
Systems & Control Letters 147 (2021) 104842

G
a

b

c

c
n
w
t
n
s
b
t
s
t
s
b
s
s

s
p
l

(

h
0

Contents lists available at ScienceDirect

Systems & Control Letters

journal homepage: www.elsevier.com/locate/sysconle

Node and network resistance to bribery inmulti-agent systems✩

uilherme Ramos a,∗, Daniel Silvestre b,c, Carlos Silvestre b,c

Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto, Portugal
Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, China
Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Portugal

a r t i c l e i n f o

Article history:
Received 19 August 2020
Received in revised form 28 October 2020
Accepted 22 November 2020
Available online 7 December 2020

Keywords:
Bribery resistance
Multi-agent systems
Consensus

a b s t r a c t

In this paper, we propose a framework to study the resistance to bribery of nodes in a network via
average consensus. We extend the proposed bribery resistance measure to sets of nodes, and networks.
The proposed framework evaluates quantitatively how much an external entity needs to drive the state
of an agent away from its current state, to change the final consensus value. Subsequently, we illustrate
our framework with a set of examples, namely: i) how we can use it to compute the bribing resistance
of each node in a network; ii) comparing our measure against metrics from the literature in measuring
network bribing resistance; iii) how we may utilize the proposed framework to evaluate the bribing
resistance of clusters/groups of nodes in large-scale networks.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In the last decades, the cyber-security aspects of networked
ontrol systems have been emphasized by the research commu-
ity to provide services with resilience guarantees. In tandem
ith the growing use of general-purpose networks, malicious en-
ities are paying increasing attention to these sometimes critical
etworks and are profiting from attacking them. An example of
uch malicious entities attacks is the Stuxnet incident [1], caused
y a malicious computer worm. Other well-known instances are
he power system cyber-attacks that occurred in Ukraine [2]. Con-
equently, the research community has been developing methods
o improve the resilience of cyber–physical systems to overcome
uch abnormal situations. These methods have a central role,
ecause such circumstances may lead the systems to critical
tages, which can be irrecoverable or may even, in the worst-case
cenario, result in a cyber-war.
Multi-agent systems [3] are a particular case of cyber–physical

ystems, and they are computerized systems composed of multi-
le interacting intelligent agents. These systems can solve prob-
ems that are hard or impossible for a single agent to resolve.
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In other words, multi-agent systems may be seen as networks
of dynamic agents aiming to achieve a global intent employing
local interactions. These systems consist of a research line of
paramount importance.

A nuclear problem in multi-agent systems is when all agents
in a network seek to agree on a shared value, known as con-
sensus. The problem of consensus has numerous applications,
making it a research subject of particular interest. For instance,
it emerges in areas like distributed optimization [4,5]; tasks of
motion coordination, e.g. leader following [6]; rendezvous prob-
lems [7]; resource allocation in computer networks [8]; and even
in computing relative importance of webpages in the PageRank
algorithm [9].

A particular type of consensus problem is the average con-
sensus, i.e. designing a linear distributed iterative algorithm that
leads agents to compute the arithmetic average of their initial
states. This problem has a plethora of applications. It has been
studied for both the cases of undirected [6] and directed [10]
networks. Further, we may also classify the consensus problems
according to the time update domain as discrete-time [11], or
as continuous-time [12]. The time-domain can even be hybrid as
studied in [13], where resilience consensus is proposed for sys-
tems composed of multiple dynamical agents governed by both
continuous-time and discrete-time control laws. Further, the net-
work communication between nodes may be synchronous [11],
or asynchronous [4,14] and the communication may occur deter-
ministically [15], or stochastically [16]. Lastly, the communication
network can be static [15], or dynamic [11].

The growing use of consensus algorithms praises the need to
deal with both faults and attacks. In other words, it is crucial

to ensure that consensus methods are resilient to agents that
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ehave abnormally. In [17], a fault-tolerant algorithm to perform
pproximate Byzantine consensus in asynchronous networks is
ntroduced. The algorithm requires a topological condition to
e successfully used, which is less restrictive than the standard
equirements. Their work also applies to synchronous networks
nd networks with delay on the communication paths, and the
uthors extended the results to systems with a time-varying
nderlying graph. In [18], the problem of resilient consensus of
ampled-data multi-agent networks with double-integrator dy-
amics is studied. Under the assumption that we know a bound
n the number of malicious agents, a resilient consensus method
s proposed by making each agent discard a set neighbor values,
hich are large and small states.
The work in [19] investigates consensus and clustering of

xpressed and private opinions against Byzantine individuals in
irected and time-varying networks. The author outlines a dis-
ributed censoring algorithm to rule the opinion dynamics of
rivate and expressed opinions and renders necessary and suf-
icient conditions for resilient consensus and clustering based on
etwork robustness.
Much work has been devoted in trying to mitigate the effects

f possible nodes being attacked. To help better identify the nodes
f a network that are easier (with a smaller cost) to attack and
or which, when designing a network, one has to pay special
ttention to, we develop a measure to quantitatively assess how
esilient to being attacked a node in a network is. The proposed
ethodology may be used to prevent attacks and to identify
odes or sets of nodes that may strategically be more protected
ue to its criticality in a network. Graph resilience has a plethora
f application areas, such as consensus methods, power grids,
rain connectivity, social networks, geolocation services, digital
ultimedia content generation and delivery, argument graphs,

ogistics and supply chain management, computer, and data com-
unication networks, and chemical engineering. The concept of
raph resilience quantifies the ability to find alternative, though
enerally more costly, paths when edges or nodes with their inci-
ent edges are deleted from the graph. In this paper, we explore
novel perspective inspired by average consensus. The proposed
iew translates in a measure of how easy it is to influence the
ntire network by changing a particular node value.
In [20], a graph measure that the authors called effective

raph resistance, derived from the field of electric circuit analysis,
as proposed. They define the effective graph resistance as the
ccumulated effective resistance between all pairs of vertices.
he measure the authors proposed only aims to evaluate the
esistance of a graph qualitatively. In contrast, we present, in this
aper, a measure that can be computed for a node, a set of nodes,
nd also used to calculate the resistance of the graph. In [21], the
uthors proposed a new, generic, and scalable graph resilience
etric to the edge removal scenario, relying on the weighted sum
f the number of paths that cross specific vertices of extensive
ommunication and structural value, is proposed. Also, in [16],
n in-depth study of the design and analysis of gossip algorithms
or averaging in an arbitrarily connected network of nodes is
tudied. The authors show that the averaging time needed to
each consensus depends on the second largest eigenvalue of a
oubly stochastic matrix, characterizing the averaging algorithm.
hey discovered that the smaller this eigenvalue is, the faster the
veraging algorithm converges.
In [22], the authors apply a machine learning method to eval-

ate the robustness of multi-agent systems. They use neural net-
orks (NN) consisting of Multilayer Perceptrons (MLPs) to learn
he representation of multi-agent networks, and use softmax
s the classifiers. Using multi-agent model, in [23], the authors
heorize that network metrics such as average path length, clus-

ering coefficient, size of the largest connected component in

2

the network and the maximum distance between nodes in the
largest connected component relate to the robustness of supply
networks, and statistically test these hypotheses with several
examples.

The work of [24] focuses on improving community robust-
ness to attacks and failures. The authors introduce a robustness
measure to assess the community similarity between an original
network and a broken network. Finally, they propose a multi-
agent genetic algorithm to maximize the community robustness
on networks.

In this work, we aim to shed light on the problem from a
different point-of-view. Instead of viewing from a defense per-
spective, we look at the issue of attacking the network at the
lowest cost. In other words, we evaluate what is the best attack-
ing strategy, in the case of bribing attacks [25–27], that results
in achieving a goal with the lowest cost concerning a given
cost function. We seek to find a lower bound on how much
cost/energy an attacker has to spend to drive the consensus to
the attacker’s desired state, defining a measure to evaluate the
bribing resistance of nodes and networks. Our approach contrasts
with the usual approaches that intuitively quantify how much
a network can continue working when nodes are attacked. We
aim to intuitively quantify how easily we can deviate a net-
work from its normal function, by attacking some nodes. Our
study is, in a sense, dual to the one in [28], where the authors
showed how to compute a threshold for the ‘‘maximum impact’’
of an undetected fault/attack in linear consensus and networked
physical systems, by solving a non-convex quadratic problem.
Resorting to the framework developed in [28], an attacker can
estimate the maximum that it can do, without being detected.
With the framework that we develop in this work, an attacker
may further determine the minimum cost required to drive the
system towards the attacker’s goal. Combining both results, the
intrinsic limitations on the attacker capabilities can be derived,
which depend on the network topology and on the assumption
that the defender can run non-conservative detection methods.

Main contributions. (i) We propose a framework to quantify the
resistance to bribery of nodes and sets of nodes in a network
via average consensus; (ii) the proposed framework may be used
under a concrete setting for average consensus when we know
the initial states of each agent, and we know if the dynamic is
discrete-time or continuous-time; (iii) if the only available knowl-
edge is the network topology of agents (structure of the network),
a general measure of bribing resistance is also proposed; (iv) we
used the setup in (iii) to proposed a measure of network bribing
resistance.

2. Preliminaries & notation

We denote by N the set of non-negative integers. We denote
sets by calligraphic letters, e.g. A, E and V . We use lowercase
letters to refer to elements in sets, e.g. a ∈ A and v ∈ V . Further,
we use uppercase letters to refer to matrices, e.g. A, B and W .

network can be modeled as a graph, which is an ordered pair
G = (V, E), where V = {1, . . . , n} is a set of n > 0 nodes (or
ertices) and E ⊂ { {u, v} : u, v ∈ V} is a relation of accessibility
etween nodes, and e ∈ E is called an edge that is an unordered
air e = {u, v}, with u, v ∈ V .
The set of neighbors of a vertex v ∈ V are Nv = {u : {u, v} ∈

E}. From this point onwards, we assume to be working with
undirected networks. The degree of a node v ∈ V is the number
of vertices to that have an edge with v, that is, d(v) = |Nv|. The
diagonal matrix D ∈ Rn×n such that Dii = d(i) is the degree matrix
of graph G. A path p of size l > 0 is a set of distinct vertices
connected by edges, i.e. p = (v1, . . . , nl+1), where {vi, vi+1} ∈ E
for i = 1, . . . , l. Further, we say that the path p starts in v and
1
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nds in vk+1. A network is connected if, for any pair of vertices
, v ∈ E , there is a path starting in u and ending in v.
A convenient form of representing a graph is by its adjacency

atrix, i.e., a matrix A ∈ Rn×n, such that Aii = 0, Aij = 1 (i ̸= j) if
here is an edge between vertices i and j and Aij = 0 otherwise.
nother common representation is via the Laplacian matrix, L ∈
n×n, L = D−A. In other words, We denote the set of eigenvalues
f a matrix A ∈ Rn×n by σ (A) = {σ1, . . . , σn}. We denote
he set of non-zero eigenvalues of A by µ(A) = {µ1, . . . , µk},
where k ≤ n. Further, we denote by 1n the vector with size
n ∈ N with all entries equal to one, and we omit the n when the
underlying size is evident from the context. Lastly, we denote by
eni the n dimensional vector with the ith entry equal to 1 and the
remaining entries equal to 0, and we omit n, writing ei, when it
is obvious from the context.

In [29], the authors define the effective graph resistance of a
graph G using the Laplacian matrix L as:

RG = N
N∑
i=1

1
µi

, where µ(L) = {µ1, . . . , µN}.

For discrete-time, k ∈ N, and synchronous communication, the
average consensus algorithm can be modeled as:

x(k+1)
= Ax(k) s.t. limk→∞x(k) =

1⊺x(0)

n
1,

where x(k) ∈ Rn and x(k)i is the state of agent i, and for a vector w,
⊺ denotes its transpose.
Our goal is to study the bribing resistance that an agent or a set

f agents has in an average consensus network. We may model
he influence that an attacker exerts in the nodes through matrix
, where B ∈ Bn×p encodes the selection of nodes to be bribed
nd B = {0, 1}, and a sequence of u(k), with u(k)

∈ Rp and k ∈ N.
his influence leads to the following dynamics
(k+1)

= Ax(k) + Bu(k).

Notice that a bribing attack differs from the so-called Byzan-
ine attacks. In a bribing attack, it is not possible, for instance,
o remove communication links, discard messages, make agents
end different messages at the same time, or alter the protocol in
ny way.

ssumption 1. The cost of changing an agent’s state by a units at
ome time instant k ∈ N is quadratic, more specifically, the cost
s a2. ⋄

bservation. Assumption 1 is adopted to simplify the analysis in
he manuscript. Other cost function may also be adopted and the
easures adapted accordingly.

Under the described setup, we may conceive a trivial and
llustrative scenario of a complete network of n agents where
ach agent’s state is 0 (x(k)i = 0), for which the goal is to change
he consensus value to 1.

trategy 1 (Naïve Strategy). A naïve bribing strategy to accomplish
he envisioned attack is to select an agent v and, in the first time
nstant (k = 0), change its state to the number of agents in the
etwork, i.e., to n. In other words: Bv,v = 1, and Bi,j = 0, otherwise,
nd u(k)

i = n, if i = v and k = 0 and u(k)
i = 0, otherwise.

Notice that the naïve strategy aims to change the steady state
f the system by an amount of a, by changing (adding to) one
gent’s initial value an, where n is the number of agents in the
etwork. The original average of the initial states was x∞ =
n x(0)

/
n. When we apply the naïve strategy, we get as the new
i=1 i

3

Fig. 1. The structural bribing resistance of nodes (value depicted close to each
node) for all the connected graphs with 4 nodes.

average x̃∞ = (an +
∑n

i=1 x
(0)
i )
/
n = x∞ + a, which is changed by

the amount of a as desired.
Using Strategy 1 (Naïve strategy), we obtain the following

x(k+1)
= Akx(0)  

natural response

+

k−1∑
τ=0

Ak−1−τBu(τ )

  
attack response

. (1)

As it is aimed by the attacker, the final consensus value is

lim
k→∞

x(k+1)
= lim

k→∞

Akx(0) +

k−1∑
τ=0

Ak−1−τBu(τ )

= lim
k→∞

Ak−1B(n · ei) =
11⊺

n
B(n · ei)

=
11⊺

n
(n · ei) = 11⊺ei = 1.

Moreover, we may wonder if it is always the case that to
hange the final consensus value by 1 unit, changing the state
f one agent we always have a cost of n2 (n the number of agents
n the network, using a quadratic cost).

We may think of another bribing strategy deviating the state
f agent i by the necessary amount such that its state is 1.

trategy 2 (Strategy Ai). The bribing strategy Ai consists of adding
o the state of agent i the amount such that its state is changed to
. In other words: Bv,v = 1, and Bi,j = 0, otherwise, and

(k)
i =

{
(1 − x(k)i ), if i = v

0, otherwise.

For n = 4, the accumulated cost of the Strategies 1 and 2 are
depicted in Fig. 1.

For the complete network, we have that any node yields the
same bribing accumulated cost. Hence, a question that emerges
is the following: Is the cost associated to a bribing strategy as Ai the
same for any node in a network?

Next, we see that the answer is negative. In the following
example we consider a path network, with n = 4, and we explore
the Strategy 2 when selecting an agent to bribe in the extreme of
the path (see Strategy A2 in Fig. 2) or another of the two agents
(see Strategy A3 in Fig. 2). In fact, the cost of a bribing strategy
depends on the selected agent, see Fig. 2.

This observation drives the need to build an evaluation frame-
work for the bribing resistance of the various nodes or the entire
network. Further, with such a framework in hands, we may de-
sign a network selecting a configuration of edges that makes the
network (or a set of nodes) to be more resilient to bribing attacks.
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Fig. 2. The structural bribing resistance of nodes (value depicted close to each
node) for all the connected graphs with 4 nodes.

3. Discrete-time bribing resistance of nodes

First, we state the assumption required for the framework that
we will detail. The assumption is not limiting, as our framework
can easily be extend to other setups.

Assumption 2. The network is undirected and connected. ⋄

The assumption about connectivity is not a restriction because
he analysis of node bribing resistance in a disconnected network
ay be (trivially) done by analyzing each of its connected subnet-
orks individually. Observe that the assumption about the edges
eing undirected is also not very restrictive, not only because
everal relevant applications use undirected networks, but also
ecause the framework we propose may be easily generalized
or the directed network scenario, as long as the used directed
etwork may reach consensus. The difference would be in the
pdate rule of each agent state x(k)v , and the cost computations
ould follow the same expressions, where the state update is
hanged according to the utilized consensus algorithm.
To measure the influence a node has in a network G = (V, E),

e consider the discrete-time average consensus algorithm that,
or k ∈ N, using the Metropolis weights [30]:{
x(0)u = x0u
x(k+1)
u =

∑
v∈Nu

Wuvx(k)v ,
where

uv =

⎧⎨⎩
(1 + max{|Nu|, |Nv|})−1, if v ∈ Nu and u ̸= v

0, if v /∈ Nu and u ̸= v

1 −
∑

v∈Nu
Wuv, if u = v.

Given a network of nodes G = (V, E), we define the cost of
hanging node v ∈ V state at time k ∈ N to a ∈ R by:
(k)
v (a) = (a − x(k)v )2.

hen, at time k > 0, the state of each agent v ∈ A ⊂ V is
hanged to av , the state of agent u ∈ V , at time k+ 1 is given as:
(k+1)
u =

∑
w∈Nu\A

Wuwx(k)w +

∑
v∈A

Wuvav.

e extend the cost definition to establish the cost of changing
ode v ∈ V to a ∈ R during N ∈ N time steps by:

N
v (a) =

N∑
k=1

c(k)v (a).

nalogously, we extend the aforementioned for the case of chang-
ng the states of a set of nodes, A ⊂ V , as:

N
A(a) =

∑ N∑
c(k)v (a) =

∑ N∑
CN

v (a).

v∈A k=1 v∈A k=1

4

Given a network of nodes G = (V, E) and a set of initial states
{x(0)v }v∈V , we define the bribing resistance of node v, and a set of
nodes A, to be changed to state a, respectively, as

Rv(a) = lim
N→∞

CN
v (a) and RA(a) = lim

N→∞

CN
A(a).

We observe that the quadratic cost function that we propose
not only allows an easier exposition but also can model scenarios
such as a multi-agent system that corresponds to moving agents,
where a malicious entity exerts a force in an agent to drive the
agent to a certain position. In this case, the cost of doing so is
related to the kinetic energy the entity needs to apply, a quadratic
function. Next, we show that its value converges.

Proposition 1. Given a connected network G = (V, E), with |V| > 1
and a set of initial values {x(0)u }u∈V , then the bribing resistance CN

A(a)
converges, i.e, RA(a) is finite.

Proof. The difference between two iterations is⏐⏐RN+1
A (a) − RN

A(a)
⏐⏐ =

⏐⏐⏐⏐⏐∑
v∈A

(
N+1∑
k=1

c(k)v (a) −

N∑
k=1

c(k)v (a)

)⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐∑
v∈A

c(N+1)
v (a)

⏐⏐⏐⏐⏐ =

∑
v∈A

⏐⏐a − x(N+1)
v

⏐⏐ .
So, we need to show that, for each v ∈ A, x(N+1)

v converges.

|x(N+1)
v − x(N)

v | =

∑
w∈Nv\A

|x(N)
w − x(N−1)

w |

1 + max{|Nv|, |Nw|}

≤ λα|x(N)
α − x(N−1)

α |,

(2)

where λα|x(N)
α − x(N−1)

α | = max
w∈Nv\A

|x(N)
w − x(N−1)

w |

1 + max{|Nv|, |Nw|}
. Since

|Nv|, |Nα| > 0 for any u ∈ V , it follows that λα = (1+max{|Nv|,

|Nα|})−1
≤

1
2

< 1. Hence, the method is a contractive map and

x(N)
v converges when N → ∞, and RN

A(a) also converges. □

Next, we compute the convergence rate of the method.

roposition 2. Given a connected network G = (V, E) and a set of
nitial values {x(0)u }u∈V , the bribing resistance CN

A(a) converges with
xponential rate η =

1
2 .

roof. Using (2), it readily follows that

|x(N+1)
v − x(N)

v | ≤ λα|x(N)
α − x(N−1)

α | ≤
1
2
|x(N)

α − x(N−1)
α |

≤ · · · ≤ (1/2)N |x(1)α − x(0)α |.

The method converges with exponential rate η = 1/2. □

If we want to obtain an approximation up to a certain pre-
cision, we need to run the given method the number of steps
provided in the following result.

Corollary 1. Consider a connected network G = (V, E) and a set
of initial values {x(0)u }u∈V , to obtain an ε-approximation, ε > 0, of
RA(a), we need to compute CK

A(a), where K = logηε and η is given
by Proposition 2.

Proof. Since by Proposition 2 we have that |CK+1
A (a) − CK

A(a)| ≤

ηK
|x(1)α − x(0)α |. Hence, the smallest K that ensures ηK

|x(1)α − x(0)α | ≤

ε is

K = log(1/2)

(
ε

/⏐⏐x(1)α − x(0)α

⏐⏐) . □
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.1. Discrete-time structural bribing resistance of nodes

Next, we develop a measure of bribing resistance based only
n the structure of the network, i.e., that does not depend on
uantities such as states of nodes of the network [31,32].
To evaluate the structural bribing resistance to changes of a

node or a set of nodes in the network G = (V, E), we set x0v = 0 for
all v ∈ V and, we set a = 1 for the set of nodes we are evaluating.
Thus, we have that the cost of changing a node v ∈ V state at time
k ∈ N is c(k)v = (1− x(k)v )2, and the cost of changing a node v ∈ V ,
nd set of nodes A ⊂ V , for N time steps is, respectively

CN
v =

N∑
k=1

c(k)v , and CN
A =

∑
v∈A

N∑
k=1

CN
v .

Given a network of nodes G = (V, E), we define the structural
ribing resistance or importance of node v, and of a set of nodes
⊂ V , respectively as

¯
v = lim

N→∞

CN
v and R̄A = lim

N→∞

CN
A. (3)

In this case, we have the following result.

orollary 2. Given a network of nodes G = (V, E), the structural
ribing resistance of a set of nodesA, R̄A, converges with exponential
ate η, given in Proposition 2, to R̄A =

∑
v∈A Rv.

Utilizing the previous definitions, we establish a network G =

V, E) bribing resistance as the average:

¯G = RV
/
|V|.

. Continuous-time bribing resistance of nodes

Depending on the application that we envision to use a net-
ork, it may also make sense to study a continuous-time version
f the proposed bribing resistance notions. Therefore, alterna-
ively, we may define the previous measures of bribing resistance
or the continuous-time average consensus. Here, for a network
= (V, E), we use as average consensus:

˙
(t)

= −Lx(t),

where x(t) = (x(t)1 , . . . , x(t)n ) and x(0)1 , . . . , x(0)n ∈ R.
For a network of nodes G = (V, E), we define the cost of

changing node v ∈ V state at time t ∈ R to a ∈ R by:

c(t)v (a) = (a − x(t)v )2.

In this case, whenever the state of each agent v ∈ A ⊂ V with
|A| = k is constantly changed to av , the states of the agents are
given by:

ẋ(t) = −Lx(t) + Bu(t),

where B ∈ Rn×k, u(t)
∈ Rk, and Bij =

{
1, if j ∈ Ni

0, otherwise,
and

u(t)
v = av − x(t)v . Therefore, we have that c(t)v (a) =

(
u(t)

v

)2. Now,
we may simply extend the cost definition to establish the cost of
changing node v ∈ V , and a set of nodes A ⊂ V , to a ∈ R+ until
time τ ∈ R to be respectively:

Cτ
v (a) =

∫ τ

0

(
u(t)

v

)2
dt and Cτ

A(a) =

∑
v∈A

∫ τ

0

(
u(t)

v

)2
dt.

Given a network of nodes G = (V, E) and a set of initial states
{x(0)v }v∈V , we define the bribing resistance of node v to be changed
to state a as

Rv(a) = lim Cτ
v (a) =

∫
∞ (

u(t)
v

)2
dt.
τ→∞ 0

5

Fig. 3. The structural bribing resistance of nodes (value depicted above each
node) for all the connected graphs with 4 nodes.

Similarly, we extend the notion to a set of nodes A ⊂ V to be
hanged to state a defined as:

RA(a) = lim
τ→∞

Cτ
A(a) =

∑
v∈A

∫
∞

0

(
u(t)

v

)2
dt. (4)

.1. Continuous-time structural bribing resistance of nodes

Here, as we did in Section 3.1, we propose a measure of bribing
esistance that uses the continuous-time average consensus and
hat is based only on the structure of the network. Given a
etwork, this measure corresponds to set a = 1 and x(0)v = 0
or v ∈ V . Thus, the cost of changing node v ∈ V at time t ∈ R+

s c(t)v = (1− x(t)v )2. When the state of each agent v ∈ A ⊂ V with
A| = k is constantly changed to 1, the states of the agents are
iven by:

˙
(t)

= −Lx(t) + Bu(t),

here B ∈ Rn×k, u(t)
∈ Rk, and Bij =

{
1, if j ∈ A
0, otherwise,

and

(t)
v = 1−x(t)v . Since c(t)v =

(
u(t)

v

)2, the cost of changing node v ∈ V ,
nd a set of nodes A ⊂ V , to 1 until time τ ∈ R is, respectively:

τ
v (a) =

∫ τ

0

(
u(t)

v

)2
dt and Cτ

A =

∑
v∈A

∫ τ

0

(
u(t)

v

)2
dt.

For G = (V, E) and a set of initial states {x(0)v }v∈V , we define
he structural bribing resistance of node v as

v = lim
τ→∞

Cτ
v (a) =

∫
∞

0

(
u(t)

v

)2
dt.

ikewise, we extend the previous definition to the structural
ribing resistance of a set of nodes A as

A = lim
τ→∞

Cτ
A =

∑∫
∞ (

u(t)
v

)2
dt.
v∈A 0
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Fig. 4. Normalized bribing resistance of groups/clusters of nodes. The groups/clusters of nodes consist of circumscribed nodes with the same color. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
5. Illustrative examples

To illustrate the bribing resistance measure based only on the
tructure of the network, we consider all possible networks with
nodes and, for each node, we present the value of its structural
esistance above the node in Fig. 3.

Next, in Table 1, we illustrate the measures of network bribing
esistance we propose and compare them with the measures
roposed in [29] and [20].
Notice that the proposed methods evaluate network bribing

esistance in a different light than the techniques in the literature.
or example, when we look at the first three networks of Table 1,
he more resilient network depends on the utilized measure. In
he context of network controllability or consensus networks, the
easures that we introduce find a direct application and have a
ore intuitive meaning.
Observation. In Table 1, we can see that for networks with four

nodes (the first three rows of the table), the measure RG [29] yields
hat the more resilient networks are the first and the third ones.
or the R′

G [20] measure, we obtain that the more resilient network
is the complete network (second row). Intuitively, the measure tells
that the complete network can continue to work if we corrupt one
node because every other node is connected. The last two columns
are the measures that we propose here. In this case, we are intuitively
measuring how easy it is on average to corrupt all the network by
changing (bribing) only one node. Notice that, with R̄c

G , the network
ith smaller bribing resistance is the complete network because if
e corrupt one node, it passes information directly to every other
ode.
6

Table 1
Network resilience and bribing resistance of graphs using different metrics. For
the two first measures, RG [29] and R′

G [20], small values mean more resilient,
whereas for the two proposed in this paper, R̄G and R̄c

G , large values mean
more resilient.
Network RG R′

G R̄G R̄c
G

2 10 1.663 1.235

4 3 2.286 1.125

2 9 1.565 2.484

2.25 64 2.089 12.359

2.25 64 2.091 11.733

3.667 19.8 2.710 3.040

3.667 21 2.712 4.173
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Fig. 5. Adding the edge (4, 5) is optimal for R′

G (smaller means more resistant)
and also optimal for R̄G (larger means a larger bribing cost and, thus, more
resilient).

Fig. 6. Adding the edge (2, 6) is optimal for R′

G (smaller means more resistant)
and adding the edge (4, 6) is optimal for R̄G (larger means a larger bribing cost
nd, thus, more resilient).

luster bribing resistance. In the following examples, we illustrate
the proposed structural bribing resistance measure applied to
groups/clusters of users. Our measure of bribing resistance cap-
tures the notion of a group of nodes relevance quantitatively in a
etwork, which may be used in several applications to access the
mportance of clusters of nodes, such as in applications related to
ocial networks. The bribing resistance of groups of nodes may be
omputed using discrete-time or continuous-time, respectively
ith (3) or (4). In this case, we utilized the discrete-time case,
ee Fig. 4. We normalized the bribing resistance values to be in
he interval [0, 1].

mproving graph bribing resistance by edge addition. Next, we
llustrate how our framework may be used to increase graph
ribing resistance by adding edges to a graph. Three examples
re shown in Figs. 5–7, where we seek to achieve the optimal
election of one edge to increase network bribing resistance.
7

5.1. Limitations of the proposed framework

Although the proposed framework sheds light on a differ-
ent perspective of evaluating network and nodes robustness/
resilience, this view comes with a computational cost that can
be larger than other approaches.

The computational complexity of the proposed framework
may become unfeasible as the size of the networks increases, as it
involves computing the cost of bribing each possible node in the
network and/or subsets of nodes. For example, for Fig. 4(c) that
has 200 nodes, it took 98 seconds to evaluate the resilience of
the three groups of nodes. This contrasts with the computational
complexity of approaches that solely consist of computing an
expression using the eigenvalues of the matrix that represents the
network.

6. Conclusions

In this paper, we developed a framework to evaluate the
resistance of nodes in a network to attacks via average con-
sensus algorithms. Utilizing the previous measure, we extended
it to compute the resistance of a set of nodes or the entire
network. It can be applied to the scenario where it is used an
average consensus algorithm or in a general setting, where we
do not know the values that nodes may share. We further utilized
the proposed method to increase network bribing resistance via
edges addition. Finally, we showed some examples of networks
with groups/clusters of users, where the proposed framework
may be used to assess each cluster bribing resistance.

Future work includes generalizing the proposed bribing analy-
sis framework to other types of consensus, for instance using the
method in [33,34].
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Fig. 7. Adding the edge (5, 7) is optimal for R′

G (smaller means more resistant) and also optimal for R̄G (larger means a larger bribing cost and, thus, more resilient).
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