the motion
capture system. The state measurements from the motion
capture system are obtained every 0.01 s while the actuation
signals are sent through the radio frequency transmitter every
0.045s. We present the experimental results of the most
trivial trajectory tracking task, namely to track a fixed-point
in space parametrized as p4(t) = (0,0,—0.5)m for each
t € Rxq. Other functions and parameters are chosen to be
the same as those in Section V except that m = 0.216 kg,
g=09.79ms?% Kg = (1,1,4.3), and o = 0.9. We tested
the tracking performance of the quadrotor in two scenarios:
inverted flight and upright flight. For the former case, we
held it inverted above the ground in order: a) not to crash
the quadrotor; b) to switch the logic variable ¢, and release
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it at ¢ = 0s. For the latter case, we placed the quadrotor
on the ground and made the event-triggered controller work
from ¢t = 0s.

As seen in Fig. 3, the position error z; first went through
initial transients and then stayed within a neighborhood of
zero. Readers may resort to a video clip available online for
this experiment [33] .

o ——— " inverted flight
5 \ - - -upright flight

10 12 14 16 18 20
t[s]

Fig. 3. Comparison of the position tracking performance
between inverted flight mode and upright flight mode,
where €12 1= |(2117212)| and €3 = |213| with
(2’1172’127213) =1Z.

VII. CONCLUSION

This paper presented a solution to the problem of trajectory
tracking for a class of underactuated quadrotors, taking into
consideration the sampling of the actuation signals using
zero-order-hold devices. Based on the hybrid dynamical
model of the system, an event-triggered control law was
devised such that bounded reference trajectories are rendered
globally asymptotically stable for the closed-loop hybrid
system. For practical consideration, we modified the data
of the hybrid system in order to avoid Zeno solutions.
Experiments were conducted, validating the performance of
our controller.
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