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Abstract— In this paper, we develop a hybrid controller for
global asymptotic stabilization on the n-dimensional sphere
(Sn) using synergistic potential functions. These consist of a
collection of potential functions on S

n that induce a gradient
descent controller during flows of the hybrid closed-loop system
and a switching law that, at undesired equilibrium points of
the gradient vector field, jumps to the lowest value among
all the potential functions in the collection. We show that the
proposed controller can be used for global reduced attitude
synchronization, i.e., given a network of rigid-bodies, the
proposed synergistic hybrid feedback can be used to globally
synchronize a reference direction of each agent within a global
but unknown inertial reference frame. We study this application
for a network of three vehicles by means of simulation results.

I. INTRODUCTION

In this paper, we develop new hybrid feedback tools to
tackle the limitations to global asymptotic stabilization of

spherical orientation and reduced attitude synchronization

by continuous and discontinuous feedback. Namely, it was
shown in [1] that there is no continuous feedback law that

is able to globally asymptotically stabilize a system evolving

on a compact manifold due to topological obstructions and it
was shown in [2] that, if it is not possible to globally asymp-

totically stabilize a set by means of continuous feedback,

then it is not possible to robustly globally asymptotically
stabilize it with discontinuous feedback either. In particular,

we resort to synergistic hybrid feedback strategies in order to

address the aforementioned problems. This class of hybrid
controllers relies on the existence of a collection of con-

tinuously differentiable functions that are positive definite

relative to a setpoint and, at points other than the desired
setpoint where its gradient vanishes or is not defined, it is

possible to find another function in the collection with a
lower value. In this way, global asymptotic stabilization of

the given setpoint is enabled by a combination of switching

near undesired equilibrium points and gradient-based feed-
back.

Over the past few years, we have witnessed the steady de-

velopment of synergistic hybrid feedback and its application
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to multiple problems in control, such as: global asymptotic

stabilization of systems evolving on compact manifolds (see
e.g., [3], [4]); global exponential stabilization on SO(3) and

Sn (c.f. [5], [6] and [7]); trajectory tracking for thrust-

vectored vehicles [8]; output-based control of rigid-body
vehicles (see e.g. [9]); and global synchronization of rigid-

body attitude by unit-quaternion feedback [10].

Synchronization of multi-agent systems corresponds to
the situation where all the agents agree on the value of

some variable. The design of synchronization strategies

for a network of vehicles allows them to find a common
reference frame when no inertial frame is given, enabling

many applications such as: cooperative surveillance of an
area [11], cooperative patrolling [12] and bearing-based

formation control [13]. In particular, some of these strategies

require the design of synchronization strategies for networks
of rigid-body vehicles, explaining the extensive literature in

this field, which includes [14], [10] and [15], for example.

The problem of reduced attitude synchronization amounts to
the synchronization of a single reference direction for each

rigid-body agent and it has also received some attention in the

last few years, as evidenced by the works [16], [17] and [18].
However, the aforementioned solutions are still limited to

almost global synchronization.

In this paper, we further extend the existing body of work
on synergistic hybrid feedback by constructing a new kind of

synergistic potential function on Sn that does not necessarily
consist on a finite collection of functions such as the ones

in [19]. This relaxation was already present in [7] for the

particular case of centrally synergistic potential functions on
Sn, but it is extended in this paper for the non-central case as

well. We show that it is possible to derive a hybrid controller

that globally asymptotically stabilizes a given setpoint r ∈
Sn from a synergistic potential function relative to r. More-

over, we show that the proposed synergistic potential function

can be applied to the problem of global reduced attitude
synchronization on a network of rigid-bodies. Specifically,

given a network of rigid-body agents that is modeled by an

undirected graph, we provide a set of sufficient conditions
for the global reduced attitude synchronization and we show

that it is possible to meet those conditions if the graph is a

tree.
This paper is organized as follows: in Section II we

present the notation and some definitions that are used
throughout the paper; in Section III we introduce the concept

of synergistic potential function on Sn and we show that

it induces a hybrid controller that renders a given setpoint
globally asymptotically stable for the closed-loop system; in

Section IV we provide a new construction for this class of

synergistic potential functions; in Section V we show how
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the proposed synergistic potential function can be applied to

the problem of global reduced attitude synchronization; in
Section VI we provide some simulation results that illustrate

our findings and; in Section VII we present the conclusions

of this work.

II. PRELIMINARIES

A. Notation

The symbol Rn denotes the n-dimensional Euclidean
space, equipped with the inner product 〈u, v〉 := u⊤v,

defined for each (u, v) := [u⊤ v⊤]⊤ ∈ Rn ×Rn. Moreover,

the norm of a vector x ∈ Rn is given by |x| :=
√

〈u, v〉.
The symbol N denotes the set of natural numbers including 0.

The n× n identity matrix is represented by In. The symbol
0n×m denotes a n × m matrix of zeros. The image of a

matrix A ∈ Rn×m is given by Image(A) := {y ∈ Rn :
∃x ∈ R

m y = Ax}. Given A ∈ R
n×m and B ∈ R

p×q,
A ⊗ B denotes the Kronecker product between A and B.

The interior of a set S is denoted by int(S).
Given a compact set Q, a function V : Sn × Q → R is

continuously differentiable, also written as V ∈ C1(Sn ×
Q,R) if, for each q ∈ Q, the gradient

∇V (x, q) :=

[

∂V

∂x1
(x, q) . . .

∂V

∂xn+1
(x, q)

]⊤

is defined for all x ∈ Sn and is continuous.

A network can be modeled by a graph G := (V,E), where
V is a non-empty finite set, E is a relation on V and |V|, |E|
denote the cardinality of V and E, respectively.

B. Hybrid Systems

A hybrid system H with state space Rn is defined as

follows:

ξ̇ ∈ F(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D

where ξ ∈ Rn is the state, C ⊂ Rn is the flow set,

F : Rn
⇒ Rn is the flow map, D ⊂ Rn denotes the

jump set, and G : Rn
⇒ Rn denotes the jump map. A

solution ξ to H is parametrized by (t, j), where t denotes

ordinary time and j denotes the jump time, and its domain
dom ξ ⊂ R≥0 × N is a hybrid time domain: for each

(T, J) ∈ dom ξ, dom ξ∩([0, T ]×{0, 1, . . . J}) can be written

in the form ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij :=
[tj , tj+1] and the tj’s define the jump times. A solution ξ
to a hybrid system is said to be maximal if it cannot be

extended by flowing nor jumping and complete if its domain
is unbounded. The projection of solutions onto the t direction

is given by ξ↓t(t) := ξ(t, J(t)) where J(t) := max{j :
(t, j) ∈ dom ξ}. The distance of a point ξ ∈ Rn to a

closed set A ⊂ Rn is given by |ξ|A := infy∈A |y − ξ|. The

definitions of global uniform pre-asymptotic stability, pre-
asymptotic stability, strong pre-forward invariance, outer and

upper semicontinuity of a set-valued map, local boundedness

are all used in this paper and can be found in [20].

III. GLOBAL ASYMPTOTIC STABILIZATION ON Sn BY

SYNERGISTIC HYBRID FEEDBACK

In this section, we develop a hybrid controller for global
asymptotic stabilization of a system on the n-dimensional

sphere Sn := {x ∈ Rn+1 : x⊤x = 1}, whose dynamics are

described by

ẋ = Π(x)ω (1)

where x ∈ Sn denotes the state of the system and ω ∈ Rn+1

is the input. The operator Π : Rn+1 → Rn+1×n+1 is given
by Π(x) := In+1 − xx⊤ and it is such that Image(Π(x)) ⊂
Rn+1 is the tangent space to Sn at x. The hybrid controller

that we propose is built from synergistic potential functions
on Sn, which we define next.

Definition 1. Given r ∈ Sn and a compact set Q, a function

V ∈ C1(Sn × Q,R) is a synergistic potential function

candidate relative to r if there exists a unique closed subset

P of Q such that V is positive definite relative to

A := {r} × P, (2)

i.e., V (x, q) ≥ 0 for each (x, q) ∈ Sn ×Q and V (x, q) = 0
if and only if (x, q) ∈ A.

The set of critical points of a function V that is a

synergistic potential function candidate relative to r ∈ S
n

is given by

E := {(x, q) ∈ S
n ×Q : Π(x)∇V (x, q) = 0} (3)

and it corresponds to the pairs (x, q) ∈ Sn × Q where the

gradient of V is orthogonal to the tangent space to Sn. This

includes, in particular, the set A given in (2), as proved next.

Lemma 1. Given r ∈ Sn and a synergistic potential function

candidate relative to r, denoted by V ∈ C1(Sn ×Q,R), the

following hold:

1) The set A in (2) is a compact subset of E in (3);

2) The function

̺(x) := min{V (x, s) : s ∈ Q} ∀x ∈ S
n, (4)

is continuous;

3) The set-valued map

ν(x) := arg min{V (x, s) : s ∈ Q} ∀x ∈ S
n (5)

is outer semicontinuous.

Proof. This result follows from [21, Theorem 9.14] and [20,

Lemma 5.15].

The set E\A corresponds to undesired equilibrium points
of the gradient-based feedback

ω(x, q) := −∇V (x, q) ∀(x, q) ∈ S
n ×Q. (6)

The rationale for synergistic hybrid feedback consists of

switching to the gradient-based feedback of a function

x 7→ V (x, q′) with (x, q′) 6∈ E while satisfying V (x, q) −
V (x, q′) > 0 so that V decreases its value during jumps. To

trigger controller switching, we monitor the so-called synergy

gap, which is defined as follows:

µV (x, q) := V (x, q)− ̺(x) ∀(x, q) ∈ S
n ×Q (7)

with ̺ given in (4).
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Definition 2. A synergistic potential function candidate

relative to r, denoted by V ∈ C1(Sn×Q,R), is a synergistic

potential function relative to r if there exists δ > 0 such that

µV (x, q) > δ for each (x, q) ∈ (E ∪ B)\A, where

B := {r} ×Q. (8)

The definition of a synergistic potential function on Sn

given in Definition 2 is akin to that of [19], with the key

difference that Q is considered to be compact rather than
finite. On the other hand, the centrally synergistic potential

functions defined in [7] are particular cases of Definition 2

that correspond to the case where B = A. A synergistic
potential function V relative to r induces the following

hybrid controller for global asymptotic stabilization of A
for (1):

q̇ = 0 (x, q) ∈ C := {(x, q) ∈ S
n ×Q : µV (x, q) ≤ δ}

q+ ∈ ν(x) (x, q) ∈ D := {(x, q) ∈ S
n ×Q : µV (x, q) ≥ δ}

(9)
with output (x, q) 7→ ω(x, q) given in (6). The closed-loop

system H := (C,F,D,G) resulting from the interconnection

between (1) and (9) is given by
[

ẋ
q̇

]

= F(x, q) :=

[

−Π(x)∇V (x, q)
0

]

(x, q) ∈ C (10a)

[

x+

q+

]

∈ G(x, q) :=

[

x
ν(x)

]

(x, q) ∈ D

(10b)

and it satisfies the so-called hybrid basic conditions, as
proved below.

Lemma 2. Given a synergistic potential function candidate

V relative to r, the closed-loop hybrid system H in (10)

satisfies the following: 1) C and D are closed; 2) F is

outer semicontinuous and locally bounded relative to C,

and F(x, q) is convex for each (x, q) ∈ C; 3) G is outer

semicontinuous relative to D and locally bounded relative

to D.

Proof. C and D are closed because they are the pre-images

of the closed sets (c.f. [22]). The function F is continuous,
hence it is outer semicontinuous, locally bounded relative

to Sn × Q (c.f. [23]). Moreover, it is convex for each

(x, q) ∈ S
n ×Q because it is single-valued. It follows from

Lemma 1 that G is outer semicontinuous relative to Sn×Q.

It is locally bounded relative to Sn×Q because G1(x, q) = x
is continuous and ν takes values on a compact set.

These conditions are important in establishing the stability

results presented in this section. Moreover, they guarantee
nominal robustness to small measurement noise. The reader

is referred to [20, Chapter 7] for more information.
In the following lemma, we present some preliminary

results that are important to the stability results presented

in this section.

Lemma 3. Given a synergistic potential function V relative

to r, the following hold:

G(D) ∩D = ∅ (11a)

((E ∪ B)\A) ∩ C = ∅. (11b)

The condition (11a) together with Lemma 2 ensures that,

for each solution to (10), there is a positive lower bound

on the time between jumps, as demonstrated in [24]. The

condition (11b) not only ensures that all undesired critical
points of the gradient-based feedback in E\A belong to

the jump set, but also that every point in B\A belongs to

the jump set as well. Finally, we show that each maximal
condition to (10) is complete, which is pivotal to global

asymptotic stabilization of A for H.

Lemma 4. Given a synergistic potential function V relative

to r, each maximal solution to H given in (10) is complete.

Lemma 5. Given a synergistic potential function V relative

to r, the set A given in (2) is uniformly globally asymptoti-

cally stable for H given in (10).

Proof. Since A is compact, we prove that A is globally

asymptotically stable for H using [20, Corollary 8.9].
Since H satisfies [20, Assumption 6.5] as shown in

Lemma 2, it follows from [20, Theorem 6.8] that H is
nominally well-posed. It follows from [20, Theorem 7.12]

and the completeness of solutions that A is globally KL
asymptotically stable which, by virtue of [20, Theorem 3.40],
is equivalent to uniform global asymptotic stability of A for

H.

Given a solution (t, j) 7→ (x, q)(t, j), Lemma 5 does not

ensure that, if x(t⋆, j⋆) = r for some (t⋆, j⋆) ∈ dom(x, q),
then x(t, j) = r for all (t, j) ∈ dom(x, q) satisfying t +
j ≥ t⋆ + j⋆. To ensure that this is the case, we provide the

following result.

Theorem 1. Given a synergistic potential function V relative

to r, the set B given in (8) is globally asymptotically stable

for H given in (10).

Proof. Since B is compact, strongly forward invariant and

H is nominally well-posed (see the proof of Lemma 5),

it follows from [20, Proposition 7.5] that B is globally
asymptotically stable for H.

IV. CONSTRUCTING A SYNERGISTIC POTENTIAL

FUNCTION ON Sn

Let Q := Qr ∪ {r} with

Qr := {q ∈ S
n : q⊤r = γ} (12)

and γ ∈ (−1, 1) and let

V (x, q) := αq + βq(1− q⊤x) ∀(x, q) ∈ S
n ×Q (13)

where

αq :=

{

α if q ∈ Qr

0 otherwise
, βq :=

{

β if q ∈ Qr

1 otherwise
(14)

with α, β > 0. The function V in (13) is continuously

differentiable and its gradient in given by ∇V (x, q) = −βqq
for each (x, q) ∈ S

n × Q. Since V is positive definite
relative to A in (2) with P = {r}, it follows that it is a

synergistic potential function candidate relative to r. Using
this construction, we have that A in (2) and B in (8) are

given by A = {r} × {r} and B = {r} × Q, respectively.

The critical points of V belong to the set E in (3) which is
given by E = {(x, q) ∈ Sn × Q : x = ±q}. It follows that

(E ∪ B)\A is given by (E ∪ B)\A = {(x, q) ∈ Sn × Qr :
x = ±q} ∪ {r} ×Qr ∪ {−r} × {r}.
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The minimum and the minimizer of V with respect to q
are given in the following proposition.

Proposition 1. Given Q = Qr ∪ {r} and V in (13), the

functions ̺ in (4) and ν in (5) are given by

̺(x) = min{1− r⊤x,

α + β(1− γx⊤r −
√

1− γ2 |Π(r)x|)}

(15a)

ν(x) = arg min

{

αq + βq(1− q⊤x) :

q ∈

{

γr +
√

1− γ2
Π(r)x

|Π(r)x|
, r

}

}

(15b)

for each x ∈ Sn\{−r, r}, respectively, and

̺(r) = 0, ̺(−r) = min{2, α + β(1− γ)}, (16a)

ν(r) = r, ν(−r) = arg min{αq + βq(1 + r⊤q) : q ∈ Q}.
(16b)

Proof. We derive this result using standard algorithms for
constrained optimization using Lagrange multipliers.

In order to qualify as a synergistic potential function
in Sn, the function V must meet the criteria imposed by

Definition 2, which restricts the range of the parameters

α, β > 0, as shown in the following proposition.

Proposition 2. Given r ∈ Sn andQ = Qr∪{r}, the function

V given in (13) is a synergistic potential function relative to

r if and only if

β < 1 and 1− γ < α < 2− β(1 + γ). (17)

Moreover, if (17) is satisfied, then V a synergistic potential

function relative to r with synergy gap exceeding δ ∈
(0,min{δi : i ∈ {1, 2, 3, 4}}) with

δ1 := α − 1 + γ

δ2 := max{2β(1− γ2), α + 2β − 1− γ}

δ3 := α + β(1 − γ)

δ4 := 2− α − β(1 + γ).

Proof. The conditions (17) and the parameters 18 are ob-
tained from the evaluation of (7) at (E ∪ B)\A.

V. GLOBAL REDUCED ATTITUDE SYNCHRONIZATION

Let us consider a network of rigid-body agents that is
modeled by a undirected graph G = (V,E) without self-

loops where each agent is characterized by the kinematics

Ṙi = RiS(ωi), ∀i ∈ {1, . . . , |V|}

with Ri ∈ SO(3) := {R ∈ R3×3 : R⊤R = I3, det(R) = 1}
representing its attitude, ωi ∈ R3 its input angular velocity

in body-fixed coordinates, and S : R3 → R
3×3 is such that

S(u)v = u× v for each u, v ∈ R3.

In this section, we design a controller for global asymp-
totic synchronization of the reduced attitude of the rigid-

bodies in the network G, i.e., given reference directions ri ∈
S2 for i ∈ {1, . . . , |V|} where |V| corresponds the number of

nodes in G and letting (R, xc) := (R1, . . . , R|V| , xc) ∈ S :=

SO(3)|V|×X where xc ∈ X represents the state of the hybrid

controller, the problem of reduced attitude synchronization

amounts to the global asymptotic stabilization of

BG := {(R, xc) ∈ S :

Riri = Rjrj for all i, j ∈ {1, . . . , |V|}} (19)

for the closed-loop system using only relative measurements

between neighboring agents.

It was shown in [17, Theorem 5.1] that it is possible to

achieve almost global reduced attitude synchronization for

networks that can be modelled by tree graphs using distance
functions, i.e., functions that can be written in the form

(Ri, Rj) 7→ f(1 − r⊤i R
⊤
i Rjrj) for some smooth function

f : [0, 2] → R and i 6= j, such as the function (Ri, Rj) 7→
V(R⊤

i Rjrj , ri) with V given in (13). Unfortunately, it is not

possible to construct a synergistic potential function from a
collection of distance functions, as proved next.

Lemma 6. Given r ∈ Sn and a compact set Q, there

does not exist a collection {Vq}q∈Q where x 7→ Vq(x) =
fq(1 − r⊤x) for some continuously differentiable function

fq : [0, 2] → R such that

V(x, q) = Vq(x) ∀(x, q) ∈ S
n ×Q

is a synergistic potential function on relative to r.

To remedy this issue, we resort to the synergistic potential
function introduced in Section IV. More specifically, con-

sider a subgraph G
′ := (V′,E′) of G with the property

E
′ ⊂ L := {(i, j) ∈ E : i < j} (20)

such that, for each edge (i, j) ∈ E
′, the i-th agent stores an

internal variable

qij ∈ Qij := Qri ∪ {ri} (21)

with Qri given in (12) for some γ ∈ (−1, 1) and satisfying

q̇ij = 0. Under this construction, the controller state variable
xc corresponds to a ordered tuple that contains the logic

variables qij , where the order is given by a one-to-one
function κ̄ : L → M := {1, . . . , |E|} that labels each

edge of G. In other words, xc := (qk1
, . . . , qk|E′|

) ∈ X :=
Qk1

× . . . × Qk|E′|
, where qkℓ

= qij and Qkℓ
= Qij for

(i, j) ∈ κ̄−1(kℓ) and ka < kb for any a, b ∈ {1, . . . , |E|}
satisfying a < b. The labeling function κ̄ can be used to

construct the incidence matrix B ∈ R|V|×|E| of the graph

G as follows: for every k ∈ M and for (i, j) = κ̄−1(k),
Bik = 1, Bjk = −1 and Bℓk = 0 for all ℓ ∈ V\{i, j}.

We define the feedback law of the i-th agent in the network
as follows:

ωi(R, xc) := −
∑

j∈{j∈V:{i,j}∈E}

S(R⊤
i Rjψji)ψij (22)

for each (R, xc) ∈ S and i ∈ V, where

ψij :=

{

βqijqij if (i, j) ∈ E
′

rj otherwise

for each {i, j} ∈ E, where βqij is given in (14). Note that,

for each (i, j) ∈ E
′, the feedback law (22) corresponds
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to the gradient-based feedback of the synergistic poten-

tial function Vij , otherwise it corresponds to the gradient-
based feedback of R⊤

i Rjrj 7→ h(R⊤
i Rjrj , ri) := 1 −

r⊤i R
⊤
i Rjrj . In the next lemma, we show that the feedback

law has a linear dependence on the error vector e(R, xc) :=
(e1(R, xc), . . . , e|E|(R, xc)) ∈ R3|E| , where

ek(R, xc) :=

{

βqijS(Riqij)Rjrj if (i, j) ∈ κ̄−1(k) ∩ E
′

S(Riri)Rjrj if (i, j) ∈ κ̄−1(k)\E′

for each (R, xc) ∈ S and k ∈ {1, . . . , |E|}.

Lemma 7. Given a graph G := (V,E) and a subgraph G
′

of G satisfying (20), the function

ω(R, xc) := (ω1(R, xc), . . . , ω|V|(R, xc))

defined for each (R, xc) ∈ S satisfies

ω(R, xc) = diag(R)⊤(B ⊗ I3)e(R, xc),

where B ∈ R|V|×|E| denotes the incidence matrix of G

and diag(R) ∈ R3|V|×3|V| is a block diagonal matrix,

whose diagonal blocks are given by Ri ∈ SO(3) for each

i ∈ {1, . . . , |V|}.

Following the synergistic hybrid feedback approach, let us

define

Gij(R) := {xc ∈ X : qij ∈ νij(R
⊤
i Rjrj)}

∀(R, xc) ∈ Dij := {(R, xc) ∈ S : µVij
(R⊤

i Rjrj , qij) ≥ δ}

and

Cij := {(R, xc) ∈ S : µVij
(R⊤

i Rjrj , qij) ≤ δ}

for each (i, j) ∈ E
′, where the function Vij : S

2×Qij → R≥0

is given by (13) with parameters α and β satisfying (17) so

that Vij is synergistic potential function relative to ri ∈ S2

by virtue of Proposition 2, µVij
is given by (7), νij is given

by (15b) and δ ∈ (0,min{δi : i ∈ {1, 2, 3, 4}}) with δi
given in (18) for each i ∈ {1, 2, 3, 4}. The hybrid closed-
loop system is given by






















Ṙ =







R1S(ω1(R, xc))
...

R|V|S(ω|V|(R, xc))







ẋc = 0

(R, xc) ∈
⋂

(i,j)∈E′

Cij ,

{

R+ = R

x+c ∈
⋃

(i,j)∈E′ Gij(R)
(R, xc) ∈

⋃

(i,j)∈E′

Dij .

(23)

In the next theorem, we show that, under appropriate assump-

tions on E
′, every undesired equilibrium point of the closed-

loop system can be avoided by switching the gradient-based

feedback associated with a synergistic potential function.

Note that the switching of the logic variable qij is internal to
the i-th agent for each i ∈ V

′. However, neighbors of i ∈ V
′

that are connected through an edge (i, j) ∈ E
′ must be aware

of changes to qij in order for the synchronization strategy to
work.

Theorem 2. Given the network G := (V,E) with incidence

matrix B and the subgraph G
′ satisfying (20), if, for each

(R, xc) ∈ S\BG satisfying (B ⊗ I3)e(R, xc) = 0, there

exists (i, j) ∈ E
′ such that

(R⊤
i Rjrj , qij) ∈ (Eij ∪ Bij)\Aij (24)

where

Aij := {ri} × {ri} (25a)

Bij := {ri} ×Qij (25b)

Eij := {(x, qij) ∈ S
2 ×Qij : x = ±qij} (25c)

and Qij is given in (21), then BG in (19) is globally

asymptotically stable for (23).

Proof. Let us consider the function

U(R, xc) :=
∑

(i,j)∈L\E′

h(R⊤
i Rjrj , ri)

+
∑

(i,j)∈E′

Vij(R
⊤
i Rjrj , qij)

for each (R, xc) ∈ S. Since Vij is a synergistic potential

function relative to ri for each (i, j) ∈ E
′ by construction,

then U is positive definite relative to

AG := {(R, xc) ∈ S : qij = ri for all (i, j) ∈ E
′,

Riri = Rjrj otherwise}

Letting CG and DG denote the fow set and the jump set
of (23), respectively, the growth of V along solutions to (23)

is globally bounded by uc, ud, where

uc(R, xc) :=

{

− |(B ⊗ I3)e(R, xc)|
2

if (R, xc) ∈ CG

−∞ otherwise

ud(R, xc) :=

{

−δ if (R, xc) ∈ DG

−∞ otherwise

for each (R, xc) ∈ S. The assumption that B ⊗
I3)e(R, xc) = 0 implies (24), means that (R, xc) 6∈ CG

for each (R, xc) ∈ S\BG satisfying (B ⊗ I3)e(R, xc) = 0.

Therefore, uc(R, xc), ud(R, xc) < 0 for each (R, xc) ∈
S\AG, thus it follows from [20, Corollary 8.9] that AG is
globally asymptotically stable for (23). The remainder of the

proof follows from arguments similar to those in Lemma 5

and Theorem 1.

For the particular case where G is a tree graph, we have

that G′ := (V, L) induces a hybrid controller that globally

asymptotically stabilizes the set BG for (23).

Lemma 8. Given the network G := (V,E) with incidence

matrix B and the subgraph G
′ := (V, L), if G is a tree graph,

then, for each (R, xc) ∈ S\BG satisfying (B⊗I3)e(R, xc) =
0, there exists (i, j) ∈ E

′ such that (24) is satisfied.

Proof. This result follows from the fact that, for a tree graph,

the null space of B ⊗ I3 is equal to {0} (c.f. [25])

VI. SIMULATION RESULTS

In this section, we illustrate the behavior of the closed-

loop hybrid system (23) for a network G = (V,E) of 3
vehicles, with V := {1, 2, 3} and E := {{1, 2}, {2, 3}}. We

also consider the hybrid feedback links represented by the

subgraph G
′ of G, given by G

′ := (V′,E′) with V := {1, 2, 3}
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Fig. 1. (Top) Evolution of the distances between reference vectors of
each agent with continuous time, given by t 7→ hij↓t(t) := 1 −

r
⊤
Ri↓t(t)

⊤
Rj↓t(t)r, for the initial conditions described in Section VI.

(Bottom) Evolution of the synergy gap for each edge with continuous time
for the initial conditions described in Section VI. Solid lines represent flows
while dashed lines represent jumps.

and E
′ := {(1, 2), (2, 3)}. It follows from Lemma 8 that

the conditions of Theorem 2 are satisfied, hence BG =
{(R, xc) ∈ SO(3)3 × X : Riri = Rjrj for all i, j ∈
{1, 2, 3}} with xc = (q12, q23) ∈ X = (Qr ∪ {r})2, ri =
r = [0 0 − 1]⊤ for all i ∈ {1, 2, 3} and γ = 0.5, is globally

asymptotically stable for (23), using the synergistic hybrid

feedback induced by V in (13) with parameters α = 0.875,
β = 0.5 and δ = 0.5min{δi : i ∈ {1, 2, 3, 4}}, where

δ1 = 0.375, δ2 = 0.750, δ3 = 1.125 and δ4 = 0.375 are

obtained from (18).

Figure VI represents the evolution of the distance between

the reference vectors of each agent and of the synergy gap
with continuous time, starting from an initial condition where

R1(0, 0)r1 = R2(0, 0)r2 = −R3(0, 0)r3 and q12(0, 0) =
q23(0, 0) = r. It is possible to verify that the distance
between the reference vectors r of agents 2 and 3 is at a

maximum initially, in accordance with the selected initial

condition. This situation triggers a switch of the variable q23
which is identified in the bottom figure by the blue dashed

line. As R⊤
2 R3r converges to q23 the synergy gap grows up

to the point where a new switch is triggered at t ≈ 3.76
and q23 = r is selected. The final portion of the figure

corresponds to the convergence of the state to BG as desired.

VII. CONCLUSIONS

The contributions in this paper were threefold: 1) We

introduced a new concept of synergistic potential function

on S
n and we show that it induces a controller that is able

to globally asymptotically stabilize a given setpoint for the

hybrid closed-loop system; 2) We constructed a synergistic
potential function of this kind; 3) We showed that it can be

applied to the problem of reduced attitude synchronization

so that synchronization is achieved globally with respect to
the initial conditions. We have provided simulation results

that illustrate global reduced attitude synchronization for a

network of three chained vehicles.
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