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a b s t r a c t

This paper addresses the problem of estimating the attitude of a robotic platform using biased
measurements of: (i) the direction of the gravitational field and (ii) angular velocity obtained from
a set of high-grade gyroscopes sensitive to the Earth’s rotation. A cascade solution is proposed that
features a Kalman filter (KF) tied to a rotation matrix observer built on the special orthogonal
group of order 3. The KF, whose model stems from a uniformly observable linear time-varying
system, yields estimates of: (i) the Earth’s total rotational rate; (ii) two sensor biases associated with
the aforementioned measurements; and, (iii) noise-filtered and bias-corrected accelerometer data.
All estimates are expressed in the platform’s body-fixed frame. In turn, the attitude observer put
forward is shown to be almost globally asymptotically stable, in particular locally input-to-state stable
with respect to the KF errors. Experimental results are showcased that successfully demonstrate the
efficiency of the proposed attitude estimation solution.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

At its core, the problem of dynamic attitude estimation aims
o describe the rotational motion of a rigid body with respect to
given frame of reference. Inspiring the continuous development
f attitude estimation solutions is not only a pursuit of computa-
ionally lighter algorithmic implementations, but also a recurrent
eed to overcome well-known topological obstructions (Grip,
ossen, Johansen, & Saberi, 2015), the intrinsic limitations of low-
ost strap-down sensors (Guerrero-Castellanos, Madrigal-Sastre,
urand, Torres, & Muñoz-Hernández, 2013; Martin & Salaun,
007), and/or a need to deal with circumstances where particular
ensors are deemed unreliable, for instance, the global position-
ng system (GPS) in underwater domains, or magnetometers in
nvironments with strong magnetic signatures.
Aware of these pitfalls, the scientific community, in a par-

icular attempt to simplify setup designs, has been actively ex-
loring solutions that resort to single vector observations, see,
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e.g., Lee, Leok, McClamroch, and Sanyal (2007), Batista, Silvestre,
and Oliveira (2012a), Vinod, Mahindrakar, Bandyopadhyay, and
Muralidharan (2015), and references therein. Moreover, to be able
to simultaneously determine sensor biases, especially concerning
gyroscopes, is crucial in order to avoid accumulation of errors,
which, if unattended, may compromise feasibility. Among the
extensive literature on this latter subject, the reader is referred
to, e.g., Batista, Silvestre, and Oliveira (2012b) and Grip, Fossen,
Johansen, and Saberi (2012).

Gradually, the advent of high-grade sensors, such as fiber
optic gyroscopes (FOGs) (Titterton & Weston, 2004), opened the
door for a new class of attitude observers focused on appli-
cations where high accuracy is a key demand, for instance, in
the determination of true north for gyro-compass-based applica-
tions, see Albrecht and Petereit (2017), Spielvogel and Whitcomb
(2020), and references therein.

This work, by assuming that the gyroscopes are sensitive
to the rotation of the planet, proposes a strategy for attitude
determination of robotic platforms with simultaneous estima-
tion of the Earth’s angular velocity and sensor offsets. Alter-
natively to more conventional approaches, which make use of
the celebrated nonlinear complimentary filter, as seen in Allotta,
Costanzi, Fanelli, Monni, and Ridolfi (2015) and Mahony, Hamel,
and Pflimlin (2008), this paper introduces a cascade routine that
features a Kalman filter (KF) whose estimates are fed to a rotation
matrix observer built on the special orthogonal group of order
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hree. Resorting to single observations of the direction of the
ravitational field, and to implicit knowledge of the Earth’s spin
bout its own axis, the KF is able to estimate two sensor biases
nd the Earth’s total angular velocity, in addition to filter out
oise from accelerometer data. The Kalman stage is followed then
y a rotation matrix observer that is shown to be almost globally
symptotically stable (AGAS), in particular locally input-to-state
table (LISS) with respect to the errors of the KF, which converge
symptotically to zero.
Previous works by the authors, see Batista, Silvestre, and

liveira (2019a, 2019b) and Reis, Batista, Oliveira, and Silvestre
2019a, 2019b, 2020), have been tackling, from different view-
oints, the problem of true-north attitude determination, al-
hough without considering biases over the measurements, which
s a considerably less challenging setting from a theoretical per-
pective. In particular, the works in Reis et al. (2019a, 2019b)
ropose a strategy where the angular velocity of the planet is
nly implicitly estimated, which greatly simplifies the structure
f the observers, although at the expense of convergence times
nd stability guarantees. The techniques in Batista et al. (2019a)
nd Batista et al. (2019b) showcase two cascade solutions where
he angular velocity of the planet is explicitly estimated; global
tability is guaranteed if topological relaxations are considered.
ore recently, in Reis et al. (2020), a discrete-time version of the
roblem is studied that illustrates the benefits of a Kalman based
mplementation; the adaptive nature of the Kalman gain helps
o circumvent an otherwise cumbersome, empirical gain tuning
rocess, often leaning on sets of piecewise constant gains.
It should be stressed that whereas the vast majority of attitude

stimation solutions available in the literature require explicit
easurements of at least two inertial reference vectors, in this
aper, as well as in the work of Spielvogel et al. Spielvogel and
hitcomb (2020), only one inertial reference vector needs to
e explicitly measured. Furthermore, the sole reference vector is
ssumed to be constant, therefore bypassing the need to require
he system to satisfy a persistency of excitation condition.

In this paper, the source of reference observations is restricted
o the accelerometer case, with the relationship between the
irection of the gravitational field and the Earth’s angular ve-
ocity being geometrically exploited for the purpose of system
esign simplifications. As opposed to the work in Spielvogel and
hitcomb (2020), which examines this same relationship, herein
transition matrix is computed that offers a better insight into

he set of trajectories that undermine the observability of the
ystem. Moreover, the overall performance, validated with both
imulation and experimental results, is much faster than the one
hown in Spielvogel and Whitcomb (2020).
The rest of the paper is organized as follows: in Section 2,

n overview of the problem statement is sketched followed by
he design of a linear time-varying (LTV) system and ensuing KF
pplication. The observability of this LTV system is also analyzed.
ection 3 is dedicated to the main result of the paper, where a
roposed attitude observer is shown to be LISS with respect to
he errors of the KF. Section 4 showcases a set of experimental
esults that demonstrate the efficiency of the proposed attitude
stimation solution. Finally, Section 5 elaborates upon a few
onclusions and discussions.

.1. Notation

Throughout the paper, a bold symbol stands for a multidimen-
ional variable, the symbol 0 denotes a matrix of zeros and I an
identity matrix, both of appropriate dimensions. The exponential
of a matrix is denoted by exp(·). A positive definite matrix M is
denoted by M ≻ 0. The set of unit vectors on R3 is denoted by
S(2). The special orthogonal group of order three is denoted by
 t

2

SO(3) := {X ∈ R3×3
: XXT

= XTX = I ∧ det(X) = 1}. The
skew-symmetric matrix of a vector a ∈ R3 is defined as S(a),
such that given another vector b ∈ R3 one has (the cross-product)
a × b = S(a)b. Orthogonality between vectors is represented by
the symbol ⊥. Finally, for convenience, the transpose operator is
denoted by the following superscript (·)T, and the trace function
by tr(·).

2. Earth velocity and bias estimation

2.1. Problem statement

Consider a robotic platform describing a 3D rotational motion
in a dynamic environment. Suppose that the platform is equipped
with a set of three high-grade, orthogonally mounted rate gyros
that are accurate enough to perceive the angular velocity of the
planet. In addition, let the platform also be equipped with a set
of tri-axial accelerometers. Consider also two frames, one inertial
and another fixed to the platform’s body. As convincingly argued
in Mahony et al. (2008), for low frequency response, the gravita-
tional field often dominates the body acceleration, meaning that
one can assume the accelerometer measurements are constant
when expressed in the inertial coordinate frame.

The key goal is thus to determine the rotation matrix from
the body frame to the inertial one using biased angular velocity
readings from the high-grade FOGs, which implicitly measure the
speed of Earth’s spin, in addition to biased body-fixed measure-
ments of the gravitational field. As a by-product, the two offsets
associated with the measurements, as well as the Earth’s rotation
rate expressed in {B}, are explicitly estimated.

2.2. Linear time-varying system design

Let R(t) ∈ SO(3) denote the rotation from a body-fixed frame
{B} to a local inertial coordinate reference frame {I}.1 In this work,
both frames follow the North East Down (NED) coordinate frame
convention, with the origin of {B} located at the body’s center of
gravity.

The derivative of R(t) with respect to time obeys

Ṙ(t) = R(t)S[ω(t)], (1)

where ω(t) ∈ R3 is the angular velocity of {B} with respect
to {I}, expressed in {B}. The measurements collected from the
high-grade FOGs, denoted by ωm(t) ∈ R3, are given by

ωm(t) = ω(t) + ωE(t) + bω + nω(t), (2)

where ωE(t) ∈ R3 is the angular velocity of the Earth about its
own axis, expressed in {B}, bω ∈ R3 is a constant bias offset, and
nω(t) ∈ R3 corresponds to zero-mean sensor noise, assumed to
be additive, white and Gaussian in nature. Let the accelerometer
data be denoted by am(t) ∈ R3, which correspond to noisy and
biased sensor readings of the platform’s true linear acceleration
a(t) ∈ R3, i.e.,

am(t) = a(t) + ba + na(t), (3)

where ba ∈ R3 is a constant bias offset that characterizes the
tri-axial accelerometer, and na(t) ∈ R3 is assumed to be modeled
from an additive, zero-mean, white Gaussian noise distribution.
As it is the case with most robotic applications, for low fre-
quency response, the gravitational field, herein denoted by g(t) ∈

R3, often dominates the linear acceleration described by the

1 This frame, which rotates along with the Earth’s spin, is not exactly inertial,
ut considered as such for this application because the apparent forces due to
he Earth’s movement are within the accelerometer’s error.
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obotic apparatus (Mahony et al., 2008). Therefore, consider the
pproximation

(t) ≈ g(t). (4)

Furthermore, let IωE,
Ig ∈ R3 be such that, for all t ≥ 0,{

ωE(t) = RT(t)IωE (a)
g(t) = RT(t)Ig. (b)

(5)

For ease of notation, and because most equations are de-
veloped in {B}, leading superscripts of body-fixed vectors are
dropped. Thus, whenever a vector is presented without a leading
superscript, that vector is implicitly expressed in {B}, e.g., ωE ≡

ωE . Notice that IωE and Ig are both known quantities.
The following assumptions are considered throughout the re-

ainder of the paper.

ssumption 1. The constant inertial reference vectors IωE and
g are not collinear, i.e., IωE ×

Ig ̸= 0.

ssumption 2. The accelerometer bias is such that ∥ba∥ ≪

g(t)∥ = ∥
Ig∥ = g , with g ∈ R referring to the acceleration of

ravity.

The first assumption concerns stability and is fundamental in
he main result of this work. It ensures that unequivocal infor-
ation on directionality can be extracted from both reference
ectors as long as they define a plane. The second assumption
s always verified in practice: the accelerometer bias is several
rders of magnitude smaller than the acceleration of gravity. As
esult, the measured acceleration is never zero.

At any given latitude ϕ ∈ R, the vectorial representation of
he Earth’s angular velocity in the NED inertial frame is given
y IωE = ∥

IωE∥[cos(ϕ), 0, − sin(ϕ)]T. Granted that this inertial
ector does not span the East direction, proceed to write ωE(t)
s the sum of a North and a Down component, i.e., ωE(t) =

E,N (t) + ωE,D(t), where{
ωE,N (t) := RT(t)

[
∥
IωE∥ cos(ϕ), 0, 0

]T (a)
ωE,D(t) := RT(t)

[
0, 0, − ∥

IωE∥ sin(ϕ)
]T
. (b)

(6)

bserve that the norm of both vectors is constant, and, most
oticeably, that the inner product ωT

E,N (t)ωE,D(t) is zero. Similarly,
t is a fact that Ig lies solely along the Down axis of the NED
nertial frame. This, in turn, allows us to write (6)(b) as

E,D(t) = αg(t) = α (am(t) − ba) , (7)

ith constant α := −∥ωE,D∥/g < 0.
Next, take the derivative of (5)(b), and rewrite the result as

= Ṙ(t) (am(t) − ba)+ R(t)ġ(t). (8)

or the following derivation, assume noise-free FOG data.2 Sub-
tituting (2) in (1) and using it in (8), noticing that the cross
roduct of parallel vectors is zero, and, finally, isolating the term

˙(t) yields

˙(t) = −S
[
ωm(t) − ωE,N (t) − bω

]
(am(t) − ba) . (9)

ollowing through a similar process, compute the derivative
f (6)(a), which, in view of Eq. (7), may be rewritten as

˙ E,N (t) = −S [ωm(t) − α (am(t) − ba)− bω]ωE,N (t). (10)

2 Note that this is not an approximation. The evolution in time of a physical
uantity describes a property of the system, which can be measured but is
ndependent of sensors.
 1

3

To be able to design an LTV system, a few approximations
must now be carried out. Start by rewriting (9) as

ġ(t) = − S [ωm(t)] (am(t) − ba)

+ S
[
ωE,N (t) + bω

]
(am(t) − ba) ,

(11)

nd notice that the term ωE,N (t)+bω is always very small.3 Conse-
uently, since, according to Assumption 2, ∥ba∥ ≪ ∥am(t)∥, one
ay assume that S

[
ωE,N (t) + bω

]
ba ≈ 0. Likewise, in Eq. (10),

since the magnitude of bω is typically within the noise associ-
ated with the measurements ωm(t), and by invoking once again
Assumption 2, one may also assume that S [αba − bω]ωE,N (t) ≈

0. In other words, these mild assumptions state, as also discussed
in Spielvogel and Whitcomb (2020), that, in practice, the cross
products between sensor biases, and between each bias and
the North component of the Earth’s angular velocity are orders
of magnitude smaller than the magnitude of the other vectors.
Hence, Eqs. (10) and (11) can be simplified as

ġ(t) ≈ −S
[
ωm(t) − ωE,N (t) − bω

]
am(t) + S [ωm(t)] ba (12)

and

ω̇E,N (t) ≈ −S [ωm(t) − αam(t)]ωE,N (t), (13)

respectively. Finally, the inner product of (7) and ωE,N (t) helps
writing a constraint which will be convenient for the KF imple-
mentation. Specifically, one has

0 = ωT
E,N (t) (am(t) − ba) ≈ ωT

E,N (t)am(t). (14)

It is important to stress that, as long as Assumption 2 holds, and
because the Earth’s rotational speed is a very small, immutable
value, the simplifications carried out in (12), (13), and (14) pose
no practical limitations.

Let x(t) := [gT(t), ωT
E,N (t), bT

a, bT
ω]

T
∈ R12 denote a system

state vector. In the absence of sensor noise, a general LTV system
can be formulated as{
ẋ(t) = A(t)x(t) + B(t)u(t)
y(t) = C(t)x(t)

, (15)

where A(t) =

⎡⎢⎣ 0 0
S [am(t)] S [ωm(t)−αam(t)]

−S [ωm(t)] 0
S [am(t)] 0

0
⎤⎥⎦

T

∈ R12×12,

(t) = [S[ωm(t)], 0]T ∈ R12×3, u(t) ≡ am(t), y(t) = [aT
m(t), 0]T ∈

4, and, finally, C(t) =

[
I 0 I 0
0 aT

m(t) 0 0

]
∈ R4×12. Notice that

he zero element of y(t) corresponds to a virtual null measure-
ent, which, as seen from (14), acts as a constraint on the LTV
ystem (15).

.3. Kalman filter implementation

Let the comprehensive system state estimate be denoted as
ˆ(t) := [ĝT(t), ω̂T

E,N (t), b̂T
a(t), b̂T

ω(t)]
T

∈ R12. A classic KF for the
TV system (15) is thus given by⎧⎪⎪⎨⎪⎪⎩
˙̂x(t) = A(t)x̂(t) + K(t)

(
y(t) − C(t)x̂(t)

)
(a)

K(t) = P(t)CT(t)R−1 (b)
Ṗ(t) = −P(t)CT(t)R−1C(t)P(t)+

+A(t)P(t) + P(t)AT(t) + Q, (c)

(16)

here Q ∈ R12×12, Q ≻ 0, and R ∈ R4×4, R ≻ 0, are the covari-
nce matrices of the process and observation noises, respectively.

3 All recent commercially available FOGs, designed specifically for fast and
ccurate navigation purposes, guarantee levels of bias instability below 1 (deg/h).
herefore, even in the worst case scenario, it would follow that ∥ωE,N (t)+bω∥ ⪅
0−4 (rad/s) for all t ≥ 0.
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ach of these two matrices, herein assumed constants, depicts a
ifferent additive white Gaussian noise distribution, and can be
een as tuning knobs. Note that, in the presence of sensor noise,
he premises on which the KF is built are no longer rigorous, since
atrices A(t), B(t), and C(t) become sources of multiplicative

noise, therefore overruling claims of optimality. This trait, in
addition to the approximations conducive to Eqs. (12) and (13),
better characterize the KF (16) as sub-optimal. Handling cross-
correlated sensor noises is out of the scope of this work, but
the interested reader can find results on this topic, for instance,
in Kailath, Sayed, and Hassibi (2000, Section 9.5) and in Chang
(2014), among several others.

At last, using the output of the KF (16), i.e., x̂(t), allows us to
reconstruct an estimate of the Earth’s total angular velocity as
ω̂E(t) = ω̂E,N (t) + αĝ(t).

2.4. Observability analysis

The observability of the problem of attitude estimation with
biased measurements is studied in this section.

It is well-known that a KF can be designed to be asymptotically
stable if certain observability criteria are met (Anderson, 1971). In
particular for the LTV system (15), globally exponentially stable
error dynamics can be attained.

The following theorem reports an observability condition
which, if verified, renders the LTV system (15) observable. This
condition is shown to be simultaneously necessary and sufficient.

Theorem 3. The LTV system (15) is observable on T := [t0, tf ] if
and only if

∃ t1∈T
c1,c2∈R\{0}

c1am(t0) × am(t1) + c2ωm(t0) × ωm(t1) ̸= 0. (17)

and if, for some constant vector v ∈ R3, v ⊥ am(t0),

∃t1∈T vT exp
(
S
[∫ t1

t0

ωm(σ )−αam(σ )dσ
])

am(t1) ̸= 0. (18)

roof. The transition matrix associated with matrix A(t) is given
y (19) in Box I, where Rψ(t) ∈ SO(3) is such that

˙
ψ(t) = Rψ(t)S [ωm(t) − αam(t)] , Rψ(t0) = I. (20)

ince, by construction, φ(t0, t0) = I, it is straightforward to
erify (19) by recalling the transition matrix property ∂φ(t,t0)

∂t =

(t)φ(t, t0). The observability of the LTV system (15) is charac-
terized by the observability Gramian associated with the pair
(A(t), C(t)), which can be expressed as

(t0, t) =

∫ t

t0

φT(τ , t0)CT(τ )C(τ )φ(τ , t0)dτ ∈ R12×12. (21)

onsider now a constant unit vector d =
[
dT
1, dT

2, dT
3, dT

4

]T
∈

R12, with d1, d2, d3, d4 ∈ R3, and further notice that dTW(t0, t)d

=
∫ t
t0

∥f(τ , t0)∥2 dτ , where f(τ , t0) =

[
f1(τ , t0)
f2(τ , t0)

]
∈ R4, with

f1(τ , t0) := d1 −
∫ τ
t0
S [am(σ )]RT

ψ(σ )dσd2 +

(∫ τ
t0
S [ωm(σ )] dσ + I

)
d3 −

∫ τ
t0
S [am(σ )] dσd4 ∈ R3, and

f2(τ , t0) := dT
2Rψ(τ )am(τ ) ∈ R. (22)

By computing the first two derivatives of f(τ , t0) with respect to
τ , we conclude that both are norm-bounded from above on T as
all quantities involved are norm bounded as well.

To show that (17) is necessary, start by supposing that it is not
verified, which means ∀ t1∈T

c1,c2∈R\{0}
c1am(t0) × am(t1) + c2ωm(t0) ×

ω (t ) = 0. Then, let d = 0, d = −d ̸= 0, with d = c ω (t ),
m 1 2 1 3 3 2 m 0

4

and d4 = −c1am(t0), for some c1, c2 ∈ R\{0}, such that ∥d∥ = 1.
As result, it follows that f(τ , t0) = 0. Note that if ωm(t0) = 0,
in which case it must be c1 = 1/∥am(t0)∥, the last result still
olds. This allows us to conclude that the observability Gramian
21) is singular, therefore the LTV system (15) is not observable.
y contraposition, if the LTV system (15) is observable, then the
bservability condition (17) must be true.
To show that both observability conditions (17) and (18) are

ufficient, notice first that, for some τ ∈ T , if f2(τ , t0) ̸= 0,
hen it follows, using Batista, Silvestre, and Oliveira (2011, Propo-
ition 4.2), that dTW(t0, t)d > 0. Likewise, for some τ ∈ T ,
if d

dτ f2(τ , t0) ̸= 0, then it follows, using Batista et al. (2011,
roposition 4.2) twice, that dTW(t0, t)d > 0. Otherwise, according
o (22), if f2(τ , t0) = 0 for all τ ∈ T , this means that either
he vector Rψ(τ )am(τ ) is always orthogonal to d2, or d2 = 0.
n particular, since Rψ(t0) = I, one has d2 ⊥ am(t0). Since the
olution of (20) is given by

ψ(t) = exp
(
S
[∫ t

t0

ωm(σ )−αam(σ )dσ
])

, t ≥ t0, (23)

ubstituting (23) in (22) allows us to conclude that it must be

T
2exp

(
S
[∫ τ

t0

ωm(σ )−αam(σ )dσ
])

am(τ ) = 0 (24)

or all τ ∈ T . But, according to (18), there exists an instant τ = t1
hen, given v = d2, the zero identity in (24) cannot hold. Hence,

or f2(τ , t0) = 0 to hold for all τ ∈ T it must be d2 = 0. Evaluate
ow ∥f(τ , t0)∥ at τ = t0, which results in

f(t0, t0)∥ =

[
d1 + d3

0

] , (25)

nd suppose that d3 ̸= 0. Then, if d1 ̸= −d3, it follows from (25)
hat ∥f(t0, t0)∥ > 0 and, from Batista et al. (2011, Proposition 4.2),
t must be dTW(t0, t)d > 0. Consider the case when d1 = −d3,
ith d3 ̸= 0 and d4 ̸= 0 as well. In this case, ∥f(t0, t0)∥ = 0 and

d
dτ f(τ , t0) =

[
S [am(τ )] d4 − S [ωm(τ )] d3

0

]
. If d

dτ f(τ , t0) ̸= 0, then,

sing Batista et al. (2011, Proposition 4.2) twice, it follows that
dTW(t0, t)d > 0. Otherwise, if d

dτ f(τ , t0) = 0, then the following
must hold:

S [am(τ )] d4 − S [ωm(τ )] d3 = 0. (26)

he identity in (26) establishes that the four vector entities, am(τ ),
4, ωm(τ ) and d3, must be coplanar for all τ ∈ T . However,
ccording to the first observability condition (17), that geometric
elationship cannot be verified for all τ ∈ T , which means it must
e simultaneously d3 = d4 = 0 in order for (26) to hold. But,
ince d1 = −d3, this would in turn imply that d = 0, which
ontradicts the claim that d is a unit vector. Therefore, it has been
hown that dTW(t0, t)d > 0 for all ∥d∥ = 1, which means the
bservability Gramian (21) is always positive definite and thus
he LTV system (15) is observable. This concludes the proof. ■

It has just been shown that the LTV system (15) is observable,
ut stronger forms of observability, in particular uniform com-
lete observability, can be attained by considering persistency
f excitation conditions, for instance, by conveniently applying
niform bounds to both (17) and (18). Afterwards, by following
imilar steps as those presented in the proof of Theorem 3, it is
ossible to conclude that the LTV system (15) is also uniformly
ompletely observable, therefore ensuring that, in nominal terms,
he KF (16) offers globally exponentially stable guarantees.
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Fig. 1. Implementation scheme of the attitude estimation cascade.

. Rotation matrix estimation

Consider the following observer for the rotation matrix:

˙̂R(t) = R̂(t)S
[
ωm(t) − b̂ω − R̂T(t)IωE+

+ kωE S
[
ω̂E(t)

]
R̂T(t)IωE + kgS

[
ĝ(t)

]
R̂T(t)Ig

]
,

(27)

here kωE and kg are positive tuning constants, and where R̂(t) ∈

O(3) denotes the estimates of R(t). This observer completes the
ascade structure of the proposed attitude estimation solution,
hich is illustrated in Fig. 1.
Define the error variables

˜ (t) := R(t)R̂T(t) ∈ SO(3), (28)

˜
ω(t) := bω − b̂ω(t), ω̃E(t) := ωE(t) − ω̂E(t) and, finally, g̃(t) :=

g(t) − ĝ(t). The derivative of (28) follows as ˙̃R(t) = Ṙ(t)R̂T(t) +

R(t) ˙̂RT(t), which, by using Eqs. (1) and (2), the nonlinear observer
(27), and the error variables formerly defined, results, after a few
straightforward computations, in

˙̃R(t) = η(t, b̃ω, ω̃E, g̃) − S
[
(I − R̃(t))IωE

]
R̃(t)+

−kωES
[
S
[IωE

]
R̃(t)IωE

]
R̃(t)−kgS

[
S
[Ig] R̃(t)Ig]R̃(t), (29)

with the perturbation function η(·) given by

η(t, b̃ω, ω̃E, g̃) = −S
[
R(t)b̃ω(t)

]
R̃(t)+

+ kωE S
[
S [R(t)ω̃E(t)] R̃(t)IωE

]
R̃(t)+

+ kgS
[
S
[
R(t)g̃(t)

]
R̃(t)Ig

]
R̃(t).

(30)

Next, define the domain D := [0, π ], and consider the Euler
angle-axis representation of the error associated with R̃,

R̃(θ̃ , ṽ) = I + sin(θ̃ (t))S[ṽ(t)] +
[
1 − cos(θ̃ (t))

]
S2

[
ṽ(t)

]
, (31)

where θ̃ (t) ∈ D and ṽ(t) ∈ S(2) form the Euler angle-axis pair, also
known as the exponential coordinates of R̃. In the sequel, consider
5

as well the square of (31), which also consists in a rotation matrix,
and is given by

R̃2(θ̃ , ṽ) = I + sin(2θ̃ (t))S
[
ṽ(t)

]
+ 2 sin2(θ̃ (t))S2[ṽ(t)]. (32)

The following theorem is the main result of this paper.

Theorem 4. Consider the attitude observer (27), the error defini-
tion (28), the FOG readings of angular velocity (2), the accelera-
tion measurements (3), and the estimates of the KF (16). Suppose
Assumptions 1 and 2 are verified, and define the set Ω ⊂ SO(3)
as Ω := {R̃(t), η(t, b̃ω, ω̃E, g̃) = 0 | tr(R̃(t)) = −1}. In
view of R̃(t) expressed in terms of the unit quaternion, cf. (A.1) in
Appendix, define as well the parameterized set Θ(ζ ) := {R̃(s̃, r̃) ∈

SO(3) : s̃ ≥ ζ }. Then: (i) the set Ω is forward invariant and unstable
with respect to the observer dynamics (27); (ii) when considering
η(t, b̃ω, ω̃E, g̃) ≡ 0, the rotation matrix error R̃(t) converges
locally exponentially fast to I, and is AGAS to I; and, (iii) fixing
0 < ζ < 1, the nonlinear error dynamics (29) are LISS with (30) as
input, and, for all initial conditions such that R̃(t0) ∈ Θ(ζ ), R̃(t) → I,
i.e., R̂(t) → R(t).

Proof. Let V : D → R be a positive bounded Lyapunov-like
candidate function given by V (θ̃ ) := 1− cos(θ̃ (t)) =

1
2 tr(I− R̃(t)).

The time derivative of V satisfies V̇ (t) = −
1
2 tr(

˙̃R(t)). Start by
considering the unforced dynamics, i.e., the case when η ≡ 0
holds. Then, by noticing that tr(S[(I−R̃(t))IωE]R̃(t))=0, equation
˙ (t) can be written as

V̇ (t) =
kωE

2
tr(S

[
S
[IωE

]
R̃(t)IωE

]
R̃(t))+

+
kg
2

tr(S
[
S
[Ig] R̃(t)Ig] R̃(t)).

(33)

The property S [S [a] b] = baT
−abT helps rewriting (33) as V̇ (t) =

kωE
2 ∥

IωE∥
2
+

kωE
2 tr(R̃2(t)IωE

IωT
E)−

kg
2 ∥

Ig∥2
+

kg
2 tr(R̃2(t)IgIgT). Re-

placing (32) in the previous expression yields V̇ (t) = − sin2(θ̃ (t))
(kωE

IωE × ṽ(t)
2

+kg
Ig×ṽ(t)

2) ≤ 0. Under Assumption 1, ṽ(t)
cannot be simultaneously collinear with both IωE and Ig, which
means V̇ (t) = 0 is satisfied only on two occasions, when: (1)
θ̃ (t) = π , which, according to (31), corresponds to the condition
tr(R̃(t)) = −1, with R̃(t) = R̃T(t); and, (2) θ̃ (t) = 0, which
means R̃(t) = I. With θ̃ (t) = π , the derivative of tr(R̃(t)) is zero,
which asserts forward invariance of Ω . Accordingly, by applying
LaSalle’s principle to the solutions of (29), one concludes that
R̃(t) converges asymptotically to either I or some rotation matrix
belonging to Ω . In Lemma 5, in Appendix, local exponential
stability of the isolated equilibrium point I is shown through
the linearization of the quaternion dynamics associated with the
unforced error dynamics, i.e., when η ≡ 0 holds, thus proving the
theorem’s statement (ii).

Resorting again to the quaternion formulation, the forward
invariant set Ω associated with the case when η ≡ 0 holds is
described by Ω =

{(
s̃, r̃

)
| s̃ = 0, r̃Tr̃ = 1

}
. Then, from (A.4),

and in view of Assumption 1, it follows that the dynamics of
s̃(t) are unstable for any point s̃ ̸= 0. Therefore, s̃(t) is a
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Fig. 2. Experimental setup for attitude estimation.

trictly increasing function for all t ≥ 0, which means the set
corresponds to an unstable equilibrium point. This proves

he theorem’s statement (i). The third and last statement of
he theorem is proved considering the Lyapunov-like function
(r̃) := 1/2∥r̃(t)∥2. From (A.3), the derivative of this func-

tion is given by V̇ (r̃, t) = −γ (r̃)
(
1 − ∥r̃(t)∥2

)
+

s̃(t)
2 r̃T(t)ω̃η(t).

Since γ (r̃) ≥ ϵ∥r̃(t)∥2 (cf. Hua, 2009, Lemma 11), where ϵ =
kωE kg

kωE ∥IωE∥2+kg∥Ig∥2
IωE ×

Ig
2
> 0, and since, by definition, s̃2(t) =

− ∥r̃(t)∥2 and s̃(t) ≤ 1, it follows that V̇ (r̃, t) ≤ −ϵ∥r̃(t)∥
∥r̃(t)∥s̃2(t) −

1
2ϵ ∥ω̃η(t)∥

)
. Now, fix 0 < θ < 1, such that V̇ (r̃, t) ≤

−ϵ(1−θ )∥r̃(t)∥2s̃2(t)−∥r̃(t)∥
(
θϵ∥r̃(t)∥s̃2(t) −

1
2∥ω̃η(t)∥

)
. This al-

ows us to conclude that V̇ (r̃, t) ≤ −ϵ(1−θ )∥r̃(t)∥2s̃2(t) ∀ ∥r̃(t)∥ ≥

∥ω̃η(t)∥, with constant β fixed as β := 1/(2ϵθζ 2). As result
f V̇ (r̃, t) ≤ 0 for all ∥r̃(t)∥ ≥ β∥ω̃η(t)∥, V (t) is non-increasing
or all ∥r̃(t)∥ ≥ β∥ω̃η(t)∥, which means s̃(t) is non-decreasing
or all ∥r̃(t)∥ ≥ β∥ω̃η(t)∥. Therefore, for all initial conditions
˜ (t0) ∈ Θ(ζ ) and ∥r̃(t)∥ ≥ β∥ω̃η(t)∥, it follows that s̃(t) ≥ ζ

or all t ≥ t0, which implies V̇ (r̃, t) ≤ −ϵ(1 − θ )∥r̃(t)∥2ζ 2 for all
r̃(t)∥ ≥ β∥ω̃η(t)∥ and R̃(t0) ∈ Θ(ζ ). Then, invoking (Khalil, 2000,
heorem 5.2) proves, finally, that the dynamics ˙̃r(t) are LISS with
30) as input. It follows that r̃(t) → 0, or, equivalently, R̃(t) → I,
thus concluding the proof. ■

4. Experimental results

In order to validate the cascade attitude estimation solution,
an experiment was carried out using a tri-axial high-grade FOG
Inertial Measurement Unit (IMU) KVH 1775 mounted on a Ideal
Aerosmith Model 2103HT Three-Axis Positioning and Motion Rate
Table (MRT), which is designed to provide precise position, rate,
and acceleration motion, for instance, for the development and/or
production testing and calibration of IMUs and inertial navigation
systems. The final experimental setup, located at a latitude of
ϕ = 38.777816 (deg), a longitude of ψ = 9.097570 (deg), and
at sea level, is depicted in Fig. 2.

The KVH 1775 provides tri-axial readings of angular velocity
and acceleration. Slow rotational maneuvers are considered to
ensure that the magnitude of the gravitational field is the domi-
nant acceleration term, i.e., to guarantee that the approximation
(4) is valid. At room temperature, this unit’s accelerometer is
characterized by a velocity random walk of 0.12 mg/

√
Hz, as

mentioned in the previous section.
Based on previous work by the authors (Reis, Batista, Oliveira,

& Silvestre, 2019c), a calibration procedure was implemented
 c

6

Table 1
Observer gains used in the experiments.
Time (min) kωE ∥

IωE ∥
2 kg ∥

Ig ∥
2

t < 7.5 0.02 20
7.5 ≤ t < 15 0.005 15
15 ≤ t < 22.5 0.001 5
22.5 ≤ t < 30 7.5 × 10−4 2.5
30 ≤ t < 50 1 × 10−4 2.5
t ≥ 50 1 × 10−5 1

beforehand to determine, for both the high grade rate gyro and
accelerometer included in the KVH 1775, a matrix of constant
scaling factors, a constant bias and a corresponding inertial vector
(with respect to the MRT’s own local NED inertial frame). The
inertial reference vectors, as result of the calibration routine,
were IωE = [−0.9060 − 11.7102 − 9.3959]T (deg/h) and Ig =

0.0170 − 0.0049 9.8006]T (m/s2). In regard to the sensor biases,
a and bω , it was observed during the full calibration of the KVH
775 that these changed between tests. However, the extensive
esults presented in Reis et al. (2019c) still allow for a reliable
ualitative prediction, which shall be used only as reference for
erformance, in particular of the KF (16). More specifically, the
ias calibration data in Reis et al. (2019c) suggests that ba has
and y components around zero and a strong z component

round 0.9 mg. In turn, bω has a strong negative x component
round −0.7 deg/h while its components y and z are close to
ach other and display a mirrored behavior. Naturally, in order
o properly assess the performance of the cascade methodology,
he sensor measurements ωm(t) and am(t), as given by (2) and (3),
espectively, were not bias corrected.

Data acquired from the MRT were sampled at 128 Hz, and later
ppropriately down-sampled to 25 Hz to match the sampling
requency of the KVH 1775.

The MRT was programmed to describe a three-dimensional
otational maneuver lasting approximately one hour.

The KF (16) was tuned as follows: the initial state estimate was
et to x̂(t0) = [aT

m(t0), 0, 0, 0]T; the initial state error covariance
atrix was set to P(t0) = diag(10−2I, 10−6I, 10−3I, 10−6I); and,

inally, the covariance matrices of the process and observation
oises were set to Q = diag(10−6I, 10−13I, 10−16I, 10−16I) and

= diag(10−7I, 10−7), respectively. These values were all ad-
usted empirically for the best performance. In the experiments,
he rotation matrix observers gains were also set in a piece-wise
ashion, as described in Table 1.

The experimental estimation error of ωE,N (t), whose evolution
s shown in Fig. 3, remains most of the time below 1 deg/h,
ith a steady-state accuracy around 0.4 deg/h, as indicated in
able 1. This strongly hints at an efficient and highly accurate
erformance of the KF (16) in real world applications.
The evolutions of b̂a(t) and b̂ω(t) are shown in Figs. 4 and 5,

espectively. Both plots suggest that the biases, despite having
een assumed constant, change slightly over time, which is in line
ith expectations and further demonstrates that the proposed
F is capable of tracking slow variations. This notwithstanding,
he results resemble the qualitative prediction stated before.
ndeed, the z component of b̂a(t) converges to 0.75 mg, whereas
he other two components have smaller magnitude. The KVH
775’s manufacturer specifies a maximum bias offset of ±0.5 mg,
hich means that the overshoot could be not only due to the
ccelerometers performance but also due to the accuracy of the
RT. Regarding the evolution of b̂ω(t), its y and z components
re close to each other and display a mirrored behavior, while
he x component evolves towards a negative value of −1.5 deg/h.
he absence of ground-truth bias information in the experiments

ertainly prevents a more rigorous analysis, but, overall, the
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Fig. 3. Estimation error of ωE,N (t).

Fig. 4. Evolution of b̂a(t).

able 2
xperimental steady-state statistics for 45 min ≤ t ≤ 60 min.
Variable Mean sd. Units

g(t) − ĝ(t) 0.0011167 1.7507 mg
ωE,N (t) − ω̂E,N (t) 0.055817 0.39762 deg/h
∥b̂a(t)∥ 0.86663 0.0076772 mg
∥b̂ω(t)∥ 1.8711 0.1065 deg/h
∥ω̂E (t)∥ 14.922 0.34267 deg/h
θ̃ (t) 0.40751 0.16467 deg

KF (16) seems to provide a coherent estimation of both sensor bi-
ases. What’s more, the next results, which concern the estimation
of the rotation matrix, shall further attest to its goodness.

The initial rotation matrix estimate was such that its corre-
ponding angle deviation was approximately 128 degrees.
The evolution of the angle error, which reaches steady-state

round the same time, approaches a neighborhood of zero, as
hown in Fig. 6. Notice also the quick initial convergence, which
llows for the correction of large angle deviations in under a few
inutes. Furthermore, the mean angle deviation, computed for
5 (min) ≤ t ≤ 60 (min), was 0.40751 degrees, as documented in

Table 2. Once again, this demonstrates the high level of accuracy
that the proposed solution can attain.

5. Conclusions

This paper presented a cascade solution for the problem of
attitude and bias estimation. The first part of the cascade consists
in a KF applied to an LTV system whose state comprises: the
7

Fig. 5. Evolution of b̂ω(t).

Fig. 6. Time evolution of θ̃ (t) for θ̃ (0) = 128 (deg).

vector of gravitational acceleration; two constant sensor bias
offsets; and, the component of the Earth’s angular velocity that
spans the North and East directions of the local inertial NED
frame. The LTV system was shown to be uniformly observable,
which in turn guarantees global exponential stability of the error
dynamics associated with the KF estimates. The second part of
the cascade features a nonlinear attitude observer, built on SO(3),
that is driven by measurements of angular velocity provided by
a set of high-grade FOGs, in addition to the estimates of the KF.
By regarding the rotation error dynamics as a perturbed system
with vanishing perturbation, the nonlinear attitude observer was
shown to be AGAS, as well as LISS with respect to the errors of
the KF. Finally, experimental results validated, and demonstrated
the goodness of the overall technique, deeming it suitable for real
word applications where highly accurate attitude data is a key
demand.
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ppendix. Unit quaternion representation

Let q(t) ∈ Q denote a unit quaternion with real and imaginary
arts denoted by s̃(t) ∈ R and r̃(t) ∈ R3, respectively, with the
roup of unit quaternions defined as

:=

{
q =

[
s̃ r̃T

]T
| qTq = 1

}
. Take the representation of R̃(t)

y means of q(t), which, in view of the angle-axis representation
31), is given by

˜ (t) = I + 2s̃(t)S
[
r̃(t)

]
+ 2S2

[
r̃(t)

]
, (A.1)

here s̃(t) = cos(θ̃ (t)/2) and r̃(t) = ṽ(t) sin(θ̃ (t)/2). Recall
the derivative of R̃(t), as expressed by (29), and write it as
˙̃R(t) = R̃(t)S[ω̃(t)], with ω̃(t) := ω̃η(t) + (I − R̃T(t))IωE −

kωE S[R̃
T(t)IωE]

IωE − kgS[R̃T(t)Ig]Ig, where ω̃η(t) = −R̂(t)b̃ω(t) +

ωE S[R̂(t)ω̃E(t)]IωE + kgS[R̂(t)g̃(t)]Ig. Straightforward algebraic
anipulations allow us to show that the dynamics of q(t) are
iven, in vector form, by

˙̃s(t) = −
1
2
r̃T(t)ω̃(t)

˙̃r(t) =
1
2

(
s̃(t)I + S

[
r̃(t)

])
ω̃(t)

. (A.2)

Notice that, from (A.1), one can write S[R̃T(t)IωE]
IωE = 2s̃(t)

∥
IωE∥

2r̃(t) − 2(IωT
E r̃(t))(s̃(t)I − S[r̃(t)])IωE , where a few proper-

ties related to the cross product were employed. Further no-
tice the equality R̃(t)r̃(t) = r̃(t). Moreover, [I − R̃T(t)]IωE =

2
(
s̃(t)I − S[r̃(t)]

)
S[r̃(t)]IωE . Repeating the previous steps for Ig,

and substituting in (A.2), the vector part of the quaternion dy-
namics becomes
˙̃r(t) =

(
−S

[IωE
]
+ kωE S

2 [IωE
]
+ kgS2

[Ig]) r̃(t)+
+ γ (r̃)r̃(t) +

1
2

(
s̃(t)I + S

[
r̃(t)

])
ω̃η(t).

(A.3)

where γ (r̃) = kωE

IωE × r̃(t)
2

+ kg
Ig × r̃(t)

2. In turn, the
dynamics associated with s̃(t) follows as

˙̃s(t) = γ (r̃)s̃(t) −
1
2
r̃T(t)ω̃η(t). (A.4)

emma 5. Consider ω̃η(t) ≡ 0. Consequently, the 1st-order approx-
imation of the nonlinear differential equation (A.3) yields a linear
ime-invariant (LTI) system that can be expressed as ż(t) = Λz(t),
with Λ = (−S[IωE] + kωE S

2
[
IωE] + kgS2[Ig]). Given Assumption 1,

and kωE > 0 and kg > 0, then, for any c ∈ R3, c ̸= 0, it follows
that cTΛc = −kωE∥

IωE × c∥2
− kg∥Ig × c∥2 < 0. This means that

Λ is Hurwitz, which suffices to say that the LTI differential equation
ż(t) = Λz(t) is exponentially stable, i.e., z(t) → 0 as t → ∞.
Therefore, the system (29), considering unperturbed dynamics, is
locally exponentially stable to I.
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