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Abstract In underwater navigation, the global posi-
tioning system is unavailable; hence, other solutions
must be pursued in the development of navigation sys-
tems. In this paper, filters for the position, linear veloc-
ity, and acceleration of underwater vehicles are derived
by combining a long baseline acoustic positioning sys-
tem with an inertial navigation system. A dynamic
model is devised via state augmentation, including
the bias of the pseudo-ranges, which accounts for the
effect of the unknown offset between the emitters’ and
receivers’ clocks. With this technique, the resulting
dynamics are linear, in spite of the original nonlinear
nature of the problem. The proposed solution, which
includes the explicit dynamic estimation of the bias
of the pseudo-ranges, is a linear Kalman filter. The
observability of the system is assessed, which allows to
establish globally exponentially stable error dynamics.
The performance of the solution is evaluated with real-
istic simulation results, considering sensor noise and
discrete-time measurements. Finally, the comparison
with the extended Kalman filter (EKF), the unscented
Kalman filter (UKF), and the Bayesian Cramér–Rao
bound is presented, includingMonteCarlo simulations.
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This comparison shows the goodness of the proposed
solution, which converges for all initial conditions and
exhibits performance comparable to the EKF and the
UKF, whereas the EKF and UKF are shown to lack
global convergence.
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1 Introduction

Accurate navigation systems are essential for the suc-
cessful operation of autonomous and non-autonomous
vehicles, providing navigation data that are useful,
whether for geo-referencing, guidance, or for control
purposes. Most navigation systems contain an iner-
tial navigation system (INS), which uses data obtained
from the sensors of an inertialmeasurement unit (IMU).
While the INS is self-contained and offers good per-
formance for short missions, it suffers from problems
with open-loop integration of both the sensors’ noise
and bias.Over time, the open-loop integration increases
the errors of states of interest, such as the heading and
position of the vehicle, as evidenced in [30]. Circum-
venting these problems involves implementing sensor
fusion, i.e., coupling the instruments of an INS, such
as an IMU and an attitude and heading reference sys-
tem (AHRS), with additional sensors, which allows the
design of observers or filters that correct the estimation
error via feedback.
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Table 1 Orders of magnitude of the baseline for the LBL, SBL,
and USBL

Baseline Order of magnitude

LBL 100–6000m

SBL 20–50m

USBL Less than 10cm

A typical additional sensor used to complement an
IMU and AHRS is a satellite-based navigation device
such as the global positioning system (GPS), with
examples of aided navigation seen in, e.g., [3,5,9,
19,26]. Underwater navigation systems are of great
importance, being used by divers, unmanned under-
water vehicles (UUV) such as autonomous underwa-
ter vehicles (AUV), and remotely operated underwater
vehicles (ROV). However, the attenuation that the elec-
tromagnetic field suffers underwater renders the GPS
useless. For this reason, to design a navigation system
that works in this environment, other devices must be
considered. Unlike GPS signals andmost radio signals,
acoustic waves are not quickly absorbed and propagate
far underwater and at a measurable rate. This enables
themeasurement of the distance between a receiver and
one or a series of transponders, as seen in [18]. Acoustic
navigation systems are generally categorized into three
broad classes: long baseline (LBL), ultra-short baseline
(USBL), and short baseline (SBL). As a rule of thumb,
the orders of magnitude [21] are displayed in Table 1.

While harder to install, LBL systems have the high-
est accuracy among the acoustic positioning methods.
The baseline transponders are installed in the work ref-
erence site and the geometry of the baseline transpon-
ders’ network is favorable for position estimation. Fur-
thermore, it operates fully underwater, which proves
to be convenient in situations where the sea surface is
far from the work site. A GPS intelligent buoy (GIB)
can also be deployed for high accuracy if the work site
is sufficiently close to the surface, although that is not
always the case. In this paper, an LBL system is chosen
to aid the system composed by an IMU and AHRS.

An evidence of high accuracy and reliability with
LBL systems is a recent patent [6], which describes a
system that provides location information using mul-
tiple assemblies of IMUs paired with long baseline
accelerometers andGNSS. In [8], a Bayesian near-real-
time state estimation approachwith LBL transceivers is
proposed for underwater inertial navigation. The solu-

tion combines filtering and smoothing for the nonlinear
measurement model with asynchronous LBLmeasure-
ments, conveying a real-time state estimate, suitable for
planning and control purposes.

An LBL localization solution based on an extended
Kalman (EKF) filter and a real-time smoother is pre-
sented in [27], which was tested in a simulation envi-
ronment and in field experiments with an underwater
glider. A 3D compass conveys measurements of atti-
tude and tilt angle of the vehicle, and there is a GPS
unit to obtain a position fix when it surfaces. Glob-
ally exponentially stable position and linear velocity
filters based on LBL have been presented in [2]. A bias
added to the pseudo-ranges was also estimated, along
with the inertial current velocity. However, the prob-
lem framework considers an acoustic Doppler current
profiler (ADCP), which measures the velocity of the
vehicle relative to the fluid. Globally exponentially sta-
ble filters for the position, linear velocity, and gravity
acceleration on continuous timewith data from an IMU
and AHRS in sensor-based LBL navigation have been
presented in [4], where the range measurements are not
corrupted by additive bias.

An acoustic navigation system relies on measuring
distances based on the travel time of an acoustic sig-
nal. In one-way-travel-time mode, the travel time is
computed as the difference between the time that the
signal was emitted and the time that it was received.
Therefore, there are measurement errors associated
with the differences between the time in the emitter’s
and the receivers’ clocks. Even if initially set to the
same time, the rate at which the clocks count time is
different andwill create, over time, a clock drift. There-
fore, clock synchronization is important to accurately
measure ranges, that is, to minimize the bias in the
pseudo-ranges that results from the offset between the
receiver’s and emitters’ clocks.

An application of asynchronous Kalman filtering to
an underwater system consisting of an INS aided by
a Doppler Velocity Log, an inclinometer, and a depth
meter is presented in [22], where a field test was per-
formed. Estimating variables of interest in a nonlin-
ear system using an unscented Kalman filter (UKF) is
proposed in [17], where the authors mention its advan-
tages in softening the dynamics of a single-degree-of-
freedom system.

Developments have been made toward implement-
ing a node-based LBL system, called dynamic long
baseline (DLBL), where there is no distinction between
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receivers and emitters, as presented by the author in
[11]. Such a configuration allows for all nodes in an
underwater network to have localization capabilities.

Target localization using LBL positioning system
was introduced in [31]. The authors propose an algo-
rithm that initially calibrates the position of the beacon
based onGPSmeasurements of a survey ship. The posi-
tion calibration performs, although not ideally, clock
synchronization. After having calibrated the positions,
the target, with the same clock time as the survey ship,
can estimate its position with the on-board navigation
system. Field tests were performed, and the results of
the LBL positioning systemwere compared against the
position obtained with GPS.

Other underwater navigation systems besides acous-
tic have been recently studied, with the first example
being sonar imaging localization, as seen in [13].While
localization using light-emitting diode (LED) has been
studied for scenarios on land, as seen in [14,32], LED
underwater localization is a recent approach, as evi-
denced in [23], and will experience developments in
the coming years. Simultaneous localization and map-
ping (SLAM), especially useful in AUV, consists of a
machine mapping the environment and localizing itself
in this environment and has been an active topic of
research. SLAM techniques, although out of scope of
this paper, can also be envisioned. AUV navigation,
localization, and challenges faced can be seen in [20],
where camera-based localization is also discussed.

Efforts to synchronize the clocks of receivers and
emitters have been performed, as seen in [1] for the
LBL, andpresented in [25], for aGPS-aided INS,where
the clocks’ offset was considered a state of interest, i.e.,
was estimated along with the position, velocity, and
attitude of the vehicle.

The main objective of this paper is the development
of a novel navigation system for LBL navigation aided
by an IMU and an AHRS, that includes the estimation
of a bias, considered to be constant, which accounts for
the effect of the unknown offset between the clocks of
the acoustic emitters and receivers. Therefore, the bur-
den of initial clock synchronization is removed. The
pseudo-ranges measured from the sensors consist of
range measurements corrupted by an additive constant
factor. These low-rate measurements allow to decrease
the estimation error to values close to zero, using feed-
back,whereas the higher rateAHRSand IMUmeasure-

ments drive the vehicle dynamics and are integrated
in open loop. A dynamic nonlinear model of the sys-
tem, using pseudo-ranges, is derived and used in the
observer design.

The estimation solution begins by performing sys-
tem augmentation, considering the LBL configura-
tion, allowing to design an augmented system that
can be regarded as linear for observability analysis
and observer design purposes. Observability analysis
is then performed in order to design an observer that
conveys globally exponentially stable error dynamics.
Its performance is testedwithMonteCarlo simulations.
The main difference between the problem addressed in
this paper and the one in [2] is that, in the former, a
ADCP was considered, whereas in this paper an IMU
is considered, thus increasing the order of the system
dynamics and overall complexity.

The unknown offset between the clocks of the
acoustic receivers and emitters is assumed constant,
that is, the clocks of the beacons disposed in the
LBL configuration are synchronized externally. To
perform such a task, the beacons could be aided
by a GPS receiver and distribute their measured
fixed positions in the network, constantly updating
their clocks such that they could be assumed as
synchronized. A clock synchronization algorithm for
Ad Hoc underwater acoustic systems that takes into
account the limitations of using acoustic signals is
proposed in [29]. Tools that measure the clock off-
set between underwater acoustic modems and allow
for accurate clock synchronization are shown and
expanded in [15]. A localization solution within a
scenario in which the nodes are permanently moving
and are not time-synchronized, with the propagation
speed of the acoustic signals unknown, is devised in
[10].

Previous work by the authors can be found in the
short conference paper [24], where the problem frame-
work was first introduced and an estimation solution
was briefly described. This paper presents the exten-
sive derivation of the results and the proofs that had
been omitted. Additionally, it also includes a thorough
evaluation of the performance of the proposed solution,
including Monte Carlo simulations and a comparison
with the EKF, the UKF, and the Bayesian Cramér–Rao
bound.
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Fig. 1 Underwater LBL scenario

2 Problem statement and notation

2.1 Notation

Throughout the paper, scalars, vectors, andmatrices are
represented by a lowercase letter, a bold lowercase let-
ter, and a bold uppercase letter, respectively. The sym-
bol 0n×m denotes a n×m matrix of zeros, In an identity
matrix with dimension n × n, and diag(A1, . . . ,An) a
block diagonal matrix. When the matrix dimensions
are omitted, the matrices are assumed of appropriate
dimensions. Given two vectors x ∈ R

3 and y ∈ R
3,

x × y and x · y represent, respectively, the cross and
inner products.

2.2 Problem statement

Consider an underwater vehicle moving in a scenario
where a set of landmarks with fixed and known posi-
tions are laid out in a LBL configuration. Further sup-
pose that the vehicle is equipped with an IMU, consist-
ing of two triads of orthogonally mounted accelerome-
ters and rate gyros and an AHRS. Figure 1 depicts the
aforementioned scenario.

2.2.1 System dynamics

Let {I} denote a local inertial reference frame, such
as the north–east–down (NED) frame and {B} a body-
fixed reference frame. The linear motion of the vehicle
respects

ṗ(t) = R(t)v(t), (1)

where p(t) ∈ R
3 is the inertial position of the vehi-

cle, v(t) ∈ R
3 is the velocity of the vehicle relative

to the reference frame {I} expressed in the body-fixed
reference frame {B}, and R(t) is the rotation matrix
from the reference frame {B} to {I}, which satisfies
Ṙ(t) = R(t)S(ω(t)), where ω(t) ∈ R

3 is the angular
velocity of the vehicle expressed in the reference frame
{B} and S(ω(t)) is the skew-symmetric matrix such
that S(ω(t))x = ω × x. The rotation matrix R(t) and
the angular velocity ω(t) are provided by the AHRS.
The IMU, which is assumed to be located at the center
of mass of the vehicle, measures the linear acceleration
a(t), given by

a(t) = v̇(t) + S(ω(t))v(t) − g(t), (2)

where g(t) ∈ R
3 denotes the acceleration of gravity

expressed in the reference frame {B}. This term must
be considered due to the inherent physics of non-ideal
accelerometers, see [16] for further details. It would be
possible to cancel out this term in (2), since the mag-
nitude of g(t) is usually well known. However, since
even small errors on the rotationmatrixR(t)would lead
to large errors in the estimated acceleration, the accel-
eration of gravity g(t) is considered to be an unknown
state, such asp(t) and v(t). The termS(ω(t))v(t) repre-
sents the Coriolis acceleration. Finally, given the posi-
tions si ∈ R

3, i = 1, . . . , L , of the landmarks, let
bc(t) be the bias term that accounts for the effect of the
unknown offset of the clocks between the emitters and
receivers. The pseudo-range measurements are given
by

ri (k) = ‖si − p(tk)‖ + bc(tk), (3)

i = 1, . . . , L , with tk := t0 + kT, k ∈ N, where T > 0
is the sampling period and t0 is the initial time. The
following assumptions are considered.

Assumption 1 The pseudo-range measurements are
positive, i.e., ri (k) > 0,∀k = 1, . . . , L .

Assumption 2 The offset of the clocks between the
emitters and the receiver is constant, i.e., ḃc(t) = 0.

Although drift is not considered in this paper, a pos-
sible drift on the clocks’ offset can be accommodated
by adjusting the parameters of the filters, as long as the
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drift is small. Alternatively, the system can also be aug-
mented to accommodate for clock drift with a simple
integrator.

The derivative of the acceleration of gravity is con-
sidered to be constant in inertial coordinates, which
gives, in body-fixed coordinates,

ġ(t) = −S(ω(t))g(t). (4)

Combining (1) and (3) to (4), as well as Assumption 2,
yields the nonlinear system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗ(t) = R(t)v(t)

v̇(t) = a(t) − S(ω(t))v(t) + g(t)

ġ(t) = −S(ω(t))g(t)

ḃc(t) = 0

r1(k) = ‖s1 − p(tk)‖ + bc(tk)
...

rL(k) = ‖sL − p(tk)‖ + bc(tk)

. (5)

The problem addressed in this paper is the design of
an estimation solution for (5).

2.2.2 Long baseline configuration

TheLBL configuration has beenwidely used in the past
in the design of navigation systems. In the remainder
of the article, the following assumption is considered.

Assumption 3 There exist at least five non-coplanar
landmarks.

In the case of at least four non-coplanar landmarks, it
is possible to obtain the position of a vehicle from range
measurements. Given that the measurements obtained
from the sensors are corrupted with bias, which adds
another variable to be estimated, an extra landmark is
considered in order to guarantee estimation.

3 Filter design

3.1 State transformation and discretization

Let T(t) := diag(I,R(t),R(t), 1) ∈ R
10×10 be a Lya-

punov state transformation, previously used in [3], and
consider the state transformation

⎡

⎢
⎢
⎣

z1(t)
z2(t)
z3(t)
z4(t)

⎤

⎥
⎥
⎦ := T(t)

⎡

⎢
⎢
⎣

p(t)
v(t)
g(t)
bc(t)

⎤

⎥
⎥
⎦ . (6)

Then, the new system dynamics can be written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ż1(t) = z2(t)

ż2(t) = z3(t) + R(t)a(t)

ż3(t) = 0

ż4(t) = 0

r1(k) = ‖s1 − z1(tk)‖ + z4(tk)
...

rL(k) = ‖sL − z1(tk)‖ + z4(tk)

. (7)

Since (6) is a Lyapunov transformation, all observabil-
ity properties are preserved (see [7]). Implementing the
state transformation (6) is advantageous since the new
system (7), albeit still nonlinear, is now time invari-
ant, consideringR(t)a(t) as an input. Considering only
the first four states, exact discretization is performed,
which yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1(tk+1) = z1(tk) + T z2(tk) + T 2

2
z3(tk)+

+
∫ tk+1

tk
(tk+1 − τ)R(τ )a(τ )dτ

z2(tk+1) = z2(tk) + T z3(tk) + ∫ tk+1
tk

R(τ )a(τ )dτ

z3(tk+1) = z3(tk)

z4(tk+1) = z4(tk)

.

(8)

Inverting the Lyapunov transformation, in discrete
time, gives T−1(tk) = diag(I,RT (tk),RT (tk), 1),
since the rotation matrix is orthonormal, i.e.,R−1(t) =
RT (t). This transformation can then be applied to (8),
and discrete-time states can be defined, that is,

⎡

⎢
⎢
⎣

x1(k)
x2(k)
x3(k)
x4(k)

⎤

⎥
⎥
⎦ :=

⎡

⎢
⎢
⎣

p(tk)
v(tk)
g(tk)
bc(tk)

⎤

⎥
⎥
⎦ = T−1(tk)

⎡

⎢
⎢
⎣

z1(tk)
z2(tk)
z3(tk)
z4(tk)

⎤

⎥
⎥
⎦ .
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After re-introducing the pseudo-range measure-
ments, the discrete-time system dynamics can be writ-
ten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(k + 1) = x1(k) + TR(tk)x2(k) + T 2

2
R(tk)x3(k)

+ u1(k)
x2(k + 1) =RT (tk+1)R(tk)x2(k)

+ TRT (tk+1)R(tk)x3(k) + u2(k)
x3(k + 1) = RT (tk+1)R(tk)x3(k)
x4(k + 1) = x4(k)

r1(k) = ‖s1 − x1(k)‖ + x4(k)
...

rL (k) = ‖sL − x1(k)‖ + x4(k)

,

(9)

where u1(k) = ∫ tk+1
tk

(tk+1 − τ)R(τ )a(τ )dτ and

u2(k) = RT (tk+1)
∫ tk+1
tk

R(τ )a(τ )dτ.

3.2 State augmentation

As a function of the system states in (9), the pseudo-
ranges are givenby ri (k) = ‖si − x1(k)‖+x4(k), i =
1, . . . , L . To encode the LBL structure, the difference
in pseudo-ranges measured to two different beacons is
computed [2], which gives

ri (k) − r j (k) = −2
si − s j

ri (k) + r j (k)
· x1(k)+

+ 2
ri (k) − r j (k)

ri (k) + r j (k)
x4(k) + ‖si‖2 − ∥

∥s j
∥
∥2

ri (k) + r j (k)
,

(10)

for i, j ∈ {1, . . . , L}, i �= j . This approach is the same
as the one presented in [2], albeit with different state
transition equations. These differences are defined as
new states,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x5(k)
x6(k)

...

x3+CL
2
(k)

x4+CL
2
(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

r1(k) − r2(k)
r1(k) − r3(k)

...

rL−2(k) − rL(k)
rL−1(k) − rL(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where CL
2 is the number of two-combinations for a set

of L elements, i.e., CL
2 = L(L−1)

2 . To obtain the state

transition equation for the pseudo-range differences,
(10) is rewritten for k = k + 1, and (9) is used to
expand it, which gives

ri (k + 1) − r j (k + 1)

= −2(si − s j )T

ri (k + 1) + r j (k + 1)
x1(k + 1)

+2
ri (k + 1) − r j (k + 1)

ri (k + 1) + r j (k + 1)
x4(k + 1)

+ ‖si‖2 − ∥
∥s j

∥
∥2

ri (k + 1) + r j (k + 1)

= −2(si − s j )T

ri (k + 1) + r j (k + 1)
[x1(k) + TR(tk)x2(k)]

+ −2(si − s j )T

ri (k + 1) + r j (k + 1)

[
T 2

2
R(tk)x3(k) + u1(k)

]

+2
ri (k + 1) − r j (k + 1)

ri (k + 1) + r j (k + 1)
x4(k)

+ ‖si‖2 − ∥
∥s j

∥
∥2

ri (k + 1) + r j (k + 1)
. (11)

To remove the independent term, using (10) and
Assumption 1 gives

ri (k) + r j (k)

ri (k + 1) + r j (k + 1)
[ri (k) − r j (k)]

= −2(si − s j )T

ri (k + 1) + r j (k + 1)
x1(k)

+ 2
ri (k) − r j (k)

ri (k + 1) + r j (k + 1)
x4(k)

+ ‖si‖2 − ∥
∥s j

∥
∥2

ri (k + 1) + r j (k + 1)
.

Substituting this in (11) gives

ri (k + 1) − r j (k + 1)

= ri (k) + r j (k)

ri (k + 1) + r j (k + 1)
[ri (k) − r j (k)]

+2
ri (k + 1) − r j (k + 1)

ri (k + 1) + r j (k + 1)
x4(k)

−2
ri (k) − r j (k)

ri (k + 1) + r j (k + 1)
x4(k)

+ −2(si − s j )T

ri (k + 1) + r j (k + 1)

[

TR(tk)x2(k)

+T 2

2
R(tk)x3(k) + u1(k)

]

.
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The pseudo-range state transition equation can then be
rewritten as

ri (k + 1) − r j (k + 1)

= −2(si − s j )T TR(tk)

ri (k + 1) + r j (k + 1)
x2(k)

+ −(si − s j )T T 2R(tk)

ri (k + 1) + r j (k + 1)
x3(k)

+ 2
[
(ri (k + 1) − ri (k)) − (r j (k + 1) − r j (k))

]

ri (k + 1) + r j (k + 1)
x4(k)

+ ri (k) + r j (k)

ri (k + 1) + r j (k + 1)

[
ri (k) − r j (k)

]

+ −2(si − s j )T

ri (k + 1) + r j (k + 1)
u1(k).

(12)

The augmented state vector is then defined as

x(k) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(k)
x2(k)
x3(k)
x4(k)
x5(k)

...

x4+CL
2
(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
10+CL

2 . (13)

The state dynamic equation for the augmented state
vector can then be written, in compact form, as

x(k + 1) = A(k)x(k) + Bua(k),

where A(k) ∈ R
(10+CL

2 )×(10+CL
2 ) is defined as

A(k) =
[
A11(k) 010×CL

2

A21(k) A22(k)

]

,

with A11(k) ∈ R
10×10, A21(k) ∈ R

CL
2 ×10 and

A22(k) ∈ R
CL
2 ×CL

2 , B ∈ R
(10+CL

2 )×(6+CL
2 ) given by

A11(k)

=

⎡

⎢
⎢
⎢
⎢
⎣

I TR(tk)
T 2

2 R(tk) 03×1

03 RT (tk+1)R(tk) TRT (tk+1)R(tk) 03×1

03 03 RT (tk+1)R(tk) 03×1

01×3 01×3 01×3 1

⎤

⎥
⎥
⎥
⎥
⎦

,

A21(k)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

01×3
−2(s1−s2)T TR(tk )
r1(k+1)+r2(k+1)

−(s1−s2)T T 2R(tk )
r1(k+1)+r2(k+1)

01×3
−2(s1−s3)T TR(tk )
r1(k+1)+r3(k+1)

−(s1−s3)T T 2R(tk )
r1(k+1)+r3(k+1)

...
...

...

01×3
−2(sL−2−sL )T TR(tk )
rL−2(k+1)+rL (k+1)

−(sL−2−sL )T T 2R(tk )
rL−2(k+1)+rL (k+1)

01×3
−2(sL−1−sL )T TR(tk )
rL−1(k+1)+rL (k+1)

−(sL−1−sL )T T 2R(tk )
rL−1(k+1)+rL (k+1)

,

2[(r1(k+1)−r1(k))−(r2(k+1)−r2(k))]
r1(k+1)+r2(k+1)

2[(r1(k+1)−r1(k))−(r3(k+1)−r3(k))]
r1(k+1)+r3(k+1)

...

2[(rL−2(k+1)−rL−2(k))−(rL (k+1)−rL (k))]
rL−2(k+1)+rL (k+1)

2[(rL−1(k+1)−rL−1(k))−(rL (k+1)−rL (k))]
rL−1(k+1)+rL (k+1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

A22(k) = diag
(

r1(k) + r2(k)

r1(k + 1) + r2(k + 1)
,

r1(k) + r3(k)

r1(k + 1) + r3(k + 1)
, . . . ,

rL−2(k) + rL(k)

rL−2(k + 1) + rL(k + 1)
,

rL−1(k) + rL(k)

rL−1(k + 1) + rL(k + 1)

)

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

I3 03 03×CL
2

03 I3 03×CL
2

03 03 03×CL
2

01×3 01×3 01×CL
2

0CL
2 ×3 0CL

2 ×3 ICL
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

ua(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1(k)

u2(k)

−2(s1−s2)T
r1(k+1)+r2(k+1)u1(k)

−2(s1−s3)T
r1(k+1)+r3(k+1)u1(k)

...

−2(sL−2−sL )T

rL−2(k+1)+rL (k+1)u1(k)

−2(sL−1−sL )T

rL−1(k+1)+rL (k+1)u1(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
6+CL

2 .
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Discarding the original nonlinear output, noticing
that the states x5(k), . . . , x4+CL

2
(k) are available, and

using (10), define the augmented discrete-time system,
in compact form,

{
x(k + 1) = A(k)x(k) + Bua(k)

y(k + 1) = C(k + 1)x(k + 1)
, (14)

where C(k) ∈ R
2CL

2 ×(10+CL
2 ) is defined as

C(k) =
[

0 0 0 0 I
C21(k) 0 0 C24(k) I

]

,

with C21(k) ∈ R
CL
2 ×3 and C24(k) ∈ R

CL
2 given by

C21(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 (s1−s2)T
r1(k)+r2(k)

2 (s1−s3)T
r1(k)+r3(k)

...

2 (sL−2−sL )T

rL−2(k)+rL (k)

2 (sL−1−sL )T

rL−1(k)+rL (k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and

C24(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−2 r1(k)−r2(k)
r1(k)+r2(k)

−2 r1(k)−r3(k)
r1(k)+r3(k)

...

−2 rL−2(k)−rL (k)
rL−2(k)+rL (k)

−2 rL−1(k)−rL (k)
rL−1(k)+rL (k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Notice that C21(k) and C24(k) were defined to encode
(10).

3.3 Observability analysis

The discrete time-varying system (14) can still be con-
sidered linear in the state for observer design purposes,
even though the systemmatricesA(k) andC(k) depend
on the pseudo-range measurements. This is possible
because the pseudo-range measurements are assumed
to be available, and therefore are considered as func-
tions of time for observer (or filter) design purposes.

Theorems 1 and 2 address, respectively, the observ-
ability of the discrete-time system (14) and the observ-
ability of the nonlinear system (9).

Theorem 1 Suppose that the LBL acoustic configura-
tion is such that, for some ki ≥ k0, under Assumption
3, the matrix

L(ki ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

(s1 − s2)T −[r1(ki ) − r2(ki )]
(s1 − s3)T −[r1(ki ) − r3(ki )]

...
...

(sL−2 − sL)T −[rL−2(ki ) − rL(ki )]
(sL−1 − sL)T −[rL−1(ki ) − rL(ki )]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is full rank, i.e.,

rank(L(ki )) = 4. (15)

Then, the discrete-time system is observable on the
interval [ki , ki + 3], in the sense that the initial state
x(ki ) is uniquely determined by the input {u(k) :
k = ki , ki + 1, ki + 2} and the output {y(k) : k =
ki , ki + 1, ki + 2}.

Proof The proof reduces to demonstrating that the
observability matrix O(ki , ki + 3) associated with the
pair (A(k),C(k)) on [ki , ki+3], ki ≥ k0 has rank equal
to the number of states of the system. This can be done
by showing that the contradiction is impossible. Fix
ki ≥ k0 and suppose that the rank of O(ki , ki + 3)
is less than the number of states of the system while
assuming that (15) holds. Then, there exists a unit vec-
tor d = [dT1 dT2 dT3 d4dT5 ]T ∈ R

10+CL
2 , with d1 ∈ R

3,

d2 ∈ R
3, d3 ∈ R

3, d4 ∈ R, and d5 ∈ R
CL
2 , such that

O(ki , ki + 3)d = 0, or, equivalently,

⎧
⎪⎨

⎪⎩

C(ki )d = 0

C(ki + 1)A(ki )d = 0

C(ki + 2)A(ki + 1)A(ki )d = 0

. (16)

From the first equation of (16) and attending to the
structure of C(k), one concludes that d5 = 0. Substi-
tuting that in the first equation of (16) results in
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2(s1−s2)T d1−[r1(ki )−r2(ki )]d4
r1(ki )+r2(ki )

= 0

2(s1−s3)T d1−[r1(ki )−r3(ki )]d4
r1(ki )+r3(ki )

= 0

...

2(sL−2−sL )T d1−[rL−2(ki )−rL (ki )]d4
rL−2(ki )+rL (ki )

= 0

2(sL−1−sL )T d1−[rL−1(ki )−rL (ki )]d4
rL−1(ki )+rL (ki )

= 0

. (17)

Then, if (15) holds, the only solution of (17) is d1 = 0
and d4 = 0. Using d5 = 0 as well, and substituting in
the second equation of (16) gives

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(s1−s2)T TR(tki )
r1(ki+1)+r2(ki+1) (2d2 + Td3) = 0

−(s1−s3)T TR(tki )
r1(ki+1)+r3(ki+1) (2d2 + Td3) = 0

...

−(sL−2−sL )T TR(tki )
rL−2(ki+1)+rL (ki+1) (2d2 + Td3) = 0
−(sL−1−sL )T TR(tki )
rL−1(ki+1)+rL (ki+1) (2d2 + Td3) = 0

. (18)

Now, the third equation of (16) is used, which gives,
considering also d1 = 0, d4 = 0, and d5 = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(s1−s2)T TR(tki )
r1(ki+2)+r2(ki+2) (2d2 + 2Td3) = 0

−(s1−s3)T TR(tki )
r1(ki+2)+r3(ki+2) (2d2 + 2Td3) = 0

...

−(sL−2−sL )T TR(tki )
rL−2(ki+2)+rL (ki+2) (2d2 + 2Td3) = 0

−(sL−1−sL )T TR(tki )
rL−1(ki+2)+rL (ki+2) (2d2 + 2Td3) = 0

. (19)

Comparing (18) and (19) and noticing that the vectors
[2 T ] and [2 2T ] are linearly independent for T �= 0,
the only solution is d2 = 0 and d3 = 0. But this contra-
dicts the initial hypothesis of the existence of a vector
d �= 0 such that (16) holds. Therefore, the observabil-
ity matrix must have rank equal to the number of states
of the system, hence concluding the proof. ��

Finally, it is important to note that when defining
system (14), the original nonlinear outputs ri (k) =
‖si − x1(k + 1)‖ + x3(k), i = 1, . . . , L , were dis-
carded. Furthermore, there is nothing in (14) impos-
ing the nonlinear constraints on the augmented states

relating them with the original system states. There-
fore, care must be taken when extrapolating observ-
ability conclusions of (14) to (9). Theorem 2 addresses
this issue, providing the means for the design of a state
observer or filter for (9).

Theorem 2 Suppose that (15) holds for some ki ≥ k0.
Then:

1. the nonlinear system (9) is observable on the
interval [ki , ki + 3], in the sense that the initial
state x(ki ) is uniquely determined by the input
{u(k) : k = ki , ki + 1, ki + 2} and the output
{y(k) : k = ki , ki + 1, ki + 2}.

2. the initial condition of the augmented system (14)
matches that of the nonlinear system (9) on the
interval [ki , ki + 3], i.e.,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(ki ) = p(tki )

x2(ki ) = v(tki )

x3(ki ) = g(tki )

x4(ki ) = bc(tki )

x5(ki ) = ∥
∥s1 − p(tki )

∥
∥ − ∥

∥s2 − p(tki )
∥
∥

x6(ki ) = ∥
∥s1 − p(tki )

∥
∥ − ∥

∥s3 − p(tki )
∥
∥

...

x3+CL
2
(ki ) = ∥

∥sL−2 − p(tki )
∥
∥ − ∥

∥sL − p(tki )
∥
∥

x4+CL
2
(ki ) = ∥

∥sL−1 − p(tki )
∥
∥ − ∥

∥sL − p(tki )
∥
∥

.

Proof Let

x(ki ) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1(ki )
x2(ki )
x3(ki )
x4(ki )
x5(ki )

...

x3+CL
2
(ki )

x4+CL
2
(ki )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ R
3+3+3+1+CL

2

be the initial condition of the augmented system (14)
and let p(tki ), v(tki ), g(tki ), and bc(tki ) be the initial
condition of the initial system (9). From the first CL

2
outputs of the augmented system,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x5(ki ) = r1(ki ) − r2(ki )

x6(ki ) = r1(ki ) − r3(ki )
...

x3+CL
2
(ki ) = rL−2(ki ) − rL(ki )

x4+CL
2
(ki ) = rL−1(ki ) − rL(ki )

. (20)

The outputs from (20) are equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x5(ki ) = ∥
∥s1 − p(tki )

∥
∥ − ∥

∥s2 − p(tki )
∥
∥

x6(ki ) = ∥
∥s1 − p(tki )

∥
∥ − ∥

∥s3 − p(tki )
∥
∥

...

x3+CL
2
(ki ) = ∥

∥sL−2 − p(tki )
∥
∥ − ∥

∥sL − p(tki )
∥
∥

x4+CL
2
(ki ) = ∥

∥sL−1 − p(tki )
∥
∥ − ∥

∥sL − p(tki )
∥
∥

.

Considering the differences in pseudo-range measure-
ments of the nonlinear system (9) for k = ki as a func-
tion of the initial state gives

rl(ki ) − rm(ki ) = −2
sl − sm

rl(ki ) + rm(ki )
· p(tki )

+ 2
rl(ki ) − rm(ki )

rl(ki ) + rm(ki )
bc(tki ) + ‖sl‖2 − ‖sm‖2

rl(ki ) + rm(ki )
(21)

for all l,m ∈ {1, . . . , L}, l �= m. Evaluating the outputs
of the augmented system (9) yCL

2 +1(k) to y2CL
2
(k) for

k = ki as a function of the state x(ki ) and considering
(20) give

rl(ki ) − rm(ki ) = −2
sl − sm

rl(ki ) + rm(ki )
· x1(tki )

+ 2
rl(ki ) − rm(ki )

rl(ki ) + rm(ki )
x4(tki ) + ‖sl‖2 − ‖sm‖2

rl(ki ) + rm(ki )
(22)

for all l,m ∈ {1, . . . , L}, l �= m. Comparing (21) and
(22) allows to conclude, under the hypothesis of the
theorem, that

{
x1(ki ) = p(tki )

x4(ki ) = bc(tki )
. (23)

It is possible to write the differences in pseudo-ranges
for ki = ki + 1 as a function of the initial state of the
nonlinear system (9), as given by

rl(ki + 1) − rm(ki + 1)

= ‖sl‖2 − ‖sm‖2
rl(ki + 1) + rm(ki + 1)

− 2(sl − sm)T

rl(ki + 1) + rm(ki + 1)
[
p(tki ) + TR(tki )v(tki )

+T 2

2
R(tki )g(tki ) + u1(ki )

]

+ 2
rl(ki + 1) − rm(ki + 1)

rl(ki + 1) + rm(ki + 1)
bc(tki )

, (24)

for all l,m ∈ {1, . . . , L}, l �= m. From the first L out-
puts of (14), for k = ki + 1, and using (20), (22), and
(23), it is possible to write, after some computations,

rl(ki + 1) − rm(ki + 1)

= ‖sl‖2 − ‖sm‖2
rl(ki + 1) + rm(ki + 1)

− 2(sl − sm)T

rl(ki + 1) + rm(ki + 1)
[
p(tki ) + TR(tki )x2(tki )

+T 2

2
R(tki )x3(tki ) + u1(ki )

]

+ 2
rl(ki + 1) − rm(ki + 1)

rl(ki + 1) + rm(ki + 1)
bc(tki )

(25)

for all l,m ∈ {1, . . . , L}, l �= m. Since comparing (25)
and (24) does not allow for a conclusion, the differences
in pseudo-ranges for ki = ki + 2 as a function of the
initial state of system (8) are computed, as given by

rl(ki + 2) − rm(ki + 2)

= ‖sl‖2 − ‖sm‖2
rl(ki + 2) + rm(ki + 2)

− 2(sl − sm)

rl(ki + 2) + rm(ki + 2)
[
p(tki ) + 2TR(tki )v(tki )

+ 2T 2R(tki )g(tki ) + u1(ki )
]

+ 2
rl(ki + 1) − rm(ki + 1)

rl(ki + 2) + rm(ki + 2)
bc(tki )

, (26)

for all l,m ∈ {1, . . . , L}, l �= m. From the first L out-
puts of (14), for k = ki + 2, using (20), (22), and (23)
again, it is possible to write
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rl(ki + 2) − rm(ki + 2)

= ‖sl‖2 − ‖sm‖2
rl(ki + 2) + rm(ki + 2)

− 2(sl − sm)

rl(ki + 2) + rm(ki + 2)
[
p(tki ) + 2TR(tki )x2(tki )

+ 2T 2R(tki )x3(tki ) + u1(ki )
]

+ 2
rl(ki + 1) − rm(ki + 1)

rl(ki + 2) + rm(ki + 2)
bc(tki )

(27)

for all l,m ∈ {1, . . . , L}, l �= m. Taking the difference
between (25) and (24), and the difference between (26)
and (27), one can write, after simplification,

{
2[x2(ki ) − v(tki )] + T [x3(ki ) − g(tki )] = 0

2[x2(ki ) − 2v(tki )] + 2T [x3(ki ) − g(tki )] = 0

(28)

for all l,m ∈ {1, . . . , L}, l �= m. Since the vectors
[2 T ] and [2 2T ] are linearly independent for T �= 0,
the solution of (28) is

{
x2(ki ) = v(tki )

x3(ki ) = g(tki )
. (29)

The result in (29) concludes the proof of the theorem,
since it has been shown that the initial condition of
(9) corresponds to that of (14), in the conditions of the
theorem.SinceusingTheorem1allows to conclude that
the initial condition of (14) is uniquely determined and
the two initial conditions from both systems match, it
follows that the initial condition of (9) is also uniquely
determined. ��

4 Monte Carlo simulations

4.1 Setup

In order to evaluate the performance achieved by the
proposed navigation algorithms, numerical simulations
were performed. The vehicle described the trajectory
shown in Fig. 2.

The initial position is p0 = [150 150 70]T (m),
whereas the body-fixed velocity was assumed to be
constant, with v(t) = [1 0 0]T (m/s), and the bias that

80

start

0

60

100

40

z(
m

)

200

20

x(m)

200

0

300

end

150

y(m)

100400
50500 0

Fig. 2 Trajectory described by the underwater vehicle

accounts for the effect of the clocks offset was set to
bc(t) = 50 m.Even though the full nonlinear dynamics
of the vehicle are not considered, the proposedfilter still
applies to any underwater vehicle since it relies solely
on the vehicle kinematics, which are exact.

The AHRS and IMU provide measurements with a
frequency of 10Hz, while the pseudo-range measure-
ments have a sample time of 5 s. Sensor noise was con-
sidered in all sensors. The pseudo-ranges, acceleration
and angular velocity are assumed to be corrupted by
zero-mean white Gaussian noise, with standard devia-
tions of 1m, 2 × 10−3 m/s2 and 0.05°/s, respectively.
The attitude, which was parameterized by roll, pitch
and yaw Euler angles, was assumed to be corrupted by
zero-mean white Gaussian noise, with standard devi-
ation of 0.03° for the roll and pitch and 0.3° for the
yaw. The LBL configuration is composed of 5 bea-
cons, with known positions, s1 = [0 1000 0] (m),
s2 = [0 1000 1000] (m), s3 = [1000 0 750] (m),
s4 = [0 0 500] (m), and s5 = [250 0 250] (m).

The state disturbance covariance matrix of the filter
for the augmented system, i.e., a linear Kalman filter
(LKF),was set toQ = diag(10−3I, 10−4I, 10−5I, 10−1,

I), and the output noise covariance matrix was set to
R = diag(I, 2I). In addition to the LKF, simulations
with the EKF and the UKF applied to the nonlinear
system (9) were also carried out. The state disturbance
covariance matrix of the EKF implementation to (9)
was set to Q = diag(10−3I, 10−4I, 10−5I, 10−1) and
the output noise covariance matrix was set to R = I.
The parameters for the UKF are set to the optimal val-
ues for Gaussian distributions.
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Subsequently, 1000 Monte Carlo simulation runs
of 1200 seconds each were performed and the ini-
tial estimate x0 was set to the true value x0true with
an added variable �x, which can be written as x0 =
x0true + �x, where �x is a zero-mean Gaussian vari-
able with standard deviation of σp = 100m for the
position, σv = 0.2m/s for the velocity, σg = 0.01m/s2

for the gravity acceleration, and σbc = 10m for the bias
representing the clocks offset. The initial guess of the
augmented states was obtained by the corresponding
difference between the initial pseudo-ranges readings.
The initial covariance P0 was set accordingly, writ-
ten as P0 = diag

[
σpI3, σvI3, σgI3, σbcI3

]
. The

error is computed for each simulation and each sam-
ple. From these values, one extracts the mean error and
root-mean-square error (RMSE) for each sampled time,
and the latter is compared to the Bayesian Cramér–Rao
Bound (BCRB), which is detailed next.

4.2 Bayesian Cramér–Rao bound

The Bayesian Cramér–Rao Bound (BCRB) is a lower
bound on themean squared estimation error. Therefore,
it is a useful reference to evaluate the performance of
each algorithm. A recursive BCRB is derived in [28],
for the case of a linear Gaussian process model and a
nonlinear observation model with additive white Gaus-
sian noise (AWGN). The recursion can be written as

J(k + 1) =
[
Q + F(k)J−1

n F(k)T
]−1

+ Ex(k+1)

{
H̃T (k + 1)R−1H̃(k + 1)

}
,

(30)

where J(k +1) is the BCRB,Q is the state disturbance
intensity matrix which was already defined, F(k) is the
state transition matrix, H(k) is a linear estimation of
the observation model state matrix, andR is the output
noise intensity matrix, which was also already defined.
The BCRB was calculated using the true state values
xtrue for each sampled time.

In order to illustrate the computed BCRB, its initial
convergence and detailed evolution for the position are
represented in Fig. 3.
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Fig. 3 Initial convergence and detailed evolution of theBayesian
Cramér–Rao Bound for the position

4.3 Initial convergence

The initial convergence of the position mean error is
presented in Fig. 4 for the LKF, EKF, and UKF. It can
be concluded that the mean error of the EKF and UKF,
at 100 s, is close to zero, i.e., enter a stationary phase.
TheLKF, however, presents amuch faster convergence,
with the positionmean error entering a stationary phase
much sooner than the EKF and the UKF.

The initial convergence of the RMSE is portrayed in
Fig. 5, for the LKF, EKF, and UKF. The convergence
time is similar to the one for the mean error. The LKF
presents again the fastest convergence for the position
RMSE. Similar conclusions can be drawn for the mean
error and RMSE of the velocity, gravity acceleration,
and bias, which, for the sake of brevity, are omitted.

4.4 Detailed evolution

When considering the detailed evolution of the mean
error and RMSE, the different components of the posi-
tion, velocity, and gravity acceleration evidence similar
results. Thus, conclusions can be drawn from only one
component of each, without loss of information.

The detailed evolution of themean error for the posi-
tion px (t), velocity vx (t), gravity acceleration gx (t),
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Fig. 4 Initial convergence of the position mean error

and bias bc(t) is presented in Figs. 6, 7, 8 and 9, respec-
tively. Regarding the position mean error, the LKF,
EKF, and UKF have similar stationary phases, where
each component of the position is usually below 0.1m.
The detailed evolution of the velocity and gravity accel-
eration mean error shows bigger values for the UKF,
which are typically below 0.02m/s, and 2×10−3 m/s2,
respectively. TheEKFandLKF show similar results for
these states, with mean errors typically below 0.01m/s
for the velocity mean error, and 5 × 10−4 m/s2 for the
gravity acceleration mean error. The EKF maintains a
zero-mean mean error for the bias, whereas the LKF
and UKF do not, with the latter presenting the biggest
mean error.

The detailed evolution of the RMSE for the position
px (t), velocity vx (t), gravity acceleration gx (t), and
bias bc(t) is presented in Figs. 10, 11, 12 and 13, respec-
tively. The LKF and the EKF have a similar RMSE for
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Fig. 5 Initial convergenceof the position root-mean-square error
(RMSE)
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Fig. 6 Detailed evolution of the position px (t) mean error

every state, with the latter having slightly lower val-
ues. The RMSE of the UKF is typically bigger than
the one obtained for the EKF and the LKF. This dif-
ference is specially noticeable on the computed RMSE
for the velocity and acceleration of gravity. The BCRB
effectively defines a lower bound for the RMSE.
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4.5 Averages of the mean error and RMSE
(root-mean-square error)

The averages of the mean error and RMSE in steady
state are computed and shown in Tables 2, 3, 4, and
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Fig. 11 Detailed evolution of the velocity vx (t) RMSE
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Fig. 13 Detailed evolution of the bias bc(t) RMSE

Table 2 Steady-state error for the x-component of the position
and velocity

Mean error px (m) vx (m/s)

EKF − 8.9 × 10−2 − 1.0 × 10−5

LKF − 2.4 × 10−2 − 4.5 × 10−5

UKF 1.2 × 10−2 9.4 × 10−5

5. As it is possible to conclude, the performance is
compatible with usual navigation applications.

123



Long baseline navigation filter 2571

Table 3 Steady-state error for the x-component of the gravity
acceleration and the bias

Mean error gx (m/s2) Bias (m)

EKF 1.6 × 10−6 2.2 × 10−2

LKF − 6.1 × 10−6 − 5.8 × 10−2

UKF 4.3 × 10−5 3.1 × 10−2

Table 4 Steady-state RMSE for the x-component of the position
and velocity

RMSE px (m) vx (m/s)

EKF 7.8 × 10−1 6.4 × 10−2

LKF 9.0 × 10−1 8.9 × 10−2

UKF 1.0 × 100 2.6 × 10−1

Table 5 Steady-state RMSE for the x-component of the gravity
acceleration and the bias

RMSE gx (m/s2) Bias (m)

EKF 5.8 × 10−3 5.5 × 10−1

LKF 6.8 × 10−3 6.1 × 10−1

UKF 3.6 × 10−2 7.2 × 10−1

4.6 Processing time

The processing times are displayed in Table 6. The
specifications for the computer used (laptop) are the
following:

– Processor: Intel (R) Core (TM) i7-7700HQ CPU
@ 2.80GHz 2.80GHz

– Graphics Card: NVidia GeForce GTX 1050
– RAM: 16 GB DDR4-2400MHz
– Disk: SSD 512 GB
– Operating System: Windows 10 Home 64 bits

From Table 6, it is possible to conclude that the LKF
and the EKF have little difference in processing time,
whereas the UKF is considerably more computation-
ally expensive.

4.7 Filter non-convergence

To further illustrate the advantages of the LKF in regard
to offering a global convergence guarantee, the con-
dition of x1(0) = [−3000 − 3000 1000]T [m],

Table 6 Estimation time for each algorithm, for a single simu-
lation and 1000 simulations

Time Single simulation 1000 simulations

EKF 0.633 s 10 min 33 s

LKF 0.628 s 10 min 28 s

UKF 0.959 s 15 min 59 s
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Fig. 14 Example of failure of the EKF
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Fig. 16 Example of the LKF convergence for an initial condition
which leads to failure of the EKF and UKF

x2(0) = [100 100 100]T [m/s], x3(0) =
[1000 1000 1000]T [m/s2], and x4(0) = −500m
was chosen. The obtained results are presented in Figs.
14, 15 and 16 for the position estimation of the EKF,
UKF, and LKF, respectively. As it can be seen, both
the EKF and the UKF fail to converge, whereas for the
same initial condition, the proposed LKF converges.
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5 Conclusions

This paper addresses the nonlinear problem of LBL
navigationwith pseudo-ranges and an IMU. Themeans
to design an observer are provided with the derivation
of a system that can be regarded as linear, to which a
simple Kalman filter is applied. Globally exponentially
stable error dynamics are established with the analysis
of the observability of the system [12]. The devised
solution successfully estimates the states of interest,
and its performance was evaluated with simulations,
including Monte Carlo runs. Both the mean error and
RMSE presented a smaller convergence time for the
LKF, and similar stationary phases between the EKF
and LKF. The UKF showed the biggest mean errors
and RMSE, as well as the largest convergence time.
An example of an initial condition with which the EKF
and the UKF do not converge, as opposed to the LKF,
was shown, further illustrating the advantages of the
latter regarding its guarantee of global convergence. In
terms of computational cost, the UKF is substantially
more demanding, whereas the LKF and the EKF are
comparable. Taking all into account and considering
that the EKF does not offer global convergence guar-
antees, one concludes that the novel LKF solution is
the best among all three.
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