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ABSTRACT
This paper describes a solution to the problem of consensus/synchronisation for a general class of net-
worked nonlinear multi-agent systems (MAS) using a distributed control strategy with an event-triggered
communications (ETC) mechanism. We consider the case where the dynamics of each agent contain linear
and Lipschitz nonlinear terms and the underlying communication graph is directed. The strategy proposed
has two important properties: (i) it achievespractical consensus, i.e. the synchronisationerror thatmeasures
the disagreement among the agents’ states converges to a ball centred at the origin, with a radius that can
bemade arbitrarily small and (ii) theminimum of the inter-event times for each agent is lower bounded by
a strictly positive number, hence Zenobehaviour is excluded. Furthermore, it affords systemdesigners ade-
quate tools to trade off the frequency of communications among agents against the level of performance
achieved in MAS consensus/synchronisation. Numerical simulation results are also given.
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1. Introduction

The problem of consensus/synchronisation of multi agent sys-
tems (MAS) has been attracting tremendous interest in the
last two decades due to its applications in the areas of sen-
sor networks, mobile systems, autonomous robots, etc., where a
group of agents must reach agreement on a final state (consen-
sus) or trajectory (synchronisation). Some of the applications
are described in Hung et al. (2020), Z. Li et al. (2010), and
Rego et al. (2019), where consensus techniques were used to
achieve desired geometric formations of multiple autonomous
vehicles. For background materials on this topic the reader is
referred to Olfati-Saber et al. (2007) and Z. Li and Duan (2015)
where communications among the agents are assumed to occur
continuously in time.

Driven by the fact that the bandwidth available for commu-
nications among multiple agents is severely limited in many
practical applications, there has been a flurry of activity in
the area of distributed event-triggered control and communi-
cations for multi-agent systems, as reported in Dimarogonas
et al. (2012), Garcia et al. (2013), Meng and Chen (2013),
Noorbakhsh and Ghaisari (2016), Nowzari and Cortés (2016),
Nowzari et al. (2019) and the references therein. Among such
studies, MAS with single integrator dynamics have received a
great deal of attention, and many solutions for their coordina-
tion have been proposed, see for example the recent survey in
Nowzari et al. (2019). One of earliest distributed event-triggered
control solutions for MAS with single integrator dynamics was
proposed in Dimarogonas et al. (2012), while solutions for both
event-triggered control and communications can be found in
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Garcia et al. (2013) and Nowzari and Cortés (2016). The study
of the coordination problem of MAS with double integrator
dynamics using an event-triggered framework is addressed in
Seyboth et al. (2013), which extends previous results for the case
of continuous communications given in Ren and Beard (n.d.).
More recently, a number of authors have addressed the problem
of MAS coordination for the case where the agents have more
general linear dynamics, Zhang et al. (2014), Zhu et al. (2014),
Garcia et al. (2014, 2017), Almeida et al. (2017), and Hu
et al. (2016). In Garcia et al. (2014) and Zhu et al. (2014), for
example, the authors propose solutions for the MAS coordina-
tion problem where the triggering function adopted is depen-
dent on the state, whereas an event-triggered mechanism that
is dependent on time is proposed in Garcia et al. (2017) and
Almeida et al. (2017).

Event triggered coordination ofMASwith nonlinear dynam-
ics has been less studied and only a few results that consider
several particular classes of nonlinear system have appeared
recently in the literature (Hung et al., 2019; H. Li et al., 2016;
Liuzza et al., 2016; Su et al., 2016). A simple class of MAS with
nonlinear dynamics was considered in Liuzza et al. (2016) and
Hung et al. (2019), where the authors proposed a distributed
model-based approach. The authors in Su et al. (2016) addressed
the leader-following multi-agent systems consensus problem
with an event-triggered control mechanism. An event-triggered
sampling control approach for directed networks was studied in
H. Li et al. (2016). In Hung et al. (2019), the authors proposed
a solution to the synchronisation problem of one dimensional
nonlinear MAS under weight-balanced directed graphs.
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Motivated by the above considerations, the main purpose of
this paper is to develop a general framework for distributed con-
trol and event-triggered communication mechanism to solve
the MAS consensus/synchronisation problem for which the
agents dynamics and the network communication topologies
are sufficiently general to address a large number of practi-
cal applications. The key benefits of the proposed strategy are
twofold: (i) communication among agents occurs at discrete
time instants rather than continuously, thus saving on band-
width required for the MAS communication network and (ii)
it affords designers a tool control the frequency of communi-
cations among agents while consensus/synchronisation of the
MAS is still guaranteed. Compared with existing results in the
literature, see for example Liuzza et al. (2016), Su et al. (2016),
and Hung et al. (2019), the dynamics of the agents and the
network topology are more general, i.e. the agents have lin-
ear and Lipschitz nonlinear dynamic terms, and the underlying
communication graphs are directed. In this respect, our results
extend those in Seyboth et al. (2013) and Hung et al. (2019).
We also point out that with the proposed strategy, there exists a
lower bound on minimum inter-event times for all agents, thus
the strategy excludes Zeno behaviour.

The paper is organised as follows. Section 2 introduces the
basic notation required and reviews important results from
algebraic graph theory. The main problem is formulated in
Section 3, whereas Section 4 presents the design of the ETC
mechanism and the analysis of convergence of the result-
ing closed-loop MAS system. Section 5 shows how the pro-
posed ETCmechanism extends existing results in the literature.
Section 6 illustrates the performance of the proposed strategy
through simulations. Finally, Section 7 contains some conclud-
ing remarks.

2. Preliminaries

2.1 Notation

In what follows, we let R,R>0, and R≥0 denote the set of real,
positive real, and nonnegative real numbers, respectively. We
shall use the notation ‖·‖ to denote the Euclidean norm of a
vector. We will use the notation x(t+) := lims→t+ x(s). Given
matrices A,B ∈ R

n×n the notation A � B implies that A−B
is positive semi-definite. A continuous function α : [0, a) →
[0,∞) is said to be of class K if it is strictly increasing and
α(0) = 0. It is said to be of classK∞ if a = ∞ and α(r) → ∞ as
r → ∞. A continuous function β : [0, a) × [0,∞) → [0,∞) is
said to be of class KL if, for each fixed s, the mapping β(r, s)
is of class K with respect to r and, for each fixed r, the mapping
β(r, s) is decreasing with respect to s and β(r, s) → 0 as s → ∞.
Given a symmetric matrix A, the symbols λmin(A) and λmax(A)

denote the smallest and the largest eigenvalues of A.

2.2 Graph theory

A weight digraph G = G(V , E ,A) induced by the communi-
cation network of a multi-agent system consists of a set of N
vertices (nodes) V = {1, 2, . . .N}, a set of directed edges E ⊆
V × V , and a weight adjacency matrix A = [aij] ∈ R

N×N . The

later satisfies the conditions aij > 0 if (j, i) ∈ E and aij = 0 oth-
erwise. Here, self-edges (i, i) are not allowed and hence aii = 0.
A path from vertex i to vertex j is an ordered sequence of ver-
tices such that each immediate pair of the vertices is an edge.
A digraph is strongly connected if there exists a path from any
i ∈ V to any j ∈ V . The set of in-neighbours and the set of out-
neighbours of vertex i are defined as N in

i = {j ∈ V : (j, i) ∈ E}
and N out

i = {j ∈ V : (i, j) ∈ E}, respectively. The in- and out-
degreematricesDin andDout are defined asDin = diag(dini ) and
Dout = diag(douti ) where

dini =
∑
j∈N in

i

aij, douti =
∑

j∈N out
i

aji,

respectively. A digraph is balanced if Din = Dout. Any undi-
rected graph is balanced. The Laplacian matrix L of a digraph
is defined as L = Din − A. If G is strongly connected, then 0
is a simple eigenvalue of L with associated (right) eigenvector
1 := [1]N×1. Further, the digraph G is balanced if and only if
1TL = 0.

Remark 2.1: With the graph definition given above, we use
the convention that an agent i can receive information from its
neighbours in N in

i and send information to its neighbours in
N out

i .

The following lemma and definitionwill be used in the paper.

Lemma 2.1 ((Z. Li & Duan, 2015; Yu et al., 2010)): Suppose
that the graph G is strongly connected. Then, there is a posi-
tive left eigenvector r = [r1, . . . , rN]T ∈ R

N of L associated with
the zero eigenvalue of L s.t. rT1 = 1 and RL + LTR � 0, where
R = diag(r1, . . . , rN) ∈ R

N×N.

Definition 2.2 ((Generalised algebraic connectivity, (Yu et al.,
2010))): Let L be the laplacian matrix of a strongly connected
digraph G. The generalised algebraic connectivity of the graph
is defined as

a(L) = min
x 	=0 and x⊥r

xT(RL + LTR)x
2xTRx

, (1)

whereR is defined in Lemma 2.1.With the above definition, and
if the graph is balanced, a(L) = λ2(Ls), where Ls � (L + LT)/2.
For undirected graphs, a(L) = λ2(L), where the later is called
the Fiedler eigenvalue of the graph.

3. Problem formulation

We consider the problem of synchronising the trajectories of
multiple networked nonlinear systems (agents). We denote by
xi ∈ R

n and ui ∈ R
m the state and the input of agent i, respec-

tively. Each agent has the nonlinear dynamics given by

ẋi = Axi + f(xi, t) + Bui, (2)

for all i ∈ V , where A, B have appropriate dimensions. We
assume the nonlinear map f : R

n × R≥0 → R
n is piecewise

continuous in t and Lipschitz in x with Lipschitz constant l ∈
R≥0, that is, for any y, z ∈ R

n, ‖f(y, t) − f(z, t)‖ ≤ l‖y − z‖.
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We denote by G the digraph that describes the inter-agent
communications topology and assume that G is strongly con-
nected. Due to the communication constraints imposed by G,
each agent is only able to receive information from its in-
neighbouring agents. The consensus/synchronisation problem
that we study consists of finding a distributed protocol for ui =
ui(xi, xj, t); j ∈ N in

i , i ∈ V such that the agents reach consen-
sus asymptotically, that is, x1(t) = x2(t) = · · · = xN(t) as t →
∞ and the agents remain synchronised with identical dynam-
ics described by ẋi = Axi + f(xi, t) for all i ∈ V as t → ∞.
From (2), this implies that under these circumstances the input
ui(t) → 0 as t → ∞ for all i ∈ V .

It was shown in Z. Li et al. (2012) and Z. Li and Duan (2015)
that the distributed protocol given by

ui = cK
∑
j∈N in

i

aij(xi − xj) = cK
N∑
j=1

aij(xi − xj) (3)

for all i ∈ V , with proper choices of c and K, solves the con-
sensus/synchronisation problem. However, the protocol given
by (3) relies on continuous communications among the agents.
This, in turn, requires that the in-neighbours of agent i trans-
mit their states to agent i continuously to update the input ui.
Unfortunately, in practice the communication bandwidthmight
be limited as all agents might share the same network. This
motivated the development of the distributed control scheme
with an ETC mechanism described in this paper with the pur-
pose of reducing the number of messages exchanged and the
frequency of communications among the agents. These char-
acteristics are of the utmost importance in applications where
the transmission medium imposes stringent communication
constraints (e.g. cooperative control of multiple autonomous
underwater vehicles (AUVs) (Rego et al., 2019)).

4. Consensus/synchronisation with event-triggered
communications

In this section, we first describe the process of designing an
ETC mechanism, after which we perform an analysis of the
convergence properties of MAS consensus/synchronisation.

4.1 Design of the ETCmechanism

In an ETC mechanism, the control law (3) uses, for each agent,
the estimates of its in-neighbour states (xj; j ∈ N in

i ), instead of
their true states. Let x̂ij be an estimate of xj computed by agent i
(the procedure to compute this estimate will be explained later).
The control law with the ETC mechanism that we propose is
given by

ui = cK
∑
j∈N in

i

aij(xi − x̂ij) (4)

for all i ∈ V . The underlying idea in the proposed ETC mech-
anism is that if x̂ij can provide a ‘good’ estimate of xj, then the
communication among agents does not have to be continuous.

We propose the following estimator for x̂ij:

x̂ij :

{ ˙̂xij = Ax̂ij + f(x̂ij, t), t ∈ [tij,k, tij,k+1),
x̂ij(t

+
ij,k) = xj(tj,k)

(5)

for i ∈ V and j ∈ N in
i , where {tj,k}k∈N is the sequence of

time instants at which agent j broadcasts its state to its out-
neighbours, while {tij,k}k∈N is the corresponding sequence of
time instants at which agent i receives the update on the state of
agent j; j ∈ N in

i . The structure of the estimator (5) is motivated
by the fact that if consensus/synchronisation were achieved per-
fectly, i.e. xi = xj for all i, j ∈ V , then the input of each agent
would remain at zero, and in this case the estimated variables
would be the true states of the agents.

In order to control the error between xj and x̂ij we define
a variable x̂j; j ∈ V as a ‘replica’ of x̂ij; i ∈ N out

j at agent j. The
dynamics of x̂j are given by

x̂j :

{ ˙̂xj = Ax̂j + f(x̂j, t), t ∈ [tj,k, tj,k+1)

x̂j(t+j,k) = xj(tj,k);
(6)

Clearly, if communication delays are negligible, i.e. tij,k = tj,k for
all k, then it can be seen from (5) and (6) that x̂j(t) = x̂ij(t) for all
t. See Figure 1 as an illustration of the underlying idea of the ETC
mechanism for a network with three agents.Since x̂j(t) = x̂ij(t),
the protocol in (4) can be rewritten as

ui = cK
∑
j∈N in

i

aij(xi − x̂j). (7)

Because aij = 0 if j 	∈ N in
i , Equation (7) can be rewritten as

ui = cK
N∑
j=1

aij(xi − xj + ej) (8)

for all i, j ∈ V , where

ej � xj − x̂j (9)

for all j ∈ V . Compared with the protocol for continuous com-
munications given by (3), the protocol in (8) has the contribu-
tion of the estimation error ej for all j ∈ V . The key point in
the proposed ETC mechanism is that if ej for all j ∈ V can be
enforced to be bounded then, as we will show later, the syn-
chronisation error between agents will also be bounded. This

Figure 1. An illustrative example: without communication delays, the ETC mech-
anism ensures that x̂j and x̂ij are synchronised, i.e. x̂j(t) = x̂ij(t) for all t and i ∈
N out

j , j ∈ V .
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set of ideas borrows from the groundbreaking work presented
in Tabuada (2007), where the author introduced an event-
triggered control mechanism for the stabilisation problem of
nonlinear systems. To ensure that the estimation error ej; j ∈ V
is bounded, we allow agent j; j ∈ V to broadcast its state (xj)
whenever ‖ej‖ reaches a designed bounded threshold function
hj(·) that, in general, can be parameterised by time as hj(t).
Formally, for each agent i; i ∈ V we define an event-triggering
function δi(t) for the communications as

δi(t) = ‖ei(t)‖ − hi(t), (10)

where hi(t) belongs to a class of non-negative functions C
defined by C := {f : R≥0 → R≥0|cl ≤ f (t) ≤ cu} for all i ∈
V . For example, hi(t) = c1 + c2e−αt , where c1, c2,α ∈ R≥0
are constant parameters, see Seyboth et al. (2013), Hung
et al. (2019), and Almeida et al. (2017). With the above
definition, agent i; i ∈ V will transmit its state to its out-
neighbours whenever δi(t) ≥ 0.

At this point, we have the necessary ingredients to summarise
the proposedETC framework for the consensus/synchronisation
problem described above. The resulting procedure is sum-
marised in Algorithm 1.

Algorithm 1 ETC mechanism for agent i
1: At every time t, agent i implements the following procedure:
2: procedure coordination and communication
3: if δi(t) ≥ 0 where δi(t) is computed using (10), then
4: Broadcast xi(t);
5: Reset x̂i using (6);
6: end if
7: if Receive a new message from agent j then
8: if j ∈ N in

i then
9: Reset x̂ij using (5);
10: end if
11: end if
12: Run the estimators (5) and (6);
13: Update the protocol for ui using (4);
14: return ui
15: end procedure

4.2 Convergence analysis

We now analyse the consensus/synchronisation properties
of the closed-loop MAS with the ETC algorithm given in
Algorithm 1. To this end, let

ξ i � xi −
N∑
j=1

rjxj, (11)

where rj is the jth component of the positive left eigenvector r of
the graph Laplacian matrix defined in Lemma 2.1. Note that if
the graph is connected and balanced, then r = 1/N. In this case,
ξ i measures the disagreement between agent i’s state and the
average of all agents’ states. Let also ξ � [ξT1 , . . . , ξ

T
N]T ∈ R

nN

Algorithm 2 Selecting the control gains in (4)
1: procedure Chose K
2: Solve the following linear matrix inequality (LMI) for

variables P, τ , and μ:

P = PT,P � 0, (14a)

τ > 0, μ > 0, (14b)[
AP + PAT − 2τBBT + μlIn&P

P& − μIn/l

]
≺ 0 (14c)

3: Chose matrix K = −BTP−1 .
4: end procedure
5: procedure Chose c
6: Compute a(L) given by (1).
7: Chose any coupling gain c ≥ τ/a(L).
8: end procedure

be the synchronisation error vector that captures the disagree-
ment among the agents’ states. From (11), ξ can be rewritten
as

ξ = Wx, (12)

where x � [xT1 , . . . , x
T
N]

T ∈ R
nN and

W � (IN − 1rT) ⊗ In. (13)

With the above definition, it is clear that all agents are synchro-
nised, that is, x1 = x2 = · · · = xN if and only if ξ = 0. There-
fore, to analyse the synchronisation of the MAS, we analyse the
convergence of the synchronisation error ξ to zero. Before pro-
ceeding to themain result of the paper, we assume that the gain c
and K in protocol (4) can be computed using Algorithm 2. The
rationale behind this algorithm will become clear in the next
sub-section.

Theorem 4.1: Consider the closed-loop multi-agent system
described by (2), driven by the distributed control strategy and
the ETC mechanism specified in Algorithm 1. Suppose further
that there exists a solution to the LMI system (14a)–(14c). Let
h � [h1, . . . , hN]T be the vector-valued function containing all
threshold functions. Then, the following statements hold true.

(i) There exist a KL class function β and a K class function γ

such that for any initial state ξ(t0) the synchronisation error
ξ satisfies

‖ξ(t)‖ ≤ β(‖ξ(t0)‖, t − t0) + γ

(
sup

t0≤τ≤t
‖h(τ )‖

)
. (15)

(ii) If the threshold functions are designed such that limt→∞ hi(t)
= cl for all i ∈ V , then

lim
t→∞ ‖ξ(t)‖ ≤ r1 = 2‖F1‖λmax(R ⊗ P−1)

λmin(H2)λmin(R ⊗ P−1)

√
Ncl,

(16)
where

F1 � (R ⊗ P−1)W(A ⊗ cBBTP−1) (17)
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and

H2 = −(IN ⊗ P)(R ⊗ H1)(IN ⊗ P), (18)

with

H1 � AP + PAT − 2τBBT + μlIn + μ−1lP2 (19)

(iii) If all threshold functions hi; i ∈ V are lower bounded by cl >

0, then the closed-loop MAS system does not exhibit Zeno
behaviour.

Proof: (i) To show the inequality in (15) we analyse the closed-
loop dynamics of the synchronisation error vector ξ . First,
substituting in (2) the ETC protocol for ui given by (8) yields

ẋ = (IN ⊗ A + cL ⊗ BK)x + g(x, t) + η, (20)

where

g(x, t) �

⎡
⎢⎣
f(x1, t)

...
f(xN , t)

⎤
⎥⎦ , η �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cBK
N∑
j=1

a1jej

...

cBK
N∑
j=1

aNjej

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (21)

Thus, from (12) and (20) the closed-loop dynamics of ξ are
given by

ξ̇ = Wẋ

= (IN ⊗ A + cL ⊗ BK)ξ + W
(
g(x, t) + η

)
, (22)

where we used the fact that W(IN ⊗ A + cL ⊗ BK) = (IN ⊗
A + cL ⊗ BK)W. We now consider the Lyapunov function can-
didate defined as

V = ξT(R ⊗ P−1)ξ , (23)

where P is given by Algorithm 2 and R is defined in Lemma 2.1.
Since P � 0 and R is a positive diagonal matrix,V is clearly pos-
itive definite. Its time derivative along the trajectory of (22) is
given by

V̇ = 2ξT(R ⊗ P−1)(IN ⊗ A + cL ⊗ BK)ξ︸ ︷︷ ︸
�X

+ 2ξT(R ⊗ P−1)Wg(x, t)︸ ︷︷ ︸
�Y

+ 2ξT(R ⊗ P−1)Wη︸ ︷︷ ︸
�Z

(24)

The term X in (24) can be rewritten as

X = 2ξT(R ⊗ P−1A + cRL ⊗ P−1BK)ξ . (25)

Let ζ � (IN ⊗ P−1)ξ . Substituting K = −BTP−1 defined in
Algorithm 2 in (25) yields

X = ζT
(
R ⊗ (AP + PAT)

)
ζ

− ζT
(
c(RL + LTR) ⊗ BBT

)
ζ . (26)

Because (rT ⊗ In)ξ = 0, (rT ⊗ In)ζ = 0. Therefore, using
Definition 2.2, we obtain

ζT
(
c(RL + LTR) ⊗ BBT

)
ζ ≥ 2ζT(R ⊗ ca(L)BBT)ζ .

Thus, X in (26) is bounded as

X ≤ ζT
(
R ⊗ (AP + PAT − 2ca(L)BBT)

)
ζ . (27)

Furthermore, if c is chosen such that c ≥ τ/a(L) with τ > 0, as
given by Algorithm 2, then

X ≤ ζT
(
R ⊗ (AP + PAT − 2τBBT

)
ζ . (28)

Let x̄ �
∑N

i=1 rixi. The term Y in (24) can be expanded as

Y = 2
N∑
i=1

riξTi P
−1

⎛
⎝f(xi, t) −

N∑
j=1

rjf(xj, t)

⎞
⎠

= 2
N∑
i=1

riξTi P
−1 (f(xi, t) − f(x̄, t))

︸ ︷︷ ︸
�Y1

+ 2
N∑
i=1

riξTi P
−1

⎛
⎝f(x̄, t) −

N∑
j=1

rjf(xj, t)

⎞
⎠

︸ ︷︷ ︸
�Y2

.

Because
∑N

i=1 riξ i = 0, it follows that Y2 = 0. Thus, using the
Lipschitz assumption on f(·) and Young’s inequality, we obtain

Y = Y1 ≤ 2
N∑
i=1

ril
∥∥∥ξTi P−1

∥∥∥∥∥ξ i∥∥
≤

N∑
i=1

rilξTi
(
μ(P−1)2 + μ−1In

)
ξ i

= ζT (R ⊗ (
μlIn + μ−1lP2

))
ζ (29)

for every μ > 0.
We now compute the upper bound for the term Z in (24).

Defining e = [eT1 , . . . , e
T
N]

T ∈ R
nN ,η can be rewritten from (21)

as

η = (A ⊗ cBK)e = −(A ⊗ cBBTP−1)e, (30)

where A is the adjacency matrix of the graph G. Substitut-
ing (30) to Z in (24) we obtain

Z ≤ 2‖ξ‖
∥∥∥(R ⊗ P−1)W(A ⊗ cBBTP−1)

∥∥∥‖e‖
= 2‖ξ‖‖F1‖‖e‖, (31)

where F1 is given by (17). Thus, from (28), (29) and (31) the time
derivative of V in (24) is upper bounded as

V̇ ≤ ζT(R ⊗ H1)ζ + 2‖ξ‖‖F1‖‖e‖, (32)

where H1 is given by (19). Note that H1 is symmetric. Fur-
thermore, from the LMI (14c) in Algorithm 2, H1 is also neg-
ative definite (this can be seen by using Schur’s complement to
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rewriteH1 in the formof LMI (14c)). Because ζ = (IN ⊗ P−1)ξ ,
ξ = (IN ⊗ P)ζ . Inserting ξ and H2 defined in (18) in (32), we
obtain

V̇ ≤ −ξTH2ξ + 2‖ξ‖‖F1‖‖e‖
≤ −λmin(H2)‖ξ‖2 + 2‖ξ‖‖F1‖‖e‖
≤ −αξ (‖ξ‖) ∀‖ξ‖ ≥ ρ(‖e‖) (33)

where αξ ∈ K and ρ ∈ K∞ are functions defined by αξ (r) =
(1 − θ)λmin(H2)r2 and ρ(r) = 2‖F1‖

θλmin(H2)
r, respectively, and

θ ∈ (0, 1). Invoking Theorem4.19 inKhalil (2002), we conclude
that V, given by (23), is an ISS-Lyapunov function for the syn-
chronisation error vector system given by (22) and the system is
input to state stable (ISS) with respect to the state ξ and the input
e. This implies that there exist functions β ∈ KL, γ ∈ K such
that for any initial state ξ(t0) the synchronisation error vector
satisfies

‖ξ(t)‖ ≤ β(‖ξ(t0)‖, t − t0) + γ

(
sup

t0≤τ≤t
‖e(τ )‖

)
(34)

for all t ≥ t0. Furthermore, with the ETC mechanism the error
ei satisfies ‖ei(t)‖ ≤ hi(t) for all t ≥ t0, hence ‖e(t)‖ ≤ ‖h(t)‖
for all t ≥ t0. Substituting this result in (34), we conclude that
the inequality (15) holds true.

(ii) We now prove the second statement in the theorem.
For this purpose, we define two class K functions α1(‖ξ‖) =
λmin(R ⊗ P−1)‖ξ‖2 and α2(‖ξ‖) = λmax(R ⊗ P−1)‖ξ‖2.
Clearly, the Lyapunov function in (23) satisfies α1(‖ξ‖) ≤
V ≤ α2(‖ξ‖) for all ξ . Hence, using again Theorem 4.19 in
Khalil (2002) we obtain

γ (r) = α−1
1 (α2(ρ(r))) = 2‖F1‖λmax(R ⊗ P−1)

θλmin(H2)λmin(R ⊗ P−1)
r. (35)

Furthermore, if limt→∞ hi(t) = cl for all i ∈ V , then limt→∞
‖h(t)‖ = √

Ncl. Substituting this relation and (35) in (15) we
conclude that the synchronisation error ξ satisfies (16).

(iii) We now prove the third statement of the theorem by
showing that the minimum inter-event time for every agent
is strictly positive if cl > 0. To this end, let ti,k and ti,k+1 be
successive triggering times at which agent i sends its state
to its out-neighbouring agents. We consider the evolution of
the estimation error ei(t) during the interval Ti,k � [ti,k, ti,k+1)
when ei(t) is continuous. It follows from (9) that ėi(t) = ẋi −˙̂xi = Aei + (f(xi, t) − f(x̂i, t)) + Bui. Furthermore, ei(t+i,k) = 0
because x̂i(t+i,k) = xi(t+i,k) (see (6)). Hence,

‖ei(t)‖ ≤
∫ t

ti,k
‖Aei(τ )‖ dτ

+
∫ t

ti,k

∥∥f(xi(τ ), τ) − f(x̂i(τ ), τ)
∥∥ dτ

+
∫ t

ti,k
‖Bui(τ )‖ dτ

≤
∫ t

ti,k
(‖A‖ + l)‖ei(τ )‖ dτ +

∫ t

ti,k
‖Bui(τ )‖ dτ (36)

for all t ∈ Ti,k. Note that the last inequality follows from the
Lipschitz property of f(·). To find an upper bound for ei we
now compute an upper bound for ui(t) for all i ∈ V . Let u :=
[uT1 , . . . ,u

T
N]

T. Substituting K = −BTP−1 to (8) we obtain

u = −(cL ⊗ BBTP−1)x − (A ⊗ BBTP−1)e

= −Gξ − Te, (37)

where G � (cL ⊗ BBTP−1) and T � (A ⊗ BBTP−1). Observe
that for all i ∈ V

‖ui(t)‖ ≤ ‖u(t)‖ (37)≤ ‖G‖‖ξ(t)‖ + ‖T‖‖e(t)‖. (38)

Recall also that ‖e(t)‖ ≤ ‖h(t)‖ ≤ √
Ncu for all t ≥ t0, where cu

is the upper bound for hi(t). Hence, it follows from (15) and (38)
that

‖ui(t)‖ ≤ ū � ‖G‖
(
β(‖ξ(t0)‖, 0) + γ (

√
Ncu)

)
+ ‖T‖√Ncu

for al t ≥ t0. Since β ∈ KL, ū only depends on the initial con-
dition of ξ , and ū is an upper bound for ui(t) for all t ≥ t0 and
i ∈ V . Therefore, from (36), ei(t) can be bounded as

‖ei(t)‖ ≤
∫ t

ti,k
(‖A‖ + l)‖ei(τ )‖ dτ + (t − ti,k)‖B‖ū.

Let

λ(t) = (t − ti,k)‖B‖ū, c = ‖A‖ + l. (39)

Applying Gronwall-Bellman inequality (see Lemma A.1 in
Khalil, 2002) to the last equality, we obtain

‖ei(t)‖ ≤ λ(t) + c
∫ t

ti,k
λ(s)ec(t−s) ds.

Integration the rightmost term by parts yields

‖ei(t)‖ ≤ λ(t) − λ(s)ec(t−s)
∣∣∣t
ti,k

+ ‖B‖ū
∫ t

ti,k
ec(t−s) ds

= ‖B‖ū
(
e(‖A‖+l)(t−ti,k) − 1

)
/ (‖A‖ + l)︸ ︷︷ ︸

�
(t)

. (40)

Because a broadcast event for agent i is triggered if and only
if δi(t) crosses zero or ‖ei(t)‖ = hi(t), the next event is trig-
gered not earlier than time t∗ > ti,k, given by the solution of the
equation 
(t) = cl. Hence, the minimum inter-event time for
any agent is lower bounded by

τ1 := t∗ − ti,k = ln (1 + cl(‖A‖ + l)/(‖B‖ū))
‖A‖ + l

> 0. (41)

Since there is a positive lower bound τ1 on the inter-event inter-
vals, there are no accumulation points in the event sequences
and therefore Zeno behaviour is excluded. This completes the
proof of Theorem 4.1. �

The result stated in (i) indicates that the synchronisation
error vector is input-to state stable (ISS)with respect to the input
h (see the definition of ISS in Khalil (2002)). This also implies
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that the synchronisation error is bounded for any bounded
threshold functions that, in the context of the ETCmechanism,
are user designed functions used as tuning knobs to trade off
communication rate against synchronisation performance. The
result in (ii) is a consequence of (i) and indicates that if the
threshold functions converge, then the synchronisation error
vector converges as well. The size of the ball that the synchro-
nisation error ξ converges to depends explicitly on the lower
bound of the threshold functions. That is, the asymptotic bound
in (16) can be made arbitrarily small by decreasing cl. Note also
that continuous communication is a special case of the ETC
mechanism where the triggering threshold function hi(t) = 0
for all t and i ∈ V .

Remark 4.1: Note that the LMI (14a)–(14c) is equivalent to
the LMI in Z. Li et al. (2012) (see Equation (6) in Z. Li et al.,
2012). The feasibility of the LMI in (14) was discussed in Z. Li
et al. (2012). For the case of linear MAS systems or when the
Lipschitz constant l = 0, the LMI in (14) is equivalent to finding
τ > 0 and P � 0 such that AP + PAT − 2τBBT ≺ 0. The feasi-
bility of the inequalities is equivalent to the pair (A,B) being
controllable.

Remark 4.2: In Algorithm 2 the computation of c requires
global knowledge about the agents’ communication network
(embodied in the generalised algebraic connectivity of the
agents’ graph, denoted a(L)) but the computation of K requires
only knowledge about the dynamics of the agents themselves.
This implies that only c might need to be computed in a dis-
tributed manner. In the present paper, because the main focus
of the work is on the proposed event-triggered communica-
tion mechanism, for simplicity of exposition, we assumed that
the agents’ network topology is known to all agents in advance.
Therefore, c can be computed in advance for all agents.However,
if this assumption is not satisfied, then for each agent the gain
c can be replaced by cij which, in this case, is viewed as consid-
ered as a time-varying variable that is updated in a distributed
fashion using a similar consensus strategy for the input ui. For
details on this type approach, we refer the reviewer to the work
of Z. Li et al. (2013).

5. Extensions and unified results

In the previous section, the distributed protocol given by (4)
uses the true state of agent i (xi) to update ui. In this section,
we analyse the synchronisation of MAS by using the following
protocol

ui = cK
∑
j∈N in

i

aij(x̂i − x̂ij), (42)

where x̂i and, x̂ij are given by given by (6) and (5), respectively,
for all i, j ∈ V . As explained in the previous section, without
communication delays (42) can be rewritten as

ui = cK
∑
j∈N in

i

aij(x̂i − x̂j). (43)

At this point, the question may arise regarding the intuition
behind the protocol defined by (42), in comparison with (4).

While themotivation behind (4) is clear from the design process
of the proposed ETCmechanism, the protocol (42) is motivated
by one of the earliest works in the field of event-triggered control
and communications where consensus of multiple one dimen-
sional single integrator systemswas studied (Dimarogonas et al.,
2012). In the latter, the protocol (42) facilitates the derivation
of a so-called ‘state-dependent’ triggering threshold function
that plays a role similar to that of the triggering threshold func-
tion hi (see (10)). In the literature (see for example Almeida
et al., 2017; Hung et al., 2019; Nowzari et al., 2019) the trig-
gering threshold function used in our present paper is called
‘time-dependent’. Compared with the ‘state-dependent’ type of
threshold, the ‘time-dependent’ type is simpler to design and
implement, especially for MASs that have complex dynamics
and modelled by directed graphs (Hung et al., 2019; Nowzari
et al., 2019).

With the protocol (42), we will see that the result of our
ETCmechanism in this section generalises some of the existing
results in the literature (for example Hung et al., 2019; Seyboth
et al., 2013) where the agents’ dynamics and the network topolo-
gies are special cases of the problem considered in the current
paper. We obtain the following result.

Theorem 5.1: Consider the closed-loop MAS described by (2),
driven by the distributed control strategy and the ETCmechanism
specified in Algorithms 1, where the distributed protocol given
by (42) is used rather than (4). Assume further that the LMI (14)
in Algorithm 2 is feasible. Then, the following statements hold
true.

(i) The properties (i) and (iii) stated in Theorem 4.1 are satisfied.
(ii) Furthermore, if the threshold functions are designed such

that limt→∞ hi(t) = cl for all i ∈ V , then

lim
t→∞ ‖ξ(t)‖ ≤ r2 = 2‖F2‖λmax(R ⊗ P−1)

λmin(H2)λmin(R ⊗ P−1)

√
Ncl,

(44)
where

F2 � (R ⊗ P−1)W(L ⊗ cBBTP−1), (45)

and H2 is given by (18).

Proof: The proof is done similarly to the proof of Theorem 1.
�

It can be observed from (16) and (44) that r1 is computed
using the adjacency matrixA, whereas r2 is computed using the
laplacian matrix L (see the difference between F1 and F2). Basi-
cally, the two bounds are equivalent as both matrices represent
the connectivity of the considered digraph.

We next show that the asymptotic bound given by (44)
generalises some existing results in the literature.

5.1 Average consensus (Seyboth et al., 2013)

In Seyboth et al. (2013), the authors considered the average con-
sensus problem for undirected graphs where the dynamics of
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each agent is given by

ẋi = ui (46)

for all i ∈ V and xi,ui ∈ R. Compared with the general form
given by (2), the system (46) has n = m = 1, A = 0, B = 1 and
l = 0. With these parameters, the LMI given by (14) is feasi-
ble for every τ > 0 and P> 0. Thus, we can chose τ = λ2(L) >

0, c = 1 and P = 1 to satisfy Algorithm (2). As a result, K =
−BTP−1 = −1.

Note also that with the system (46) the estimator for each
j; j ∈ V in (6) becomes ˙̂xj = 0, i.e. x̂j(t) = xj(tj,k) for all t ∈
[t, tj,k+1). Since the graph is undirected with aij = 1 for all i, j ∈
V , we can letNi � N in

i = N out
i .With the above parameters, the

control law in (43) becomes

ui = −
∑
j∈Ni

(x̂i − x̂j), (47)

which is identical to the control law used in Seyboth et al. (2013)
(see Equation (4) in Seyboth et al., 2013). Furthermore, because
the graph considered is undirected, it follows from Lemma 2.1
that R = IN/N. Substituting the above parameters in H2 given
by (18) and in F2 given by (45) we obtain H2 = 2λ2(L)IN and
F2 = L. In addition, the authors use the threshold functions
hi(t) = c1e−αt + c0 for all i ∈ V , hence cl = c0. Inserting the
above parameters in (44) we obtain

r2 = ‖L‖√Nc0/λ2(L), (48)

which is identical to the bound inTheorem3.2 (see Equation (8)
in Seyboth et al., 2013).

5.2 A simple nonlinear system (Hung et al., 2019)

In Hung et al. (2019), the authors considered a synchronisa-
tion problem for balanced digraphs where the dynamics of each
agent are given by

ẋi = f(xi, t) + ui (49)

for all i ∈ V and xi,ui ∈ R. Compared with the general form
given by (2) the system in (49) has n = m = 1, A = 0, B = 1.
In this case, the LMI given by (14) is equivalent to τ ,μ,P > 0
and −2τ + μl + μ−1lP2 < 0. By choosing P = 1 and μ = 1
any τ > l will satisfy the LMI. Since the digraph is balanced,
a(L) = λ2(Ls), where Ls is defined inDefinition 1. Furthermore,
by taking c = τ/a(L) = τ/λ2(Ls) > l/λ2(Ls) so as to satisfy
Algorithm 2, this choice of c also satisfies the gain condition
given by Theorem 1 inHung et al. (2019). Substituting the above
parameters in H2 given by (18) and in F2 given by (45) we
obtainH2 = 2(cλ2(Ls) − l)IN and F2 = cL. Inserting the above
parameters in (44) we obtain

r2 = c‖L‖√Ncl/(cλ2(Ls) − l), (50)

which is identical to the bound given by Corollary 1 in Hung
et al. (2019)). Notice that the coupling gain c in (50) plays the
same role as k in Hung et al. (2019).

6. Simulation examples

This section illustrates the performance of the proposed ETC
mechanismusing computer simulations.We consider a network
of six agents whose topology is modelled by the digraph illus-
trated in Figure 2. Let xi = [xi,1, xi,2, xi,3, xi,4]T ∈ R

4 be the state
of agent i. The dynamics of each agent are given by (2) with

A =

⎡
⎢⎢⎣

0 1 0 0
−2 −1 2 0
0 0 0 2

1.95 0 −1.95 0

⎤
⎥⎥⎦ , B = [

0 1 0 0
]T ,

and f(xi, t) = [0 0 0 − 0.333 sin(xi3)]T. Therefore, the corre-
sponding globally Lipchitz constant for f(·) is l = 0.333. Run-
ning Algorithm 2 using the CVX tool box (Grant & Boyd,

Figure 2. Example. Network topology.

Figure 3. ETC mechanism with controller (4). The synchronisation of the agents’
states.
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Figure 4. ETC mechanism with controller (4). (a) Sequence of broadcast time
instants for each agent. (b) Evolution of the estimation errors ‖ei(t)‖ and the
threshold triggering functions hi(t), i = 1, . . . , 6.

2014), we obtain c = 2251 andK = [−0.0470,−0.0134, 0.0285,
−0.0224]. For the threshold functions, we set hi(t) = c0 +
c1e−c2t for all i ∈ V := {1, . . . , 6}, with c0 = 1e−3, c1 = 5, and
c2 = 1.

Figures 3 and 4 show the simulation results with the ETC
mechanismusing the control law given by (4). It can be observed
in Figure 3 that the states of all agents are synchronised asymp-
totically, i.e. the agents’ states reach consensus and evolve along
a common trajectory. Figure 4 shows that the agents broadcast
their states at discrete time instants for which the estimation
errors ‖ei(t)‖ hit the triggering threshold functions hi(t); i ∈ V .
The minimum inter-event time and the number of broadcast
events for each agent during the simulation period are shown in
Table 1.

Figure 5 shows the trajectory of the synchronisation error
with continuous communications (C-C), and with the ETC
mechanism using controllers (4) and (42). According to
Theorem 4.1, using controller (4) the asymptotic bound for

Table 1. Minimum inter-event times and number of events.

Agent i min{ti,k+1 − ti,k}(s) Total number of events

i = 1 0.029 42
i = 2 0.117 16
i = 3 2.103 4
i = 4 0.189 15
i = 5 0.081 15
i = 6 0.854 5

Figure 5. Example. Trajectories of the synchronisation error ‖ξ‖ and asymptotic
bounds with different communication mechanisms.

the synchronisation error is computed using (16) as r1 =
0.1102. Using controller (42), the asymptotic bound is com-
puted using (44) as r2 = 0.2139. The figure clearly shows that
asymptotically, the synchronisation error is upper bounded by
the asymptotic bounds. Recall that the asymptotic bounds can
be made arbitrarily small by tuning the lower bound on the
threshold functions. Hence, the synchronisation error would
get closer to zero if c0, the lower bound of the triggering func-
tion were reduced. This also would make the synchronisation
error closer to that obtained using continuous communications.
However, this would potentially make communications among
the agents more frequent.

7. Conclusions

This paper described a general event-triggered communication
framework for consensus/synchronisation of nonlinear multi-
agent systems. The agent’s dynamics and the network topology
considered are sufficiently general enough to address a large
number of applications. We showed how consensus and syn-
chronisation can be achieved and how communications among
agents can be reduced by using the proposed event-triggered
communication mechanism. Further, the minimum inter-event
time for every agent was shown to be strictly positive, thus
excluding the occurrence of Zeno behaviour. Future work will
aim at extending the ETC mechanism to heterogeneous multi
agent nonlinear system and taking into account package losses
and communication delays.
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