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Abstract—Determining the network topology is typically a
challenging problem due to the number of nodes and connection
between them. Complexity is added whenever this identification
problem relies solely on a subset of the outputs of some
dynamical system or distributed algorithm running on those
nodes. In this paper, we focus on both the source identification
and network topology discovery problems in the context of
infection networks where a subset of the nodes are elected
as observers. The solution consists in writing the binary
constraints associated with the problem. Convex relaxations
are also proposed and investigated through simulations where
a pattern emerges that placing observers in high-degree nodes
increases the accuracy of the method.

I. INTRODUCTION

The network topology identification problem refers to the

challenge of determining the links or connections among the

various components in a network. Current research trends

relating to this topic include source localization and structure

discovery that that can be found in many applications in

the fields of in Biology, Social Sciences, Computer and

Electrical Engineering, Business, amongst others. In [1],

network observability and source localization are discussed

for an infection network model. The time before all nodes

are infected depends on the topology, namely on the nodes

degree, i.e., the number of immediate neighbors.

There is a vast body of work in the context of epidemics

networks available in the literature (the interested reader

is directed to a survey of traditional techniques in [2]).

Typically, the initial approach is to consider a mean field

approximation of the infection process and then consider

what happen to the average case or the percentage of infected

nodes in the network. One of the earliest works presented in

[3], [4] and additional study of the threshold dividing the

cases of full infection or full recovery can be found in [5].

Such models presenting the evolution of the percentage of

infected nodes have attracted a lot of attention both in the

continuous-time case [6] and discrete-time framework [7].
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Different variants of epidemics can be found in

the aforementioned literature: Susceptible-Infected (SI),

Susceptible-Infected-Susceptible (SIS) and Susceptible-

Infected-Recovered (SIR). Other studies such as considering

nodes entering and leaving in a stochastic fashion [8] and

studying the evolution from a series approximation point-

of-view [9] have also been considered. Nevertheless, all

these models have a shortcoming in the sense that only

the macroscopic view is considered. If one would like to

distinguish what happens to some individual nodes other

alternatives are required.

A distinct approach present in the literature is to consider

the epidemics as a group of nodes interconnected by a

network that have a state indicating their current status:

infected, recovered, etc. This normally entails the use of

Markov Chains to model the infection process and examples

can be found in [10], [11], [12], [13], [14]. These references

investigate slightly different models either with self-infection

links or not in order to discuss what is the threshold that

leads the network to go to a full infected or disease-free

state and how does the topology contributes to the transient.

The markov approach is intrinsically a microscopic view

that considers the individual states. A clear trade-off occurs

between the two approaches in the sense that the macroscopic

loses important individual information but its description

is amenable whereas the microscopic view focus on the

particular nodes but has an exponential state-space on the

number of nodes (2n for n nodes with only two possible

infected or susceptible status).

In this paper the approach is to follow the model intro-

duced in [1] as a way to have a microscopic view but avoid-

ing the exponential growth of the state space by introducing

a nonlinear operation on the state. The main objective is to

leverage the model and make it suitable for more general

discussions that we motivate for future work. Two topics

are of interest, namely source localization in the infection

node (discovering who was the initial infected node that

caused the epidemic) and network topology identification

(finding based on the measured output what is likely to be the

interconnection among the various nodes). Both problems are

of practical interest if we are to study an infection spreading

over a network.

The subject being studied in this paper closely relates to

that of Compressed Sensing where some signal is intended

to be reconstructed based on a partial observation of the net-

work state. In [15] the framework of compressed sensing is

used to retrieve the sparse network topology for a dynamical

linear system. The Least Absolute Shrinkage and Selection

Proceedings of the 37th Chinese Control Conference
July 25-27, 2018, Wuhan, China

1915

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on March 12,2021 at 00:24:40 UTC from IEEE Xplore.  Restrictions apply. 



Operator (LASSO) have also been used in [16], [17] with

a �1 penalty to ensure a sparse solution. We also use this
(now standard) penalty although the optimization function is

different given that we do not have a linear model.

In [18], the approach is to design a Bayesian network to

estimate the probabilities associated with each connection in

the network. A similar optimization can be posed as that

of constructing from data de probabilities and finding the

optimal sparsest solution.

In [19] and [20], the diffusion emerges in an large scale

with deterministic propagation. This spreading model has

been investigated in [1] and [21], which is used to localize

the source with local measurements of some states in the

network. A real social network crawled from Twitter is

discussed in [21] to offer an accurate rumor detection and

single source identification through a greedy algorithm. The

source localization process can be viewed as cardinality min-

imization problem, with a standard approach to approximate

the non-convex problem being an l1 minimization [22].
In this paper, we draw inspiration in this different ap-

proaches and a technique applied to the discovery of the net-

work structure in the aforementioned infection dynamics. We

assume a propagation model where once infected/informed,

the nodes remain in that state as in [1], [19] and [20]. The

contributions of this paper can be summarized as:

• An extension to the diffusion model to allow for an

unknown infection time;

• A linear program based network topology discovery

algorithm for the diffusion model.

Notation : The transpose of a matrix A is denoted by Aᵀ. We
let 1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-dimension
vector of ones and zeros, and In denotes the identity matrix
of dimension n . Dimensions are omitted when no confusion
arises. The vector ei denotes the canonical vector whose
components equal zero, except component i that equals one.
The notation ‖v‖1 :=

∑n
i=1 |vi| for a vector v.

II. NETWORK MODELING AND OBSERVABILITY

In this section, the definition for the network model is

introduced along with a discussion about the observability

of the problem for the particular diffusion process.

A. Modeling Diffusion

The model for the diffusion process is assumed to be a

network of n components defined by the node set V :=
{1, 2, · · · , n} and the edge set E ⊆ V × V containing all

pairs (i, j) such that there exists a connection from node

i to node j. We define the adjacency matrix A ∈ R
n×n

representing the network structure corresponding to the set

E. Matrix A is constructed with Aij = 1 if (i, j) ∈ E and

zero otherwise. Moreover, throughout the paper it is assumed

an undirected topology which implies that A = Aᵀ.
Following the concepts in [1], a rumor or infection cannot

be reversed and, therefore, the nodes are either susceptible
to the infection or already infected. In the literature this
definition is known as the Susceptible-Infected (SI) model.

As a consequence, a single infected node at the initial time

will result in all nodes receiving the infection at a certain

time in the future, provided the network is connected. The

propagation is deterministic in [1], meaning that a node

infected at discrete time t infects all its neighbors at t + 1.

The state of infection is denoted by the binary vector

x(t) ∈ {0, 1}n. The initial state x(0) has entries equal to one
identifying the infection sources and the remaining entries

equal to zero. Naturally, for a connected graph, there exists

a horizonN = n−1 (i.e., equal to the largest diameter of a n-
node network) such that x(N) = 1n meaning that all nodes
were infected. The vector of measurements y(t) ∈ {0, 1}m
is a column with m elements which is obtained through the

multiplication of x(t) by the m× n matrix C. Since a node
cannot be infected twice, it is convenient to introduce the

following notation applied to a matrix M :

Mij =

{
0, if Mij = 0

1, if Mij �= 0
.

Given the aforementioned definitions, we recover the
dynamics of the network state equation given in [1].

Theorem 1 (Diffusion Model [1]): The SI infection
model is equivalent to the dynamical system modeled by
the equations:

x(t) = Φ(t, 0)x(0)

y(t) = Cx(t)

where Φ(t, 0) = At + At−1.

The network state equation in Theorem 1 assumes t = 0
is the initial known infection time. A generalization for

Theorem 1 can be attained by considering the input vector

u to inject the infection onto the source node. Dropping this
assumption, we can write a new model with the state vector

z(t) ∈ {0, 1}n and infection vector u(t) ∈ {0, 1}n that has
z(0) = 0. The whole model is described in the next theorem.

Theorem 2 (General Diffusion Model): The SI infection
model without knowledge of the initial infection is equivalent
to the dynamical system defined by the following equations:

z(t) = Φ(t, 0)z(0) +

t−1∑
τ=0

Φ(t, τ + 1)u(τ)

y(t) = Cz(t)

(1)

which can be rewritten as:

z(t) =
t−1∑
τ=0

Φ(t− τ − 1, 0)u(τ)

y(t) = Cz(t)

(2)

Proof: In order to prove that the general diffusion

model is given by (1), one has to show that (1) satisfies

z(t) = x(t−tinitial), i.e., the general model is a shifted version
of the model with known initial time where tinitial is the time
where the infection was added in the general model.

Consider that indeed (1) is the state equation of the system.
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Fig. 1. Network Structure graph

Then, it is possible to simplify it to the format:

z(t) = Φ(t, 0)z(0) +
t−1∑
τ=0

Φ(t, τ + 1)u(τ)

=

t−1∑
τ=0

Φ(t, τ + 1)u(τ)

= Φ(t, 1)u(0) + Φ(t, 2)u(1) + ... + Φ(t, t)u(t− 1)

The infection is defined as the impulse response, to the

signal u, assuming node i is injected:

ui(t) =

{
1 t = tinitial

0 t �= tinitial

Therefore, for any time t,

z(t) = Φ(t, 1)u(0) + Φ(t, 2)u(1) + ... + Φ(t, t)u(t− 1)

= Φ(t, tinitial + 1)u(tinitial)

or, equivalently,

z(t) = Φ(t− tinitial − 1, 0)u(tinitial)

by the properties of the transition matrix and thus obtaining

that the model in (1) is equivalent to (2) and represents the

standard model with a shifted time index of tinitial time steps.
Therefore, the format for the transition matrix in (1) becomes

Φ(t, tinitial) = At−tinitial + At−tinitial−1 = Φ(t− tinitial, 0),

and the conclusion follows.

A clear advantage of the model in (1) is that it allows

to envisage other possible scenarios to study under the SI

model. In particular, the Susceptible Infected Recovered

(SIR) model that allows for nodes to be healed or considering

multiple infections outbreaks is possible in equation (1). In

such cases, the signal u can have different types of values to
signal when an infection appeared in the network and when

a cured was applied to a specific node. The study of these

models is left as a direction of future work.

B. Observability

The previous section aimed at relaxing the assumption

that the initial time for the infection is known a priori.
Since the source localization problem can be viewed as the

state estimation of a dynamical model, one needs to discuss

the observability of the system. Towards that objective, by

concatenating all the measurement information of the past

N time instants, it is obtained⎡
⎢⎢⎢⎣

y(0)
y(1)
...

y(N)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

C
CΦ(1, 0)

...

CΦ(N, 0)

⎤
⎥⎥⎥⎦x(0)

or equivalently,

YN = ONx(0)

The nm × n matrix ON reflects the characteristic of the
observers (output nodes) and is referred to as the network
observability matrix. From standard observability analysis
the next result is attained.
Theorem 3 (Observability [1]): If the rank of the observ-

ability matrix ON is equal to n, for the particular choice of
observers, the initial state can be obtained by

x(0) = (Oᵀ
NON )−1Oᵀ

NYN

According to Theorem 3, when the rank of observability

matrix ON is equal to n, the network is observable. As
Theorem 3 only contains the network structure and the

location of the output nodes. The source localization does

not depend on the initial infection time.

III. SOURCE LOCALIZATION WITHOUT INITIAL STATE
INFORMATION

In the previous section, two diffusion models were pre-

sented with the main difference that the external input

accounts for the injection of the infection in the network.
If one assumes the strict observability condition in The-

orem 3, the equation x(0) = (Oᵀ
NON )−1Oᵀ

NYN provides

the exact solution. If the rank of the observability matrix

is smaller than n, multiple solutions are possible and one
can determine the source by finding the solution of minimal

cardinality through the optimization

min
x(0)

||x(0)||0

s.t. YN = ONx(0)
(3)

The above l0 norm optimization attains its minimum for

the sparsest x(0) that satisfy the constraints. The l0 is not
actually a norm and is also not convex implying that the

problem in (3) is an NP hard problem. However, a good

approximation in practice is l1 relaxation [1]:

min
x(0)

||x(0)||1

s.t. YN = ONx(0)
(4)

The above is currently employed due to the fact that the l1
norm is the convex envelope of the cardinality operator.
For the general model, since the initial state information is

unknown, we introduce a variable size matrix O(τ) that cor-
responds to observability matrix for the first τ observations
of the general model as

O(τ) =

⎡
⎢⎢⎢⎣

C
CΦ(1, 0)

...

CΦ(τ, 0)

⎤
⎥⎥⎥⎦
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which is the same definition for the observability matrix

but with the notation O(τ) to make it clear that we are
writing a condition that has to be evaluated for different

values of τ . Furthermore, from Theorem 2, we have z(t) =∑t
τ=1 Φ(t, τ)u(τ), meaning that τ is the only variable

determining the matrix O(τ) and the state of the infection
network for each time instant. Therefore, if we choose a

particular τ�, the matrix O(τ�) is constant and we can write
Yτ = Oτ�u(τ), where clearly the variable size matrix O(τ)
is a fixed size matrix Oτ� for that particular choice τ�. Then,

(4) becomes
min
u(τ)

||u(τ)||1

s.t. Yτ = O(τ)u(τ).

The above formulation essentially seeks to solve the source

localization with unknown initial time information by testing

each possible τ value that corresponds to the tinitial of that
infection. Nevertheless, all the optimization problems can be

casted together in the following manor:

min
u

||u||1
s.t. Yt = Otu

(5)

where Yt stacks all available measurements from time instant

one up until the current time instant, the variable u is of size
nt×1 and gathers the variables u(0), u(1), · · · , u(t−1) and
the observability matrix is given by

Ot =

⎡
⎢⎢⎢⎣
CΦ(1, 1) 0 · · · 0
CΦ(2, 1) CΦ(2, 2) · · · 0

...
...

. . . 0
CΦ(t, 1) CΦ(t, 2) · · · CΦ(t, t)

⎤
⎥⎥⎥⎦ .

The formulation in (5) seeks to find the sparsest set of

inputs u(0), · · · , u(t − 1) such that all constraints given by
the measurements are validated. Remark that one could add

a set of weights to be multiplied by the vector u as to

favor solutions where the entries equal to one in that vector

appear in the beginning. Nevertheless, such tricks might not

be beneficial and the solver might output non-sparse vectors.

IV. NETWORK STRUCTURE DISCOVERY

In this section, we focus on determining the uncertain

network topology from the known infection source and

observers. The assumption is that the network designer can

arbitrarily place infected nodes and take measurements for

the set of observers in order to construct from that output

the network topology.

Under the aforementioned assumptions, the model in The-

orem 1 is suitable for the task of discovering the network

topology. Given the selected choice for initial infected node,

the equation

YN = ONx(0)

allows to place some constraints on the network topology.

The matrix P represents the unknown adjacency matrix.

Given that each entry is either 0 or 1 it naturally induces a

Boolean Satisfiability problem. The objective of this section

is to reformulate and obtain a convex approximation of such

problem.
Given that the network is undirected, P is symmetric

and also self-cycles are not possible in the context of our

problem, leading to

Pii = 0, ∀1 ≤ i ≤ n.

Defining ON using the matrix P instead of A, each of the
rows in ON represents a boolean clause that we denote by

α�, 1 ≤ � ≤ mN (there are N time instants each producing

a matrix with m rows). Consider the network in Fig. 1 as an

example and assume that node 1 was infected and nodes 3, 4

and 5 are selected as observers. The measurement y(0) = 03
has no information apart from the fact that the infected node

is not one of the observers making α1, α2 and α3 clauses

with no information, i.e., the logical value of 1 (indeed this

are removed by any solver). The measurement y(1) = e1
allows to write α4, α5 and α6 with some meaning. First,

computing

CΦ(1, 0)x(0) =

⎡
⎣P13

P14

P15

⎤
⎦ ,Φ(t, 0) := P t + P t−1

determines that α4 = P13, α5 = ¬P14 and α6 = ¬P15,

where the symbol ¬ stands for the logical negation. In

doing so, the various clauses α� establish the set of possible

instantiations for the variables Pij representing the existence

or not of a link in the network.
The network discovery problem can then be casted as that

of the solution of a satisfiability problem (SAT) in conjunc-

tive normal form α1 ∧ α2 ∧ · · · ∧ αmN . The SAT problem

has been extensively studied in the literature, but given that

it is combinatorial by nature, its complexity increases expo-

nentially. Nevertheless, the SAT problem can be equivalently

formulated as an optimization problem as:

min
P

1

s.t. A VEC(P ) >= β,

Pii = 0, 1 ≤ i ≤ n,

P = P ᵀ,

Pij = 0 ∨ Pij = 1, i �= j

(6)

where A is built from the α� variables by placing 1 if the

corresponding Pij variable appears and −1 if it appears with
the logical negation, β is a vector equal to one minus the

number of variables appearing negated and VEC(P) is the

vectorization operator that we assume to vectorize only the

lower triangular part of P since P is symmetric. As an

example, if there was only three clauses P14, P12 ∨ ¬P13

and ¬P23 ∨ ¬P12 in a four node network, the constraint

A VEC(P ) >= β would be characterized by:

⎡
⎣ 0 0 1 0 0 0

1 −1 0 0 0 0
−1 0 0 −1 0 0

⎤
⎦
⎡
⎢⎢⎢⎢⎢⎢⎣

P12

P13

P14

P23

P24

P34

⎤
⎥⎥⎥⎥⎥⎥⎦

>=

⎡
⎣ 1

0
−1

⎤
⎦ .
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Fig. 2. Number of successful initial infection localizations.

Remark that the optimization problem in (6) is just testing

the feasibility of a solution and that the only source of

non-convexity is the constraint that the entries in P are

either zero or one. One of the common approach is to relax

such assumption to the convex approach of 0 ≤ Pij ≤ 1.
In particular, if one wants to find the sparsest network

topology that is feasible obtains the whole optimization

problem
min
P

1ᵀnP 1n

s.t. A VEC(P ) >= β,

Pii = 0, 1 ≤ i ≤ n,

P = P ᵀ,

0 ≤ Pij ≤ 1, i �= j

which is convex and a linear program. Notice that we have

not used the �1 norm since all Pij >= 0 so there is no

need to apply the absolute value operator and also because

the norm would not ensure the sparsest solutions for cases

where one of the nodes is fully connected (or is of higher

degree then the rest).

V. SIMULATION RESULTS

In this section, we provide simulations to illustrate the

proposed algorithms in this paper. The first simulation com-

pares the accuracy of the source localization between the

two cases. The setup includes a randomly selected network

topology for n = 6 where both models are simulated with
the number of observers ranging from one to six. In order

to have challenging cases, the random network generation

works by either introducing each possible link or not with

a 0.5 probability. This means that on average half of the

possible links are going to be added. The experiment is

reproduced in a 1000 monte carlo run and the aggregate

successful recovery of the initial infection is presented in

Fig. 2.

From the simulation results, we can find a common

characteristic of these two models that with the increase of

observers, there are more successful runs. As expected the

general model has a smaller accuracy but is broader in terms

of application.

To further see the emerging trend refer to the 3 where

the difference in the success rate between the two models is
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Fig. 3. Difference between the success rate of the two considered models.
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Fig. 4. Number of successful infection identification depending on the
minimum number of required observers for 1000 monte carlo run.

depicted.

In Fig. 3 it is presented the loss in source localization

success rate. The value decreases close to a linear fashion

from about 0.14 to 0.02 when considering 2 to 5 observers,

while the difference in the cases of having 1 and 6 observers

are similar. One possible reason for the loss in initial

infection detection is that more configurations of infection

can justify the measurements in the general model.

In order to achieve a better understanding of the general

model, a new simulation was performed for a 1000 monte

carlo runs using random network structures. In this setup,

instead of running the models for different values of the

number of observers, the models are run for one observer

and it is increases only if the localization is unsuccessful.

The final value for the number of observers that achieved

the recovery of the initial infection is presented in Fig. 4.

Figure 4 indicates that close to 150 of the 1000 network

topologies allowed the source localization with just one

observer when knowing the initial time in comparison to

100 out of 1000 for the general model. Once again, a loss of

recovery efficacy is found for the general model as the extra

degree of freedom means that there might be different initial

injections that account for the same output sequences. One

of the main future objectives is to find out if the accuracy

can be improved using different approximation techniques of

the non-convex problem.

The network structure discovery when considering the

infection model with initial information is also presented in
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Fig. 5. Number of successful network discoveries depending on the
minimum number of required observers for the monte carlo run.

this paper. In this setup, 1000 monte carlo runs are used

to test the algorithm of discovering the randomly generated

network topology. For that purpose, in each experiment

the number and location of the observers is fixed and the

process is run with an initial infection. If the optimization

procedure returns a solution P composed of zeros and ones

the algorithm halts. Otherwise, it tests one of the remaining

nodes to be the initial infection. The least number of sources

needed to determine the network is shown in Fig. 5. For one

thousand random network structures, about half of them need

to have 5 different sources being injected into the network.
A critical key influence in the need to have 5 infection

processes to half of the topologies is a consequence of

the random network generations that is creating high-degree

networks with nodes having on average half of the nodes as

neighbors. The intuition behind this choice was that the best

case scenario would be the path graph since the infection of

one of the single-neighbors nodes would lead to detection

as opposed to the complete network where n− 1 infections
are required (in each infection process the solvers learns that
the current initial node is connected to all the others but no

information regarding the connections between the remaining

nodes).

VI. DISCUSSION AND FUTURE WORK

In the paper, we have presented an extension to the

Susceptible-Infected (SI) model in its dynamical system

view. In particular, by allowing an unknown initial infection

time. The source localization and network discovery via

convex relaxations are investigated.

In simulations, we have found the loss of accuracy to be

below 15% which is encouraging given the possibilities of

the general model. Half of the network as observers allowed

to identify the location in 60% for random networks with

n/2 connectivity. All randomly generated networks were

successfully discovered by the procedure proposed herein.

As directions of future work, two main trends can be

pursued: use the general model framework to show how more

evolved methods for infection networks can be simulated (for

example the Susceptible-Infected-Recovered, SIR, model);

and, investigated algorithms to select the sequence of initial

infections that render a faster network topology discovery.
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