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Stochastic and Deterministic State-Dependent Social
Networks

Daniel Silvestre, Paulo Rosa, Jodo P. Hespanha, Carlos Silvestre

Abstract—This paper investigates a political party or an
association social network where members share a com-
mon set of beliefs. In modeling it as a distributed iterative
algorithm with network dynamics mimicking the interac-
tions between people, the problem of interest becomes that
of determining i) the conditions when convergence hap-
pens in finite-time and ii) the corresponding steady-state
opinion. For a traditional model, it is shown that finite-
time convergence requires a complete topology and that by
removing neighbors with duplicate opinions reduces in half
the number of links. Finite-time convergence is proved for
two novel models even when nodes contact two other nodes
of close opinion. In a deterministic setting, the network
connectivity influences the final consensus and changes the
relative weight of each node on the final value. In the case
of mobile robots, a similar communication constraint is
present which makes the analysis of the social network so
relevant in domain of control systems as a guideline to
save resources and obtain finite-time consensus. Through
simulations, the main results regarding convergence are
illustrated paying special attention to the rates at which
consensus is achieved.

Index Terms—Diffusion Processes; Control Systems;
Computer Networks; Distributed Algorithms; Social Fac-
tors.

I. INTRODUCTION
A. Motivation

Understanding the mechanisms of a social networks
means to investigate how a group of agents decides a
given issue. In particular, focus is given to determine the
key agents that contribute the most to driving the general
opinion of the network to the final state. In another
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direction, importance is given to identifying the general
properties of the social network that ensure convergence
of opinion given a model with iterative dynamics, repre-
senting the interaction between agents along time. This
paper tackles the problem of, given a state-dependent
social network, showing the conditions for convergence
and how they influence the settling time. In practice,
understanding such factors can guide systems engineers
to make options that favor a fast information dissemina-
tion, reducing the convergence time. In [1], preliminary
results about convergence are given for the deterministic
case. In this article, those results are extended to the
stochastic case by showing the converse results in terms
of expected value, when the nodes communicate in a
random fashion. In addition, steady-state solutions are
characterized in terms of the contribution of each agent
and also in the presence of leaders.

In this paper, we deal with social networks where
agents contact similar minded people in terms of their
opinions on a subject, i.e., we adopt the multi-agent
view of the diffusion process (see [2] for a broader
discussion). It is assumed that these beliefs describe
objective arguments for rational people that take them
into consideration regardless of the person who sent
them. A similar terminology of rational innovations is
used in [3] where the opinion of an agent towards an
innovation is rational if it depends only on the quality of
the innovation, as opposed to controversial innovations.
The work in [4] also points to the same characterization
that social networks evolve in a rational manner. Ex-
amples range from scientific discussions, focus groups
with undisclosed brand names, and others where the
sentiment of the agents does not influence their opinion.
The fact that nodes belong to a community is perceived
as the bounded confidence model meaning that nodes
with closer opinion influence each other.

An example motivation in the field of control for
mobile networks is that one might want to replicate a
social behavior in a distributed system by enforcing the
same rules for neighbor selection. In these scenarios, it
is useful to study deterministic networks where com-
munication is not a key aspect and acknowledgment of
messages can be performed. However, for other cases of
interest, one might relax this assumption and consider an



asynchronous model better represented by stochastic net-
works. A group of mobile robots agreeing on the location
to rendezvous, equipped with communication devices of
variable transmitting power, would have crucial features
such as: saving resources, as nodes limit the number of
interconnections; having finite-time convergence as op-
posed to asymptotic when using a consensus algorithm;
working both synchronously and asynchronously; and
the generated network topology is regular and robust
to link failures. These illustrative scenarios motivate the
current problem.

In the literature, it is often considered a deterministic
and synchronized model to account when people update
their opinions. Direct consequences of these assumptions
are: i) all people update their opinion in a round-fashion
manner and ii) the model cannot account for irregular
patterns of updates. Moreover, the decision of when
each person updates its opinion is better modeled by a
stochastic process given the non-deterministic features
of human behavior. In this paper, the adopted model
allows to consider stochastic behavior in the opinion
update even though each person can still follow a rule
on establishing its influence connections. A major issue
is that the analysis of deterministic networks, when
selection of discussion partners is still based on his/her
own opinion, can benefit from a cluster-based analysis or
techniques from dynamical systems whereas proofs for
stochastic networks rely on computing expected values
and variances and all theoretical results are now in
probabilistic sense.

B. Contribution

The main contributions of this paper can be summa-
rized as:

e A social network is modeled as an iterative dis-
tributed algorithm with a state-dependent dynamics
for the topology that uses a fixed parameter of
connectivity;

« Finite-time convergence is shown for the base net-
work and discarding similar opinions reduces in half
the number of required links to achieve the same
speed;

o Results relating the interaction dynamics with the
relative weight of each node in the final opinion
are provided;

e Two proposed strategies that have finite-time con-
vergence with each node having two neighbors;

e Stochastic versions of the network dynamics are
studied and converse results are obtained with con-
vergence in mean square and almost surely. The
case of a pure random selection is also visited with
exact convergence rate in terms of expected value.

C. Related Work

In [5], a classical model of influence and opinion for-
mation processes found in sociology is studied where the
relative weight of each agent is based on their influence
in the outcome of past discussions. The model has two
equations: one governing the evolution of the current
opinion and another where the power of each agent is
updated at the end of each previous discussion based
on the final preponderance of that agent. The analysis
focuses on the convergence properties of the Friedkin-
Degroot model [6] (see also [7] for the related Friedkin
and Johnsen model), which models social interactions by
means of a linear system, where each agent updates its
opinion as a weighted average of their previous opinion
and that of their neighbors. Generalizations of these
models include [8] where agents communicate belief
functions.

The main view in this paper concerns how people
belonging to the same political party, sports association,
or other organizations, are inherently contacting with
agents sharing similar opinions. The work of [9], [10],
[11] and [12] support the same argument. In particular,
[9] studies various models of interaction to analyze when
nodes converge to the same opinion or fragment into var-
ious opinion clusters that do not communicate. In [11],
a model is investigated where, as in a gossip fashion,
random pairs of nodes with close opinions evolve their
belief to their average. Conditions for single or multi-
cluster convergence are provided. Both works share a
common view that the connectivity graphs depend on the
state. A more recent work [13] studies the community
cleavage problem as the result of stubborn leaders. A
more comprehensive discussion of this topic can be
found in [14].

Randomized algorithms for information aggregation
have attracted attention due to its decentralization and
accurate modeling of people interactions. In particular,
[15] generalizes the concept for a set of agents with a
state that reflects many opinions on different topics. This
can be seen as a generalization of the randomized gossip
algorithm proposed in [16], which encompasses other
interesting particular cases such as for political voting,
as mentioned in [15]. The proposed model differs from
[15] in the sense that the evolution of the network is
deterministic, having an environment with a set of rules
and where people are rewarded for their cooperation. The
present work differs from these models by assuming a
different update rule and focusing on having network
dynamics that mimic social interactions. Expressing the
interconnections as a stochastic graph model has also
been investigated in [17, 18, 19] where algorithms are
given to estimate the probability distributions of such
links existing in the topology.



Since social networks can be treated as first-order
models, their analysis is similar to linear consensus (see,
e.g., [20], [21], [22], [23], [24] and [25]). Stability anal-
ysis in both fields share similar tools [26]. In [27], the
authors assume randomized directional communication
in a consensus system. Some of these concepts have
counterparts in the analysis of social networks. The work
of [28] tackles the state-dependent consensus problem
with the proofs for the some of the results being similar
to those in this paper.

When addressing convergence, a meaningful charac-
terization will describe the rate at which the process
reaches the final value. For the average consensus prob-
lem, [29] analyzes the examples of complete and Cayley
graphs with tools based on computing the expected value
of the difference between the state and the average.
These results follow a similar reasoning to what is
presented in this paper for the stochastic social network
(for the deterministic case, we follow another line-of-
proof, as the objective is to get a finite number of steps,
instead of an asymptotic convergence rate). The main
difference between the approach provided in this paper
and that of [29] is the focus on a different Lyapunov
function, since the final consensus value is not known a
priori.

II. PROBLEM STATEMENT

A social network comprises a set of n agents, inter-
changeably called nodes, that interact and influence the
personal belief or opinion of others about a subject or
a topic. In this paper, the opinion of node 7 is denoted
by the scalar state z;(k),1 < i < n, for the discrete
time domain variable k, which is incremented whenever
a communication occurs. The terms opinion and state
are used interchangeably given that both refer to the
same concept, except that the latter is from the dynamical
system’s point-of-view of the model for the interaction.
The objective is to study under which conditions the limit
Too := limy_, oo x(k) exists, i.e., the discussion finishes,
and to understand how each agent impacts the value x.

The network topology modeling how each agent af-
fects the opinion of a neighbor is given as a time-varying
directed graph G(k) = (V, E(k)), where V represents
the set of n nodes, and E(k) C V x V is the set of com-
munication links that change over time. Node ¢ contacts
Jj, at time k, if (i,7) € E(k). N;(k) denotes the set of
neighbors of agent i, i.e., N;j(k) ={j : (j,i) € E(k)}.

The edge set E(k) evolves according to a “nearest”
policy which is motivated by agents searching for a
diverse set of opinions. In real-life, when people want
to make a decision, they search for positive and negative
feedback within other nodes with opinions similar to the
node state [9], [11], with a constraint on the amount of

feedback they can read or consult. In the next section,
four definitions are formalized for the neighbor sets
N;(k).

In this paper, we will not consider consensus-like
updating rule (see, for instance, [6], [5] for the determin-
istic consensus-like dynamics and [30], for the stochastic
counterpart) translated as a linear function. These works
allow for an approximation to the complex decision-
making process of humans. Instead, the opinion is seen
as translating a set of arguments in the social network.
In [31], a comprehensive discussion on how a decision
opinion is based on the positive arguments compensating
the negative ones, is presented, which motivates one to
consider the average between the worst and the best
sets of arguments. Agents are objective, i.e., rational
in the nomenclature of [3], meaning that there is no
own sentiment towards a final choice. If each agent
was presented with all facts composing the individual
beliefs he/she would reach the same conclusion. Nev-
ertheless, that evaluation can change over time which
will be modeled by a pessimistic/optimistic parameter
ay. Combining the previous description, an agent 7 has
the following dynamics:

zi(k+1) = ay jnin, zj(k) + (1 - Oék)jg]l\%é) z;(k), (1)
where parameter oy, € [0, 1] accounts for how objectively
agents balance their opinion between their neighbors’
extremes (minimum and maximum) beliefs. Note that
everything is well-defined in (1) since N;(k) # 0, Vk,
because at least the node itself is in the neighbor set.
We will refer to a deterministic social network when, at
each time instant k£ 4 1, all nodes update their opinion
based on (1) and by stochastic social network when the
people updating their opinions, i.e. node ¢ in (1), are
randomly selected according to some stochastic variable.
The difference is that in a deterministic social network,
all agents update synchronously their opinion.

Parameter oy represents  the  level  of
optimism/pessimism of the agents. Associating a
positive stance to high values of the belief, then o =0
would correspond to optimistic agents that only take into
account beliefs more positive than their own, whereas
ar = 1 would correspond to pessimistic agents. When
considering a single value oy for all the nodes, focus
is being given to a specific type of decision-making.
However, it is also interesting to study the case where
each node might have a different value. Apart from
the asymptotic convergence in the deterministic and
stochastic cases, the proofs of the theorems would no
longer be valid. In future work, it is of relevance to
consider different values for . In particular, extending
the results in this paper would characterize under what
circumstances there is still finite-time convergence.



In summary, we are interested in characterizing the
number of required neighbors to guarantee convergence
and whether it is possible to find a finite number of dis-
crete updates (ky) after which convergence is achieved,
ie.,

kg : Vk > kg,i,j €V, |zi(k) — z;(k)| = 0.

In addition, we would like to find the smallest & for each
choice of number of neighbors 7 in a n-node network.
On the other hand, asymptotic convergence is obtained
if
Vi,j €V, lim |z;(k) — (k)| = 0.
k—o00

We are also interested in comparing different defini-
tions for the graph dynamics to determine key features
influencing the rate of convergence and final opinion
shared by the nodes. We start by introducing the de-
terministic version of the network dynamics and then
progress to analyze the stochastic setting which reflects
more accurately other real-life examples where nodes are
not forced to a synchronous update.

III. NEIGHBOR SELECTION RULES

In order to get a simple definition, we introduce the
notation for permutation {(i) : i € Z} of the indices
in the index set Z such that x(;)(k) < (;41)(k) and
w(z)(k:) = 1‘(Z+1)(k}) = (1) < (i+1) (e., the
permutation () is such that all the opinions become
sorted and when two opinions are equal the sorting is
resolved by the indices of the nodes). Based on this
permutation of an index set, we have the following
definition.

Definition 1 (order of): Take a node i and a set S of
indices for which we have a permutation (j) as before.
We define that j is the order of i in the set S if (j) = 1.

We can now present four definitions for neighbor
selection (depicted in Fig. 1) that aim at capturing
different behaviors. With a slight abuse of notation, we
will use V;(k) and redefine it. The reader can recognize
N;(k) as the set of in-neighbors of ¢ and, in each result,
the appropriate definition is referred. The following def-
inition uses the set V;(k) := {€: xy(k) # x;(k)} U {i}.
For nn = 1 this definition matches a consensus dynamics.

Definition 2 (base network): For each node i € V of
order j in the set V;(k), we define the set of at most 7
neighbors with opinion smaller than that of i as NV, (k),
ie.,

— _ {(j_n)7<j_77+1)7'”7(j)}a
Nek) = {{<1>,(2),... i)

and the set of at most 7 neighbors with higher opinion
N (k) defined as

+ _ {(j)7(j+1>7'”ﬂ(j+n>}7
AR ‘{ ),

ifj—n=>1
otherwise.

ifj+n<n
otherwise.

and the set of all neighbors as N;(k) := N, (k)UN;" (k),
where n € Z7.

Notice that 0 < |N;(k)| < 21+ 1, thus nothing is being
assumed about node degree.

The previous definition drafts a topology dynamics
that may be slow due to nodes close to the minimum
or the maximum having fewer links, because either
IN; (k)| < n or |N;"(k)| < n. Even though, in realistic
scenarios, extremist people may indeed have fewer inter-
actions because of their extreme views, it is desirable to
investigate how small deviation from the definition can
speed up convergence.

In real-life, the next policy is observed when people
disregard the opinions of some of their acquaintances
because they know that two individuals share the same
positive or negative points towards the subject being
discussed. In a different direction, one can resort to
this definition in distributed systems or virtual social
networks (such as Facebook) to reduce resource alloca-
tion by removing connections to neighbors that share the
same opinion. Before introducing the proposed network
dynamics, it is useful to consider the set of neighbors
with distinct values. In particular, we denote by D;(k)
the set of distinct possible neighbors of node ¢ at time
k, i.e., obtained by going through all the elements of
Vi(k) and adding them to D;(k) if there does not exist
an element in D;(k) already with equal state. In doing
so, for all the nodes with duplicate state, there exists
only one in D;(k).

Definition 3 (distinct value): For each node 7 € V of
order j in the set D;(k), we define the set of at most
1 neighbors with opinion smaller than that of node ¢ as
N; (k), ie.,

— o {(j_n)v(j_n+1)v"'>(j)}v ifj—TIZl
Ny (k) = {{(1), (2),---,()}, otherwise.
and

_ {(j)7(j+1)7"‘7<j+77)}7 ifj+77§n
N (k) = {{(J), G+1),-,(n)}, otherwise.

and define the set of all neighbors N;(k) := N; (k) U
Nt (k).
The network in Definition 3 is depicted in Fig. 2b.

The previous definition did not take into account the
behavior of some people that want to assure an informed
decision and therefore get exactly 2n neighbors. One
of their possibilities is to look for other closer nodes
which motivates a second network structure (or policy),
referred to as nearest distinct neighbors, which satisfies
the following definition:

Definition 4 (distinct neighbors): For each node i € V
of order j in the set D;(k), we define the set of at most



1 neighbors with opinion smaller than that of node ¢ as
N; (k), ie.,

(
{G=m)-- 0} if j—n>1Aj+n<n
{KD%%w~JﬁL ifj—n<lAj+n<n
{(max{1l,n —2n}),---,(j)}, otherwise.
and
Nt (k) =
{G),G+D, G+n)}, ifj+n<nAj-n=1
{G),G+1),--,(m)} ifj+n>nnj-n=1
{(7), -+, (min{n,2n+1})}, otherwise.

and define the set of all neighbors N;(k) :=
N (k).

In the former, nodes seek to have 27 neighbors by
establishing contact with other nearest nodes (see Fig.
1b). The next definition is somehow counterintuitive
as nodes contact with others with opposite opinions to
correct their lower degree.

Definition 5 (circular value): For each node ¢ € V of
order j in the set D;(k), we define the set of at most 7
neighbors considered as N, (k) as
N~ (k) =

(3

N7 (k) U

ifj—n=1Aj+n<n
ifj—n<1IAj+n<n

{(j N 77) (j)}’ otherwise.
and
N;" (k) =
{G),G+1),-,G+m} ifj+n<nAj—n=1
%E)( 3',%%, ifj+n>nnj—n=1
+J— -, (n .
U{(J) G+ otherwise.
and define the set of all neighbors N;(k) := N, (k) U
N (k).

The nearest circular value guarantees that all nodes
have 27 links, as shown in Fig. Ic.

IV. STOCHASTIC STATE-DEPENDENT SOCIAL
NETWORK

In this section, we introduce a randomized version of
the social network presented in Section III. Intuitively, at
each discrete time instant, one agent is selected randomly
according to the probabilities in the diagonal matrix
diag(p1, p2,- - ,pn), Where each py € (0,1) represents
the probability that agent ¢ is selected, with >, p, = 1.
We denote by iy, the random variable accounting for the
selection of the node updating its state at communication

(c) circular value

Fig. 1: Network generated for each definition using n =
land 1 = 1,20 = 2,23 = 3,24 = 3 and z5 = 4.

(b) distinct value

Fig. 2: Detail of the links from node x3 when using
n = 2 and r1 = O,J}Q = 1,$3 = 2,.TU4 = 3,1‘5 =
3 and xg = 4 for the base and distinct value networks.

time k. All random variables ¢; are independent and
identically distributed (i.i.d.), following the distribution
given by matrix P, i.e., ¢y = ¢ with probability p,. If a
given agent ¢ is selected at time k, i, = ¢, then its state
is updated according to the update law in (1) and the
remaining states stay unchanged.

Parameter o, is assumed to be randomly selected at
each time instant k£ from a probability distribution with
a := E[ag], Yk > 0 and support [0, 1]. This definition is
assuming implicitly that the distribution for the choice of
« is the same at every time instant, independent across
time, and is common to all the nodes in the network.
From the definition of the o parameter, we also have that
0 < a < 1. All the random variables are measurable on
the same probability space (2, F,P).

For stochastic social networks, we consider the follow-
ing convergence definition to a final opinion z(w) :=
¢(w)1,, for some constant ¢ that depends on the outcome
w € ) encompassing the outcomes of the random
variables «y, and 7.

Definition 6: We say that the social network with
graph dynamics as in Section III and stochastic selection
of agents converges, in the mean square sense, to a
final opinion, if there exists a random variable, given



the outcome w, of the form z(w) := ¢(w)1, such that
lim E[|z(k,w) — Zoo(w)||*] = 0.
k—oo

An alternative to the dynamics considered above is
also studied which we refer in the sequel to as “random
neighbors social network™. The selection of updating
node is maintained, using the random variables i to
represent the node ¢ selected at time k, and oy as the
random choice for the parameter to use in (1). However,
at time k, the selection of neighbors ignores the previous
definitions for the connectivity graph. Instead, a set of
neighbors is selected at random with equal probability
from the all possible non-empty subsets constructed
using the nodes in V. In addition, it is made the union of
the selected set with the node 7, itself, as to reflect that it
is always possible for node 7;, to use its own opinion. As
a consequence, (1) is still well-defined. Let us also define
the random variables j;, as the node with minimum
opinion from the selected set of neighbors at time k£, and,
conversely, ¢, as the node with the maximum opinion at
time k.

The random neighbors social network mimics the
behavior of interaction where nodes just randomly en-
counter others and the stochastic updates follow the
asynchronous setting of the real world. As an example
of how nodes interact, consider a 6-node network with
initial state [1 3 20 —4 7 0]T, where i, =1 and
node 1 selects nodes 2, 3 and 6 to update its opinion. This
would mean that z1(k+1) = agxe(k) + (1 — ag)zs(k).

V. CONVERGENCE RESULTS
A. Auxiliary results

The next Lemmas are presented to lighten subsequent
proofs for the results regarding convergence using the
proposed dynamics.

Lemma 1 (order preservation): Take any two nodes
1,7 € V with the update rule (1) and graph dynamics
described either by Definition 2, Definition 3, or Defini-
tion 4. If z;(k) < x;(k) for some k, then x;(k + 1) <
wj(k + 1).

Proof. The lemma results from the relationship that if
xl(k) < Ij(k}), then

min (k)

i k) <
min xz,(k) in

LeN; (k) -
and also

max xzy(k) <

< max zp,(k)
LeN; (k)

meN; (k)
and since the update (1) performs a weighted average be-
tween minimum and maximum opinions, the conclusion
follows. m

Notice that Lemma 1 is not valid for the case of the
nearest circular value of Definition 5, as nodes interact

with neighbors that are the “farthest”. The result can
be interpreted as each agent knowledge of advantages
and disadvantages remain ordered as nodes contact with
closer-in-opinion neighbors who in turn interact with
other nodes with knowledge of more extreme facts about
the topic in discussion. Lemma 1 is going to be helpful
since given the relative ordering is maintained we can
use the initial sorting as labeling.

Lemma 2 (convergence for higher connectivity): Take
any of the network dynamics in Definition 2, Definition
3, or Definition 4, and two integers 1 < n; < 1y. Define

VI(k) := maxaj(k) —minzi(k),

where z (k) represents the state at time instant k evolv-

ing according to (1) when the maximum number of larger
or smaller neighbors is 7. Then, for any initial conditions
z(0), Vi (k) > V™ (k).

Proof. Regardless of the value of 7 and given the
iteration in (1), any element of x(k + 1) is going to
be a weighted average of the elements in z(k) with
weights o and 1 — ay. Applying (1) recursively yields
that any opinion is going to be a weighted average of
the initial state with weights being all the combinations
from ag - - - ag to (1—ap) - - - (1 —ay). If we use a binary
vector b to generate all the weights, it means that each
combination from «ag - -y to (1 —ag)--- (1 — ay) can
be written as:

k
Hbiaiﬂ + (1 —=0)(1 — 1)
i=1

for each binary vector b € {0, 1}*.

In addition, iteration (1) is going to perform a
weighted average of two other nodes that depend on
which network dynamics is selected. Following this, we
can define a function ¢(7,b, k,n) used to determine the
indices of the nodes selected for the average at node
1, corresponding to the weight combination b and for &
time instants after the initial time using a connectivity
parameter 7. For the example of a base network, going
from k — 1 to k£ means that this function either selects
node ¢+ (the weight corresponds to the maximum node
in (1)) or @ —n (the weight corresponds to the minimum
node in (1)). Since a node index cannot be smaller than
1 or higher than n, the ¢ function should saturate for
each recursive iteration in k.

Using these two facts enables rewriting V" (k) as a
function of the initial state x(0) = 2™ (0) = 22(0) as:

Vi(k) =

k
S [TT b+ (b1 = ain)] @)
be{0,1}+ i=1

[ww(nybyk,n)(o) - ws@(lﬁbﬁk,n)(o)}



where
sat(c + (—1)01n), if =1
Qp(cv bvgan) = ( ( ) b) .
w(sat(c+ (=1)n),b,£ —1,n), otherwise
using the saturation function
1, ife<L1
sat(c) =< n, ife>n

c, otherwise.

The presented function ¢(+) is for Definition 2 and sim-
ilar functions can be given for the remaining definitions
of network dynamics by adding to 7 the number of nodes
with equal state. Nevertheless, the important feature of
this function is stated next and is sufficient for proving
the result.

The form in (2) means that V' (k) and V" (k) rep-
resent a sum of terms multiplied by weights that are
equal. Even though the weight associated with a given
x;(0) state might be different in V' (k) and V" (k),
the approach herein is to directly compare each term
To(n,bkem) (0) = To(1,5,k,) (0) for the two values 71 and
72, since the weight that multiplies each of these terms
is independent of 7.

Assuming the labeling of the nodes as the relative
ordering at the initial state, to prove Ty p k) (0) —
-Tgo(l,b,k,m)(o) 2 m<,0(n,b,l<:,772)(0) _5U<p(1,b,k,772)(0) it is only
required to show the equivalent for the indices, i.e.,

@(n, b, k,m2) — o(1,0,k,m2) < @(n, b, k,m) — (1,0, k,m). (3)

We shall prove (3) by induction for any k.
Let us start with the base case of £ = 1 and prove
that

@(n,b,1,m2) — o(n,b,1,m2) < o(n,b,1,m) —@(1,b,1,m). (4)

If by = 0, the left-hand side of (4) can be simplified
as follows:

QO(TL, 0,1, 772> - (P(n, 0,1, 772) - Sat(n + 772) - Sat(l + 772)
=n—1-mn
and similarly the right-hand side becomes n — 1 — ;.
Since 71 < 1o, it implies that n — 1 —n; > n — 1 — 0.
If by = 1, the left-hand side of (4) can be simplified
to:

80(71, L1, 772> - (P(n, L1, 772) = Sat(n - 772) - Sat(l - 772>
=n—mn—1
and the right-hand side to n—n; —1. Thus, n; <1 =
n—m-—1>2n—n—1
To prove the induction step, assume (3) is true for
some k and let us prove the induction step

QO(TL,b, k + 17772) - (P(l,b, k + 17772) <

5
(,D(Tl,b, k+ 177]1) - (P(]-vba k+ ]-7"71)' ( )

The first step is noting p(n, b, k,m1) = (1, b, k,n1) can
only be true if and only if ¢©(n,b, k,n2) = ©(1,b, k,n2)
or it contradicts (3) since () is non-negative and
o(n,b,k,n) > (1,b,k,n). Unless ¢(n,b,k,n2) =
©(1,b, k,n2) holds, in which case (5) is proved trivially
because the function ¢(-) is non-negative, the terms in
(5) can always be written in the following form for

n € {m,n2}:

gp(n, bakan) =N = Rnll , (P(l,b,k‘,?]) =14+ kK11

for some non-negative integers x1 and x,. This is a result
of ¢(n,b,k,n) being equal to the constant n with 7
added or subtracted multiple times and the equivalent for
©(1,b, k,n). Three cases are possible: a) no saturation
happens for time k+1; b) p(n,b, k,n) for Vn € {n1,n2}
saturates; c) ¢(1,b, k,n) for Vi € {n1,n2} saturates.

a) the left-hand side of (5) for k£ + 1 simplifies to

n—rnn + (—1)% 10y — 1 — kg — (—1)%+ 1
=n—KpN2 —1— K1
= SO(TL, ba ka 772) - ()0(1? ba k7 772)

and equivalently for 7;. Then, the left- and right- hand
side of (5) simplify to those in (3) and the conclusion
follows.

b) if in this case, it means that byy; = 0 and (5)
becomes

n—1—(ki+1)np<n—1—(k+1)m
<
(k1 +1)(m —n2) <0,

which is true due to k1 +1 > 0 and 71 — 12 < 0 by
assumption.

c) if in this case, it means that by;; = 1 and (5)
becomes

n—(kp+n—1<n—(k,+1)m —1
—
(kn +1)(m —m2) <0,

which is true k, +1 > 0 and n; — 72 < 0 by assumption.

Therefore, each term in the summation in (2) for n;
is going to be greater than or equal to the same term in
(2) for g, thus implying the conclusion. Notice that the
relationship above for ¢(-) is valid for Definitions 2, 3
and 4. m

B. Base Network

The next results asserts the conditions for convergence
of the base definition.

Theorem 1: Consider a social network as in Definition
2 with update rule (1) and any sequence {«y}. Then,



(i) If n > n — 1, the network is guaranteed to have
finite-time convergence;

(i) If n < n — 1, the network achieves at least
asymptotic convergence.

We omit the proof of the theorem as it follows the
same lines of [28].

Remark 1 (Distinct state values): In any of the graph
dynamics considered in this paper, two nodes with the
same state value are not neighbors following the def-
initions (essentially since they are not going to affect
one another). In addition, any two nodes ¢ and j with
the same state value have N;(k) = N;(k),Vk > 0.
Therefore, the number of (distinct) node values, i.e.,

(k) = {z1(k), -, wn(k)}]

is a non-increasing function. Whenever, the in the initial
state there are repeated opinion nodes, the same results
are valid by replacing n by n — ®(0). Also remark that
if ap =0 or ag, = 1, then ®(k + 1) = (k) — 1, which
means finite-time convergence in n time instants.

The next theorem provides a result for the base social
network which is based on the eigenvectors of a matrix
representing the interaction in a time step.

Theorem 2 (Base Network Final Opinion): Consider
a social network as in Definition 2 with n nodes with
distinct initial condition z;(0),1 <4 < n and a constant
parameter « in (1). The final opinion of the network is
given by

1wl
Too = NG z(0),
where w; is the normalized left-eigenvector associated
with the eigenvalue 1 of matrix A € R™*" defined by

a, if j = max(1,i —n)
[A]ij =<1 —q,if j =min(n,i+7) .

0, otherwise

Proof. An iteration for the base social network as in
Definition 2 can be given by z(k + 1) = Ax(k) when
labeling the nodes according to their relative ordering,
which remains constant by Lemma 1. Therefore, xo, =

klim AF2(0). Notice that matrix A is row stochastic,
—00

so the eigenvalue 1 has corresponding right eigenvector
1—31 and all the remaining eigenvalues have magnitude
smaller than 1, which concludes the proof. m

In Theorem 2, the final convergence value depends
on the vector w;, which is the so-called PageRank for
matrix A [32]. This connection comes from the fact
that the base social network, for constant parameter «,
becomes a linear iteration for a fixed network structure.
Similarly, it points out to the importance of nodes based

on the left-eigenvector, which is a centrality measure

for this network (see [33] for a connection between
centrality measures and social networks).

Theorem 2 only required i) the ordering of the nodes
to remain constant, which is ensured by Lemma 1; ii)
the matrix A to be constant, which is valid for all cases
when only asymptotic convergence is achieved and « is
constant.

C. Nearest Distinct Values

Theorem 1 states that the base network is only guar-
anteed to achieve finite-time convergence for all initial
conditions if n = n—1 (complete topology). The follow-
ing theorem addresses the study of topology dynamics
as in Definition 3, where we use the ceiling operator |[.]
to denote the smallest integer greater or equal than the
argument.

Theorem 3: Consider the social network as defined in
Section II, with the graph dynamics as in Definition 3,
and any sequence {«y}. Then,

(i) If n > %, the network is guaranteed to have finite-
time convergence in no more than [logy n| steps;

(i) If n < 5, the network achieves at least asymptotic
convergence.

Proof. (i) Without loss of generality, we assume n =
27, the initial states are all distinct as in Remark 1, and
that the numbers of the nodes are sorted according to
their state ordering, so as to shorten the notation by
identifying the minimum and maximum value nodes with
x1 and x,, respectively. Since n = 27, there exist at least
two nodes reaching the minimum and maximum nodes,
i.e., there are i, j :

min z, = min z; = z1(0)
LeN;(0) LeN,(0)

max ry = max xy = 2,(0)
LeN;(0) LeN;(0)

Thus, (1) = ®(0) — 1. In the subsequent iterations the
cardinality reduces by 2,4,--- by nodes fulfilling the
previous conditions, which leads to ®, = n — (2% — 1).
Hence, ®(k) < 1 < k > logyn, thus leading to the
conclusion.

(i1) Using the previous argument, one determines that
if n < %, it is not possible to find at least a pair of
nodes communicating with the whole network and guar-
antee finite-time convergence. Asymptotic convergence
is achieved following the same argument from the proof
of Theorem 1 given in [28] and by noticing that the graph
dynamics in Definition 3 also imply a strongly connected
graph. m

Theorem 2 provides a categorization of the final
opinion for the base social network which depends on a
left eigenvector of a matrix, but it is not straightforward
to understand how the steady state is influenced by the



initial conditions. In the sequel, closed-form results are
presented that describe the dependence on the initial
conditions when finite-time convergence is achieved for
the network dynamics as in Definition 3 and Definition
4. The case of distinct values is presented next.

Theorem 4: Consider a social network with dynamics
as described in Definition 3 and distinct initial conditions
2;(0),1 < i < n, with parameters o = 3 and n = [%].
The network opinion converges to

r
o0 = S logn] 1
with
[log, n]
T = Z [2“0g27ﬂ*1*j"| (x1+0j +$n79]»)
j=1
using the following definitions for the indices
(0, ifj=1
j—2
z+1 . .
0, = g d( )]+n, if even j |

>

=1

where recall that ®(k) := [{z1(k), - ,zn(k)}].

Proof. We start our proof by showing that 6 is the set
of indices of the initial states that contribute to the final
opinion value. At time instant £ = 1, the minimum node
will have a state equal to the weighted average between
z1 (i.e., the node with minimum state at time £ = 0)
and 1., and, conversely, the maximum state will be the
weighted average between x,, and x,,_,, thus obtaining
the second term 7).

In the next time instant, the minimum value node con-
tacts the node that is the 7-th smaller value which corre-
sponds to adding the node 1 (112y) mod n = T14n—a(1)
and conversely to the maximum value getting xg(1). The
key aspect to notice is that ®(1) was added to take into
account that the cardinality of nodes with distinct values
has decreased. By following the same pattern, we obtain
the expression for 6.

To finalize the proof, we must compute the weights as-
sociated with each index. We notice that the aggregation
is a binary tree and the weights double after each time
instant that the index was added to . Thus, the weights
are given by 2/1°82"1=1=J where we must subtract 1 since
the time starts at £ = 0 and j accounts for the time
instant it enters in the index set 6. m

To illustrate Theorem 4, consider a network with n =
16 and n = 8 for o = 0.5 where the aim is to compute
the final social opinion. Using Theorem 4, the final state
is given by

4z + x9 + 16 + 228 + 2209 + T11 + T15 + 4216
32

D™*e ()] — 1, ifodd j > 1

Too =

while if 7 = n — 1 the solution is

r1+ Tie

=Ty
which indicates that the minimum and maximum opinion
nodes are the most influential in the final network belief
and as 7 increases their preponderance follows.

D. Nearest Circular Value

The following result studies Definition 5 as the dy-
namics of the social network.

Theorem 5: Consider the social network with graph
dynamics as in Definition 5, update rule (1) and any
sequence {cay}. Then, for any 1 > 1, the network has
finite-time convergence in no more than [%1 +1
time steps.

Proof. Without loss of generality, we assume distinct
initial states as in Remark 1 and that the nodes labels
are sorted according to their state ordering. If ®(k) <
2n 4+ 1, then we have the complete network and finite-
time consensus is achieved in a single time instant.

At each time k, there are 27 nodes that have access
both to z1(k) and x, (k). Thus, (k) =n — (2n — 1)k
and we need to have ®(k) < 2n+1 & k > %ﬁrl)
to get to a configuration where finite-time convergence
is achieved in a single time instant, which concludes the
proof. m

Remark 2: In a first analysis, the convergence time
provided in Theorem 3, i.e., logy n, could appear signif-
icantly faster when compared to [%} + 1 from
Theorem 5. However, we stress that, in Theorem 3, such
a rate is achieved when n = 27, which would lead
to convergence in a single instant in the conditions of
Theorem 5.

E. Nearest Distinct Neighbors

The next theorem proves the conditions for con-
vergence when the selected neighbor selection follows
Definition 4.

Theorem 6: Consider the social network with graph
dynamics as in Definition 4, update rule (1) and any
sequence {ay}. Then, for any n > 1, the network has
finite-time convergence in no more than [MW +1
time steps.

Proof. Without loss of generality, we assume distinct
initial states as in Remark 1 and that the nodes labels are
sorted according to their state ordering. Similarly to the
previous theorem, if ®(k) < 21+ 1 then the network is
complete between all the nodes with distinct values and
finite-time consensus is achieved in a single time instant.

At each time k, there are 1+ 1 nodes that have access
to x1(k) and z14,(k), and 7 + 1 nodes receive the



information x,,_,(k) and z, (k). Thus, ®(k) = n — 2nk
and we need to have ®(k) <2n+1< k > %ZH) to
get to a configuration where finite-time convergence is
achieved in a single instant, which concludes the proof.
]

The clustering behavior observed when using the pre-
vious definition for selecting neighbors is very different
from what is obtained when using Definition 4, where the
median nodes play the key role. The result is summarized
in the following theorem.

Theorem 7: Consider a social network with graph
dynamics as in Definition 4, update rule (1), and distinct
initial conditions z;(0),1 < ¢ < n, with parameter
a = % The network opinion when n = 1+ 2nf, ¢ =
{0,1,---} converges to

T T
) jzo <j> T1+j52n
0= T o (6)
where 7 = [.] — 1. For the remaining values of n we
get

T

.
5 (7) boveson + e

Jj=0

(N

Too = 97 +1

Proof. For the trivial case of n = 2, the expression is
straightforward to verify. For the general case, we use
induction to prove the result. Start by noticing that for
k =1, we get weighted averages of pairs of variables z;
and w;;2,. When k = 2, the averages are among nodes
Ti, 2%y, and T2, since n > 27, or otherwise an
additional communication step would not be necessary
and k£ would be one.

Using the same reasoning, we need to consider 3
cases: when n = 1+2nf, when 14+2nf < n < 2n({+1),
and when n = 2n/.

(1) When n = 1 4 20/, there exists an instant k such
that ®(k — 1) = 2n + 1. For time instant k, ®(k) = 1
and for n nodes, by assumption, all of their values is a
weighted average in the form of (6) for time k, i.e.,

> (5)-
. 1+52n
=0
e ®)
If we consider n+1, from the previous observation, there
will be a node at time k£ with the value of

3.(0):

.| L2452

=0
2k

and where the last term of the sum is, by definition,
dependent on z,. Thus, we can rewrite it as

e
Z ] x"—(k—j)Qﬂ

j=0

o )

By combining equations (8) and (9), we get that all nodes
at time k + 1 achieve (7).

(i1) For this case, the proof is similar to the previous
one by noting that, since n < 2n(¢ + 1), at time k — 1,
®(k — 1) < 2n for the case of n nodes. Thus, when
considering n+1, the same setting as before is achieved.

(iii) When n = 2n¢, we get that at time k — 1, ®(k —
1) = 27n. When considering the case of n+1, we will get
at time k exactly 2n+1 distinct values with the minimum

KRN
j +j2n

i=0
0 (10)
and maximum
Mk
Z T4 (144)2n
=0
) (11)

ok
Since the last element of equation (11) must be x,, by
definition, we can rewrite the equation as to count the
variables from 7 instead of 1 and get

3 ()
par j n—j2n
— (12)
Combining equations (10) and (12) and noticing that
except for the first term in (10) and last term in (12),

all of the remaining terms are repeated. Given that

() =G+ ()

the social network for n+ 1 final value is as in equation
(6) when considering that it takes an additional time
instant to converge. m

As a small example to illustrate Theorem 7, let us
consider a network with n = 16 and 1 = 2. Hence, one
obtains

T1 + x4 + 325 + 3x8 + 329 + 3212 + T13 + T16

Too =
16

which shows that under the network dynamics of Defini-
tion 4, the most influential nodes are close to the median
and not the minimum and maximum nodes, as in the case
of Definition 3. These results sustain the fact that given
different objectives, it might be beneficial to choose
one network over the other and scale the connectivity

parameter 7 accordingly.




F. Stochastic Social Network

Section IV introduced the stochastic version of the
social network presented in this article, which relaxes
the condition that all the nodes are influenced deter-
ministically at the same time instants. By considering
the stochastic model of the network, we allow for the
asynchronous case to be considered, which is closer to
the actual dynamics that we are trying to model. Remark
that while the convergence for the deterministic case was
studied by the way each definition induces clusters of
opinions, the stochastic counterparts have to be based
on showing that the expected value of the function mea-
suring the dispersion is decreasing. Moreover, the state-
dependent graph dynamics prevents the use of techniques
that typically explore the time-invariance property or the
fact that the random variables are independent. We start
by analyzing the case where the network dynamics is
the base version and the case where nodes only select
distinct opinions, in the following theorem.

Theorem 8: Consider a stochastic social network with
graph dynamics as in Definition 2 or as in Definition
3 with connectivity parameter 7, update rule (1), and
initial conditions z;(0),1 < i < n, with parameter oy
following a probability distribution with mean &. Then,
the network opinion converges to a consensus in the
mean square sense.

In the proof, all inequalities and equalities involving
random variables are valid for a arbitrary w € () and
occur with probability one.

Proof. We start by defining the shorter notation for
the minimum and maximum as

ZTmin(k, w) 1= mein xo(k,w)
Tmax (k,w) = méxxxg(k,w)

and the limit random variable ¢(w), for an outcome w of
the random selections ¢, and all random variables oy, is

defined as

c(w) = kl;ngo Zmin (K, w),

which exists and is measurable by the Monotone Con-
vergence Theorem, since Zmin(k,w) is a monotonically
increasing sequence and upper bounded by . (0) for
all outcomes w.

Also, given the definition of the function V"(-) in
Lemma 2, Vk > 0

n

2k, w) = zoo(@)[* = D (we(k,w) = c(w))?

(=1

<VI(@(0) D |we(k,w) — e(w)]
=1

< V(z(0)) Z ZTmax(k,w) — Tmin(k, w),
- (13)

where the inequalities in (13) are given by the re-
lationship V¢ € V,k > 0 : |z(k,w) — c(w)| <
ZTmax (K, w) — Tmin(k,w), which comes directly from the
definition of minimum and maximum. Note that the
updating rule in (1) performs convex combinations, i.e.,
zo(k + 1,w) = >70_) agzq(k,w) for some weights a,
with 22:1 aq = 1. Therefore, Zmin(k,w) and Tmax (k, w)
are respectively monotonically increasing and decreasing
and V0 € V,k > 0 : |zy(k,w) — c(w)| < Tmax(0) —
ZTmin(0) since VE > 0 : Zmax(k,w) < Zmax(0) and
Vk >0 : Tmin(k, w) < Tmin(0).
Using (13), it follows

Efl|lz(k, w) — oo (w)[1?[2(0)] < V(2(0))E[V"(z(k,w))|2(0)].
We shall prove, for n = 1, that

E[V(x(k,w))|z(0)] < ¥*V(2(0)) (14)

from which stability in the mean square sense follows,
because

E]J2(k,w) — 2o (w)|*2(0)] < p7"V7(2(0))*.

for some positive constant p and 7 < 1.

Let us start with = 1. In this case, when aj €
(0,1), since n = 1, we can take the labeling of the
nodes to be their relative order such that z;(0) <
x2(0) < -+ < x,(0). This labeling is not changed
since V£ € V\ {1,n}, k> 0: zp_1(k,w) < z4(k,w) <
xp+1(k,w) due to xy(k,w) being a convex combination
of zy_1(k — 1,w) and z1(k — 1,w). For the nodes
with the minimum and maximum state, the converse
is true, i.e., V& > 0 z1(k,w) < zo(k,w) and
Vk > 0 : zp_1(k,w) < x,(k,w). When considering
some ar = 0 or ap = 1, one can take the relative
order of the nodes at time k instead of their labeling,
i.e., replace 1 by (1), 2 by (2), and conversely for the
remaining nodes for all the expressions of this proof.

From the previous observation, the random variable
x(k,w) takes the form of a linear system of the type
z(k+ 1,w) = Qi (ag)x(k,w), where matrices Q;(c)
are defined as

a, if {=max(1l,j—1)ANj=1i

l—a, ifl=min(n,j+1)Aj=1
[Qi(a)]je == T

1, ifj=0Nj#i

0, otherwise.

for nodes ¢, j, ¢ € V and a parameter « € [0, 1]. Matrices
Qi(«) are equivalent to taking row i implementing the
update of node 7 given by (1) and all the other rows from
the identity matrix.

To prove (14) for n = 1, it is sufficient to show that

E[VY(z(k 4+ 7,w))|z(k,w)] — 7V (z(kw)) <0 (15)



for time intervgl of size 7, constant v < 1, which relates
to 4 through v- = 4*, and where E[-|-] is the conditional
expected value operator.

In order to upperbound the expected value in (15),
notice by the definition of V1(-), for all time instant
k, 3i* < j* ¢ xje(k,w) — x (k,w) > W In
particular, there exists adjacent nodes ¢* and j*, i.e.,
j* = i* 4+ 1. Thus, i* and j* cannot be 1 and n at
the same time. Assuming i* and j* are both different
from n, we can define a finite sequence p, of size T,
such that p; = ig41, -+, pr = tk+-. With the objective
of writing x1(k + 7,w) with terms that include both
z1(k,w) and z,(k,w), we consider the finite sequence

pi =n—1,p5 =n—2,---,p5 = 1. This sequence
of updates, of size 7 = n — 1 occurs with non-zero
probability
Pgood = H[P]E
=1

Computing the product Qi(gir—1)- - Qn-1(ag)z(k)
allows one to write the expected value of function V1(-)
subject to the chosen sequence p* to occur from time k
to k+ 7 as

B[V (z(k + 7 w)la(k,w), p = p']

= zp(k,w)
—E[(agsr—1 + @rpr—2(l — apyr1))21(k, w)|2(k,w)]
-1

T—1
*E[Z (ak+7—e—1 H 1- ak-i—r—j—l) zo(k,w)|z(k, w)]

=2 7=0

_E| (f[(l - akm) ek, )], )],
=0

(16)
where the conditional expected values in (16) are over
the random variables ay,agy1, -, Qprr—1. Since oy
is assumed to be independently selected in each time
instant k, Yk > 0,¢ > 0 : E[akak+¢] = E[ak]E[ak+¢].
Thus, and due to linearity of the expected value operator,
(16) can be simplified to

E[V! (z(k +7,w)lz(k,w),p = p*]

a2 — a@)a (k,w)+ § (a(1 - oz)f) ok, w)

(=2

= zp(k,w)—

+ (1 —a) zp(k, w)] .

A7)
Lastly, due to the fact that the nodes labeling correspond
to their relative ordering, we can upperbound (17) and
get
E[VY(z(k + 7,w)|z(k,w), p = p*] < 2 (k,w)
—[(1 =1 —a))z1(k,w) + (1 — &) 2, (k,w)]
<1 =1 -a))(@nlk,w) —z1(k,w))
< (-1 -a))V(z(kw)),
(18)

where all the z(k, w) inside the summation in (17) were
replaced by x;(k,w). Remark that

E[V! (z(k+, w))lﬂ«"(k‘, )] =
pr Hak + )| (k,w), ol

= ProoaB[V (2 (k+T w))|z(k,w), p = p’]
+ Y DBV @k + 7w))ak,w),p = pil,
ps#p*

where p, is the probability of occurring the finite se-
quence p out of all possible finite sequences of size 7.
Given the upperbound in (18) for the chosen sequence
and that for all the remaining ps, V& > 0,7 > 0 :
Viz(k +1,w)) < Vi(z(k,w)), the expected value in
(15) can be upper-bounded by

]E[Vl(m(k +7,w))|x(k,w)] <

Pgood (1 - (1 - 6‘)7) Vl(x(k’w)) + Vl(x(k,w)).

19)

(1 - pgood)
By simplifying (19), we get

E[V(@(k+ 7 w)|z(kw)] < [1 = pgoa(l — @)V (z(k,w)),
which satisfies (15) for v =1 — peooa(l — @)".

For the other case where ¢* and j* are both different
from 1, following a similar reasoning, we would select
the finite sequence pj = 2,p5 = 3,---,pf = n.
Following the same steps would lead to

E[V' (2(k+7,w))[2(k,w)] < [1 — pgooad”] V(2 (k,w)),

which satisfies (15) for v = 1 — pgea@”. Inequal-
ity (15) holds for both cases by selecting v = 1 —
Pgood Max(a”, (1 — &)™) < 1 which confirms that (14)
holds for n = 1, from which convergence in mean square
sense follows for n = 1.

As for n > 1, applying the same reasoning as in the
proof of Lemma 2, we have

0 < VT (z(k,w)) < VHz(k,w)), (20)

which means that for a generic 7, the function V() is
upperbounded by V(). Combining (14) and (20) leads

to
E[V"(x(k,w))(0)] < 7"V (2(0))

from which convergence in mean square follows for n >
1, thus concluding the proof. m

In the next theorem, we analyze the convergence for
the case of distinct neighbors.

Theorem 9: Consider a stochastic social network with
graph dynamics as in Definition 4, update rule (1) and
initial conditions z;(0),1 < ¢ < n with parameter oy
following a probabilistic distribution with mean &. The,
the network opinion converges to a consensus in mean
square sense.



Proof. The proof follows a similar reasoning as that of
Theorem 8 and focuses on establishing (15). Similarly
to Theorem 8, taking 7 = 1 makes possible to write the
random variable z(k,w) in the form of a linear system of
the type z(k+1,w) = Q;, (ax)z(k, w), but with matrices
Q;(a) being defined as

[Qi(a)]je :=
a, if / =max(1,min(j —1,n—2))Aj=1
1—a, if {=min(n,max(j+1,3))Aj=1
1, TEYINEY
0, otherwise.

for nodes 1,5, € V and « € [0, 1]. Matrices Q;(«) are
equivalent to taking row ¢ from the matrix defining the
network dynamics in Definition 4 of the deterministic
case, and all the other rows are taken from the identity
matrix.

For n = 1 and ¢* and j* both different from n, we can
select p* of length 7 = n— 2 such that p7 =n—1, p5 =
n—2,---,ps_; =3, pr = 1 since the update of node 2
is irrelevant due to node 1 having as neighbor both node
2 and 3 for n = 1. In doing so, (16) becomes

E[V! (x(k + 7.w)|z(k,w), p = p"] = 2n(k,w)
—Elagqr—121(k,w)|z(k,w)]

T -2
“E[> | trr—e [ 1 = Okpr—jor | me(k,w) |2k, w)]
=2 Jj=0
T—1
—E| (Ha — aw)) 2 (K, w)|z(k, w)].
£=0

Following that, equation (17) becomes

E[V! (z(k + 7,w)e(k,w), p = p*] = 2n(k, w)—

[dwl(hw)—f— Z (a(l - a)“) zo(k,w)

(=2
+(1- @)Txn(k:,w)] .

However, by replacing all z;(k,w) inside the summation
by x1(k,w), we get the same expression for (18) but with
7 = n — 2 instead of n — 1. Following the same steps
for i* and j* both different from 1 would lead to the
same expression as in Theorem 8. Thus, by following
the remaining steps in the proof of Theorem 8, the
conclusion follows. m

Another interesting case of the stochastic social net-
work is the random neighbors version, which is analyzed
in the next theorem.

Theorem 10: Consider a random neighbors social
network and initial conditions z;(0),1 < ¢ < n, with
parameter oy, following a probabilistic distribution with

mean &. Then, the network opinion converges in mean
square sense to consensus.

Proof. Let us recall the random variables 7 to rep-
resent the node whose clock ticked and is going to
update its state and define the random variables j; as
the minimum node selected by node i at time &, and /¢
as the maximum node selected by node ¢, at time k. The
social network takes the form of a linear system of the
type z(k+1) = Q},, (ax)a(k), where matrices Q’(c)
are defined as

a, ifg=iANr=j
- l—q, ifg=iAnr=1~
Lo(@)]gr = ’
[ﬂ( ar 1, ifg£iNg=r
0, otherwise.

for nodes i, 7,¢,q,r € V and « € [0, 1] as the parameter
for (1). In the remainder of the proof we will omit the
dependence of z(-) on w to shorten the notation and
all inequalities and equalities involving random variables
hold for an arbitrary w with probability one.

Let us compute the probabilities associated with each
of the matrices Q;e() for a given value of 7, j and /.
Let us define matrices II;, where [II;] is the probability
that after selecting node ¢ its update uses the minimum
as node j and the maximum as node /¢

22 ifj=ing <
Z fj<ini<d

[Hi]jﬁ = 9t—j . L.
on_1> lf j <1 /\ 1 = g
0, otherwise.

The probability of each Q; (@) is going to be the proba-
bilities in [II;];, multiplied by the probability distribution
function of a. Let us also define matrix

R=E| é'e(a)}-

Then,
E[z(k +1)] = RFE[z(0)]

due to the probability distribution of selecting each
matrix Q;.Z(a) and the corresponding parameter o being
independent. The expected value matrix 12 can be written
as

R— %((n DI+ (1- @) ®1D)Q+aT))

where
Hl on—j e - .
H on_1 lf 7> Vi
0= 2 Yo = J 2n9F1 - .
= - ) [ ]ij = n_1 ifi=j
: otherwise.
1L, 0,



Matrices II; have all entries summing to 1, making each
1TTI; sums to 1, leading to (I ®1T)2 being row stochas-
tic and upper triangular. In addition, matrix T is also
row stochastic but lower triangular. As a consequence,
matrix R is a full matrix with all positive entries and
row stochastic as it is a convex combination of row
stochastic matrices. Thus, according to the Gershgorin’s
disk theorem, it has all eigenvalues within the unit
circle. Since R is full, it is irreducible and, by the
Perron-Frobenius theorem, it only has one eigenvalue
equal to 1, showing that the limit of the expected value
converges. These properties are required for the proof of
convergence in the mean square sense.

Similarly, let us introduce the matrix

n n n
Ry=3 ) > [MWiljeQ5e @ Qg

i=1 j=1 ¢=1
Manipulating the expression, and given that the distribu-
tions are independent, we can write

E[z(k + 1)z(k +1)T] = RSE[z(0)=(0)T].

Due to the structure of matrices Q; ¢» the second moment
matrix can be written as

I' Ao A3 A1y
Asq Iy Az Az oy
A1 Ap—ip2 I | P

An,l An,2 An,n—l Fn
where
I'r=R- Z [(1 = @) [TL)0Q; + alll];eQ%) — Z Z Q;

it i Al
and

Agj = [(1 = @)[ITi];Q5; + 6[IT:]50Q5,].
i#j

Matrix R is still a row stochastic matrix but with non-
negative entries. In order to show that Ry is irreducible,
consider its support graph given by having n? nodes
corresponding to the dimension of R and having an
edge (i,7) for each [Ry];; # 0. Notice that in the block
diagonal we have full matrices and, therefore, have n
complete graphs of n nodes each. Since the support
graph of Ay; has a link (¢,j) which connects the ¢
of one of the clusters with j of another, the overall
graph is still connected. Following the same reasoning,
all the eigenvalues are within the unit circle with only
one eigenvalue 1 and the conclusion follows. m

The proofs regarding the convergence of the con-
sidered social network use similar steps and tools that
can be used for addressing other network dynamics.
However, the focus of this work is on these specific
network dynamics, as they reflect the observation of
social networks in real-life.
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Fig. 3: Evolution of V(k) for the case of a base social

network for values of n = 96, --- , 100.
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Fig. 4: Evolution of V' (k) for the case of a social network
with agents communicating with nodes with distinct
opinions for values of n =8,--- ,12.

VI. SIMULATION RESULTS

In this section, we aim to compare the performance of
the four network dynamics with an example consisting
of n = 100 agents and z;(0) = 2,i = 1,--- ,n with
ap = %, vk > 0.

Figure 3 depicts the values of function V' (k) in each
time step for the base social network. The function V' (k),
defined in the statement of Lemma 2, measures the
spread between the minimum and maximum opinions.
In the figure, the example with n = 99 is overlapped by
the one where 77 = 100 since in both cases the topology
is complete.

In Fig. 4 is presented the simulation for the distinct
value policy. To have a clear representation, the thick
lines correspond to the finite-time convergence cases
which satisfy 7 > 5. The number of time steps before
settling corresponds to the results in Theorem 3. In
comparison with the base network where all the nodes
are completely reachable, in this case, only two are
needed.

Figures 5 and 6 present the evolution using the circular
graph dynamics and the closest distinct neighbor policy,
respectively. We point out the fact that both rules achieve
finite-time convergence for any selection of 7, although
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Fig. 5: Evolution of V' (k) for the case of a social network
with agents with strong opinion looking for opposite
opinions for values of n =1,--- 5.

Fig. 6: Evolution of V' (k) for the case of a social network
with agents contacting the 27 closest distinct neighbors
for values of n=1,--- 5.

the distinct neighbor has a faster rate. The difference is
justified by the way they operate. The circular strategy
forms a cluster of nodes connecting the strongest opin-
ions in each iteration. As opposed, the distinct neighbor
builds two clusters with the same opinion in the first
time step and new nodes are added in subsequent steps.

The above simulations illustrate the main theorems in
this paper but fail to truly compare the speed of these
techniques. We run a new simulation with n = 100 and
n = 1 to make the results comparable, since the first two
scenarios have a number of links equal to n(2n—n—1)
and the following two have 2nn links.

Figure 7 depicts function V' (k) for the different topol-
ogy dynamics. As expected, the circular and distinct
neighbor achieve finite-time convergence while the graph
dynamics in Definition 2 and Definition 3 present an
asymptotic convergence with the same behavior (the
lines overlap) since we have set n = 1.

Figure 8 depicts the evaluation of function V' (k) for
a larger network of 1000 nodes. The convergence and
behavior conform with the predictions of the theoretical
result.

In order to compare the four policies regarding the
final consensus, we consider a social network with
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Fig. 7: Comparison of the evolution of V' (k) for the four
cases with n = 1.
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Fig. 8: Comparison of the evolution of V (k) for the four
cases with n = 1 and a large network of 1000 nodes.

n = 100 agents and three different cases for the initial
conditions:

« initial conditions are drawn from independent nor-
mal distributions with expected value 100 and vari-
ance 1;

« initial states are chosen from independent exponen-
tial distributions with A = 100;

« and a final example where 90 nodes are chosen from
a normal distribution with expected value 1 and 10
agents are selected from normal distributions with
expected value 100.

Figure 9 depicts the evolution of the final opinion
value z, as a function of 7 when considering oy =
%, Vk > 0 and network dynamics as in Definition 2 (the
distinct value case is very similar). The first interesting
point (observed in all cases) is that, when considering
all the initial states drawn from independent normal
variables with expected value equal to 100 and variance
1, the final opinion converges to the expected value. Such
a result can be explained by the fact that the final belief
is a convex combination of the initial states, which are
normally distributed. We point out that for the geometric
distribution, the social opinion is smaller than what is
achieved for the Circular and Neighbor dynamics. An
interesting aspect for small values of 7 is that the final
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Fig. 10: Evolution of the final state x, as function of n
for the case of the Neighbor Network dynamics.

value is greater than what can be achieved using other
dynamics since the minimum and maximum values have
a higher weight as suggested by Theorem 4.

Figure 10 depicts the final opinion of the network
when using the Neighbor network dynamics. The final
opinion increases with 7 except for the case of the
normal distribution with expected value equal to 100. In
the geometric distribution case, it is possible to achieve
a higher opinion by selecting 7 close to n and a smaller
value if we consider 7 close to 1. In the case where the
population is divided into two groups, we see that the
social opinion can approximate that of the majority by
selecting 7 = 1, since this policy places higher weights
in the median nodes, as shown in Theorem 7. We omit
the plot for the circular network since for the cases using
normal distributions they were different by a factor of
1072 (except when 7 < 9 which was around 1).

VII. EXPERIMENTAL DATA

The previous section simulated the behavior of the
network when people follow exactly the proposed model.
Such a case is of particular interest when applying the
current models to networks of robots or multi-agent

Machine A Machine B

Is a All-in-one Desktop Is a All-in-one Desktop

Intel i7 processor with Quad Core | Intel i5 processor with Dual Core

Processor works at 2.9 GHz Processor works at 2.5 GHz

Clock turbo of 3.9 GHz Clock turbo of 3.1 GHz

Cache of 8 Mb Cache of 3 Mb

32 GB of RAM 8 GB of RAM

No information about RAM speed | 2133 MHz

1 TB of SSD 256 GB of SSD

GeForce GTX 1070 Intel Graphics 620

Same audio system Same audio system

No available HDMI Available HDMI

USB fast port Standard USB ports

n 28 in touch screen

Standard 23 in screen

4500 x 3000 resolution 1920 x 1080 resolution

Touch screen pen n.a.

Costs 5000 euros

Costs 1120 euros

TABLE I: Information relating characteristics from ma-
chine A and machine B.
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Fig. 11: Evolution of function V' (k) for the real data.

[0, 1] to translate the choice for a computational machine
for the department. A value of zero would correspond to
machine A whereas a value of 1 was a certain vote on
machine B. Each participant were randomly assigned one
of the characteristics of the machines shown in Table
I. Future research work will include the modeling of
stochastic interactions based on semi-Markov processes,
such as the ones in [34].

The students were then asked to input a vote in each
iteration corresponding to how likely they would advise
on the purchase. After each vote, the system would
match them with other people based on their vote and
exchanged known characteristics by the neighbors. The
evolution of function V (k) for the experimental data is
depicted in Figure 11.

An interesting remark is that some participants did not
send the last vote (i.e., the last vote means that no more
information can be shared) as an integer. This prevented
convergence since we always had at least a student voting

systems. In order to assess how much do people comply
with the model, we have conducted an experimental trial
with computer science students. Each participant were
left with the choice of assigning a value in the interval

0 to signal selection of machine A. In order to better
assess the proposed model against the Degroot model,
in Figure 12, it is depicted the mean value of the votes
for the proposed model using the Distinct Neighbors.
Notice that using the Degroot model, as it resembles



&

Fig. 12: Evolution of the mean of the votes in the exper-
iment using the distinct neighbors against the predicted
by the model with a; = 0.95 for all nodes and time
instants.

a consensus algorithm and given the ring network, the
mean of the state is always going to be 0.25, i.e., equal
to the average of the initial votes. In the experiment,
this mean approaches 0.05 as most participants voted 0,
which motivates the use of more advanced models.

VIII. CONCLUSIONS

In this paper, the problem of studying the evolution
of the opinion in a social network associated with a
political party or an association is firstly tackled in
a deterministic setting by modeling it as a distributed
iterative algorithm with different topology dynamics that
translate how agents interact. The dynamics considered
are motivated by the fact that people tend to engage
discussion with those with opinions close to their own.

For the deterministic setup, we have presented stability
results for the base social network and remark that dis-
carding repeated opinions improves the speed (requiring
half the links). Two novel strategies are presented to
reduce the number of necessary links 7, namely one
where nodes with extreme opinions seek the belief of the
opposite opinion agents; another where 2n connections
are established by selecting the closest agents without
forcing to be greater or smaller. It is shown that albeit
finite-time convergence is obtained through distinct pro-
cesses, both algorithms place different weights on each
agent initial opinion.

The circular strategy does not maintain the relative
order of the nodes according to their opinion. Evaluating
this strategy in simulation revealed that it follows the
same general behavior of the distinct neighbors policy.
The distinct neighbor policy results in a social opinion
where the nodes closer to the median are more influ-
ential, and the weights are given by the entries of the
Pascal triangle.

FUTURE WORK

Directions of future research include the collection
of experimental data and the use of the model for
different weight parameters for each individual. Under
this scenario, the model would be comprehensive to
include agents that are rational but value differently the
positive and negative arguments relating a given topic.
Another interesting topic is the application of the current
models as guidance algorithms for mobile autonomous
agents to achieve fast convergence with a small number
of exchanged messages.
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