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a b s t r a c t

The current state-of-the-art in iterative optimization algorithms for differentiable cost functions is
scattered throughout the literature, which hinders their comparison for the specific program at hand.
Depending on the research area, theoretical optimal parameters and convergence rates are available in
different formulations. Consequently, this toolbox aims at providing a benchmarking software for the
various gradient-descent-based algorithms and implements functions to return the optimal parameters
whenever possible. Researchers can focus on the development of new algorithms and test them against
the ones present in the literature and made them available under a common framework. The structure
of the software is tailored such that novel contributions can be easily added through the design of a
function implementing a single step of the algorithm. The ease of usage is illustrated by examples in
the literature.
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1. Motivation and significance

Numerous problems in engineering can be tackled by op-
timization techniques. Tasks such as robot path planning, im-
age processing and collision detection can be achieved through
the minimization of a function subject to constraints using, for
example, the work in [1]. Computing the PageRank as in [2]
or achieving desynchronization in access protocols in wireless
sensor networks [3] can also be seen as the solution of an op-
timization.

In the literature, there are a number of possible algorithms
and highly-efficient solvers implemented from which to choose.
Selecting the appropriate one for a specific problem is a hard task

E-mail address: dsilvestre@isr.tecnico.ulisboa.pt.

as they are not easily compared. For example, in [4], it is pro-
posed a toolbox to help the user select which optimization algo-
rithm should be used depending on the characteristics of the cost
functions and constraints. Most of this algorithms use step size
parameters or weights in some operations. The aforementioned
software does not provide a means compare algorithms perfor-
mance and select optimal values for these parameters. Therefore,
having software that can serve as a benchmarking tool is of
prime importance. In [5], the authors have introduced a software
following the same principle for feature selection algorithms.
The code structure is designed in a similar fashion but the set
of target problems is different (feature selection vs minimizing
functions) and, as a consequence, the implemented algorithms.
Complementing this work, the contributions of this paper can be
summarized as:
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• a toolbox implementation the most common algorithms to
make an easier comparison of their complexity;

• optimal parameter computation based on control theoretical
results.

In the remainder of this section, we introduce the main nota-
tion and scientific background of the topic. The interested reader
is referred to [2,3] for references regarding recent advances in
the design of optimization algorithms such as using Integral
Quadratic Constraints (IQCs) in [6]. Let x denote the variables
describing the problem and a cost function f measuring the
quality of the solution x. We would like to select x⋆ such that
the value of f (x⋆) is the minimum over all possible values. The
optimization is written as:

minimize
x

f (x) (1)

In this paper, we assume that function f is differentiable, i.e., there
exists ∇f . In such cases, common algorithms to obtain distributed
solutions, i.e., where parts of the state x are divided over different
processing units and communicated to their neighbors, follow the
idea of gradient descent with one of the most efficient being the
Nesterov method:

Gradient : x(k+1)
= x(k) − β∇f (x(k))

Nesterov :
x(k+1)

= ξ (k)
− β∇f (ξ (k))

ξ (k)
= (1 + γ )x(k) − γ x(k−1)

(2)

with β, γ being parameters. In (2), x(k) is the estimate at iteration
k, ∇f (x) is the gradient of f at the point x, and ξ is an internal vari-
able computing the momentum term. The Gradient algorithm
is the simplest version where the new estimate corresponds to
a step along the direction of steepest descent −∇f (x(k)) and a
step size of β . The Nesterov method adds a momentum term
given by the difference between the two previous iterations. The
other implemented algorithms introduce variants on the idea of
following the descent direction given by the gradient.

In essence, the convergence and its speed depend on the
values selected for β, γ . Under a suitable choice of parameters,
the algorithms converge to the global minimum provided f is
convex. Whenever this is not the case, convergence occurs for one
of the points where ∇f = 0, which can be a minimum, maximum
or saddle point.

If we specialize function f to be quadratic, i.e., f (x) =
1
2∥Mx−

b∥2
2, the algorithms are linear as ∇f is a linear function of x.

Addressing the problem as the solution of equation ∇f (x) = 0,
results in the possibility to use iterative algorithms to solve linear
equations of the form:

Ax = b (3)

For a general function f , one can adopt a nonlinear equation
solver such the one implemented in [7].

The next section details the organization, algorithms and main
functions implemented in OPTool.

2. Software description

The OPTool toolbox implements a solver that can run a collec-
tion of iterative algorithm provided the user supplies a function
to obtain the next iteration given the current one. This is accom-
plished by passing a cell array of all function handles the user
would like to compare in the simulation. As an example, if the
user is interested in running the gradient descent and Nesterov
method in (2), a cell array containing these two function han-
dles will be passed to the solver. OPTool currently implements

other methods that can be found in the literature. In the cate-
gory of optimization solvers: gradient descent, Heavy-ball, Nes-
terov, Momentum, Fast Iterative Shrinkage-Thresholding Algo-
rithm (FISTA), Descent Fast Iterative Soft-thresholding Algorithm
(DFISTA), Second Nesterov, Barzilai–Borwein, Random descent,
Cauchy–Barzilai–Borwein and General Barzilai–Borwein. In the
linear equation solvers, it implements: Jacobi, Weighted Jacobi,
Gauss–Seidel, Successive Over-relaxation (SOR), Richardson, Con-
jugate Gradient, Biconjugate Gradient, Newton–Raphson, Sparse
Broyden, Broyden, Bad Broyden, Delayed Over-relaxation (DOR),
Minimal Residual DOR, Accelerated Over-relaxation (AOR), Prac-
tical Asymptotical Optimal SOR (PAOSOR), Alternating Anderson–
Jacobi, Chebyshev, Quasi-Chebyshev, HSS iteration method, Kacz-
marz, Coordinate Descent, Conjugate Gradient to the Normal
Equation (CGNE) and Improved Biconjugate Gradient (IBiCG).
Please see the package documentation for references and addi-
tional information [8].

Additionally, since most methods, such as the ones in (2),
have parameters such as β and γ that account for weights to
be designed. To this end, the user should supply a cell array of
structures containing all these values to the solver. Alternatively,
these data structures can be returned by the function getpa-
rameters(A,b,r,methods) that is specifically tailored for quadratic
problems of the form f (x) = 0.5x⊺Qx − p⊺x + r , where Q = A⊺A
and p = A⊺b. If one was simulating both methods in (2), one of the
entries would have a structure with a single parameter β for the
gradient descent, whereas the second entry of the array would
contain a structure with β and γ for the Nesterov method. Having
separated the computation of the parameters from the solver
task enables users to pass their own data structures to functions
optSolver or linSolver or access and change the suggested param-
eters given by the function getparameters. The variable methods
contains all strings identifying the algorithms for which the user
wants to compute the parameters. The software also comes with
a quadSolver function that performs the simulations and stores
the results in files thus saving the need to call both optSolver
or linSolver if the user is addressing a quadratic problem with
algorithms of both classes.

2.1. Software architecture

In this implementation, the main objective was to produce a
code as simple and scalable as possible for other researchers to
implement and test their algorithms. Therefore, the architecture
for the software is composed of a Solver (either of linear equa-
tions of optimization) that receives: simulation variables such
as maximum number of iterations, initial state, tolerance before
stopping, etc.; parameters of the algorithms and function han-
dlers to the functions implementing one iteration. The software
architecture is depicted in Fig. 1.

The addition of a new algorithm requires two steps: (i) im-
plementing a function returning the next value approximating
the solution, and (ii) adding to the getParameters an if-clause
similar to the ones for the implemented algorithms, where it is
given the function handler from (i) and how to obtain the optimal
parameters for the algorithm. No other changes are required,
and thereby future developments are facilitated. Since the solvers
already include the possibility to perform projections or apply
a general function to the next approximation value, researchers
have a further degree of freedom in the behavior of their algo-
rithms and can apply the same transformation to all simulated
methods without having to correct the code for the function
providing the next iteration of each algorithm.
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Fig. 1. OPTool architecture.

2.2. Software functionalities

The OPTool software is composed of three main solver func-
tions: linSolver, optSolver, and quadSolver. The first two run al-
gorithms for the solution of linear equations and general opti-
mization algorithms, respectively. They both accept a vector of
function handlers implementing the next iteration of each algo-
rithm, along with variables describing the problem to be solved
and other simulation constants. The function quadSolver aims to
call both linSolver and optSolver for the same quadratic problem.

In the package, two folders Linear Equation Solvers and Opti-
mization Algorithms store all the functions for each of the imple-
mented algorithms. If the user wants to expand the software to its
own designed algorithm, he/she needs to implement a function
that provides the next estimation of x⋆.

A major contribution of this software is the computation of
the optimal parameters for each of the algorithms whenever
the choice of parameters allows to view them as LTI systems.
To that end, there is a function getParameters within the folder
Optimal Parameters that retrieves the data structures needed for
linSolver and optSolver as well as invokes the specific function
for each algorithm that returns its optimal parameters. Some of
these are direct implementation from the expressions found in
the literature whereas the others explore the LTI view.

Lastly, a folder of Auxiliary Functions implements methods to
generate adjacency matrices for scale free corresponding net-
work topology, projection on the simplex and normalization to
one (used in the PageRank example) and functions to randomly
select updating nodes based on a prescribed probability vector
or compute the spectral radius. The network generation follows
the Barabási–Albert model that is useful to test the PageRank
algorithm against a network resembling the characteristics of the
Internet.

3. Illustrative examples

A search engine is a tool that allows users to supply a query
and to obtain web pages related to the information they are
searching for. A crucial task for these tools is some sort of rank-
ing mechanism that selects meaningful links to be presented
first. One of the most well-known algorithms is the PageRank
from Google, which was initially proposed in [9], to rank pages
based on their relative importance and on the number of links to
each specific page. In [9], it is proposed that the ranking be the
eigenvector of the following matrix M ∈ Rn×n:

M := (1 − m)A +
m
n
S (4)

where m ∈ (0, 1) is a parameter defining the convex combination
of the adjacency matrix A with the matrix S := 1n1

⊺
n (1n is the n-

dimensional vector of ones). A typical choice is m = 0.15 [9].
The standard formulation can be efficiently computed through
the power method:

x(k + 1) = Mx(k) = (1 − m)Ax(k) +
m
n
1n (5)

Fig. 2. The error evolution for each of the tested algorithm in the PageRank
case for a 20-node network.

where x(k) ∈ Rn and ∀k ≥ 0 : 1⊺
nx(k) = 1.

The PageRank problem can also be formulated as an opti-
mization problem or as the solution to a linear equation. In the
former, the PageRank is the solution to the following optimization
problem

minimize
x

1
2
∥((1 − m)A − In)x +

m
n
1n∥

2
2

which corresponds to the format in (1).
If seen as the solution of a linear equation in matrix format we

get:

(In − (1 − m)A)x =
m
n
1n (6)

corresponding to the linear equation view in (3).
In [2], it is shown that the standard power method for the

PageRank is equivalent to the Jacobi method applied to (6). The
solution of the PageRank for a random Barabási–Albert generated
network is included in the OPTool and the plot of the errors
produced by the toolbox is given in Fig. 2, where it is shown
better alternatives to the PageRank if the optimal parameters are
known by each node.

The desynchronization of transmitters to achieve a fair multi-
ple access schedule at the Medium Access Control (MAC) layer in
the context of Wireless Sensor Networks (WSNs) can be done, for
example, using the Time-Synchronized Channel Hoping (TSCH)
[10]. The problem can be formulated [3] in the format of (1):

minimize
φ

f (φ) :=
1
2
∥Dφ − v1n + en∥

2
2 (7)

where φ is the phase offset of each transmitter, v = 1/n, 1n is
the vector of ones, en = (0, 0, . . . , 0, 1), and

D =

⎡⎢⎢⎢⎢⎣
−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

...

0 · · · 0 0 −1 1
1 · · · 0 0 0 −1

⎤⎥⎥⎥⎥⎦ . (8)

In this case, the linear equation view in (3) produces poor
results given the very specific structure of D. Using OPTool, in [3]
it is possible to benchmark the gradient descent (equivalent to
a standard algorithm referred to as Pulsed-Couple Oscillators
(PCOs)), against the Nesterov and Gauss–Seidel algorithms and
plot their errors as a function of iteration number, depicted in
Fig. 3.
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Fig. 3. Logarithmic evolution of the error norm for the PCO-based, Nesterov and
Gauss–Seidel algorithms for the 20 node network.

4. Impact

As seen from Section 3, the OPTool package allows to pose
questions as whether a current state-of-the-art algorithm is the
best to solve a given problem and compare other solutions. Addi-
tionally, it motivates the study of these algorithms as LTI systems
and brings other techniques from this area to the design of
optimization algorithms, all of which can be simulated by simply
implementing a function giving the next iteration and another
for how to select the parameters. The software has already been
used for two problems: PageRank in [2] and Desynchronization in
Medium Access Control in [3]. Many other problems ranging from
power networks to image processing are possible future work.

Currently there are focus on studying fast first-order optimiza-
tion algorithms and also their resilience to noise. These cases
can be tested in the toolbox with minor changes by appropri-
ately adding the next iteration functions. Since the software is
in its first version, its usage has been rather limited with re-
searchers implementing their own simulations with no sharing
of a common platform. This toolbox aims at bringing together
implementation practices in the community.

5. Conclusions

In this paper, a Matlab toolbox OPTool was presented that
implements iterative solvers using linear equation and optimiza-
tion algorithms. The main focus was on creating a platform that
is scalable to new algorithm implementation by dissociating the
solver code from the function implementing the next iteration.
We have shown that these methods share a common interpre-
tation that motivated this toolbox by seeing them as LTI or LTV
systems from control theory where the input is the gradient of
the function to be optimized. Resorting to standard techniques
from the linear systems theory, it is possible to select optimal
parameters and those have been added to the toolbox.

Two publication have already used this toolbox to produce
their simulations and new research is being conducted in power
networks that will also benefit from the software. There is inter-
est from two different communities – control and optimization
– and is expected that OPTool can accelerate research in this
topic by facilitating an easy alternative (the other being each
individual implementing the desired algorithms from scratch) to
test algorithms and compute theoretical convergence rates.

The case of PageRank from Google is included as an example
where the software compares four linear equation algorithms to
show that, if optimal parameters are known, Successive Over-
Relaxation outperforms the Jacobi method that is equivalent to
the power method currently employed as the state-of-the-art
algorithm to solve the ranking problem.

Future work will focus the interesting problem of optimizing
the initial estimate to achieve a faster convergence. Various pos-
sibilities are going to be explored, namely computing the norm of
the LTI model executing the algorithm as a function of the initial
state.
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