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Reputation-based Method to Deal with Bad
Sensor Data

Daniel Silvestre

Abstract—The participation of citizens through mobile
applications in detecting fires or other events, as well as
scenarios where there exists a large number of sensors
with different noise characteristics raises the question of
which data points to accept for the estimation task. If the
underlying state dynamics and noise statistics are known,
there are various filter-based approaches in the literature,
with the well-known example of the Kalman Filter. In this
paper, we tackle the problem of selecting which points
should be considered to estimate the state of a system
with both sensor characteristics and dynamics unknown.
By exploiting the techniques from resilient consensus, we
first build the intuition that the choice must follow some
scoring function. Thus, resorting to rating and reputation
systems, we propose an algorithm that assigns scores
to the measurements and maintains a pool of the points
considered to have better quality. We prove that the rating
procedure returns mean scores that are better for sensors
with smaller variance and show through simulations the
reduced mean error of the estimator in comparison with the
state-of-the-art alternatives.

Index Terms— Fault-tolerant systems; Estimation; Fault
accommodation; Rating and Reputation Systems

[. INTRODUCTION

HENEVER a process is measured through various

sensors with different levels of noise, a key question is
how to decide which measurements should be kept. Moreover,
this problem is worsened whenever there is faulty equipment
or in situations prone to errors such as compasses near metals,
GPS signals near large bodies of water, among others. Mod-
eling the process as a dynamical systems has been attracting
the attention of researchers from the control community, given
its powerful tools of analysis and design. More so, with the
recent interest of both academia and the industry in Cyber-
physical Systems (CPSs) and Networked Control Systems
(NCSs) and its applicability going beyond the digital world, it
becomes of paramount importance to focus on the resilience
to both faults and bad sensor data. Many applications share
the common dynamical model for distributed algorithms being
it: consensus [1], optimization [2]; motion coordination tasks
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such as flocking and leader following [3]; rendezvous prob-
lems [4]; computer networks resource allocation; computation
of the relative importance of web pages using the PageRank
algorithm [5]; clock synchronization; desynchronization at the
Medium Access Control layer [6]; maintaining formations;
just to name a few. In this paper, we tackled the scenario
where a group of people contribute their location and the
azimuth to a sighted forest fire through the FireLoc mobile
application. However, GPS and compass measurements are
subject to errors caused by multi-path, proximity to large
metallic structure among others.

When the dynamical model of the system is known, the
research on fault detection and outlier removal can be divided
into two categories: i) use of filters or observers to detect the
attacked or faulty nodes through the generation of residuals or
ii) performing model falsification by computing the reachable
set of the dynamics. Topic i) typically can encompass the use
of a) stochastic filters for the detection such as with a x? test
for Kalman Filters [7], unknown input observers [8], sliding
mode observers [9], computing the variance of the state [10],
etc. On the other hand, ii) employs a set-membership for a
worst-case detection as the use of SVOs with polytopes in [11]
or its version taking into account the stochastic information
of some signals [12], using constrained zonotopes [13] or
zonotopes [14], among others. However, modeling a forest fire
behavior is a research area on its own and the uncertainties in
the model would cause the aforementioned methods to perform
poorly.

Another avenue that has been employed is the use of
distance-metrics between the received values to discard er-
roneous data. In the realm of Machine Learning, the task can
be accomplished using algorithms such as the k-means [15] or
other unsupervised methods [16]. In the community of control,
distributed algorithms typically resort to discarding f extreme
values such as in [17], or by defining a scoring mechanism
[18]. These approaches are related to the proposed solution in
the sense that no model information is required.

The proposed solution is inspired by the concept of rating
of data and reputation of the contributor in the design of our
algorithm. An entity reputation is the consequence of a series
of evaluations (ratings) attributed to it given a set of criteria.
Even before the advent of mobile applications and websites,
we implicitly used reputation whenever dealing with business
and people by comparing their behavior against an expectation
and by incorporating other important (reputable) entities’
opinion. Thus, reputation has been applied in ranking systems
[19], [20] and shown to mitigate the effect of a malicious entity
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bribing voters. For additional material on reputation systems,
we refer the interested reader to the surveys in [21], [22] and
references therein.

The main contributions of this paper are:

o We propose a rating-based algorithm that employs the
square of the /5-norm as a metric to rate bad information
and a sliding window to cope with the process change;

« Based on the proposed rating mechanism, a reputation
for each agent is introduced that improves the accuracy
over the rating algorithm;

o Theoretical results are provided for the rating mechanism
and the convergence of reputations.

Even though the main application of this paper is the
detection of forest fires from all inputted data, we remark that
the proposed mechanisms are useful whenever the process is
hard to model as a dynamical equation or in case there are
a lot of unknown parameters that would degrade the filter
performance in the fault detection procedure.

The remainder of the paper is organized as follows. We
formalize the estimation problem in Section II and present
state-of-the-art approaches from the resilient consensus liter-
ature in Section III. Section IV presents the proposed rating
and reputation algorithms with theoretical results being given
in Section V. Simulations are presented in Section VI and
conclusions and directions of future research being offered in
Section VII.

Notation : We let 0,, denote the n-dimensional vector of
zeros. The Euclidean norm for vector = is represented as
|lz|l2 := VxTz and the cardinality of set S uses the notation
|S|. The expected value and the variance of a random variable
X are denoted by E[X] and Var(X), respectively.

Il. PROBLEM STATEMENT

In this paper, we tackle the problem of selecting the more
accurate measurements provided by a variety of sensors or
human contributors with respect to the underlying state of an
unknown dynamical system. Formally, we assume that there
is a continuous-time differential state equation:

& =g(x,u) (D

such that x € R”, v € R? and function g is unknown. Within
our selected application of forest fire detection, x models the
location and other auxiliary variables to describe this process
and u stands for external inputs such as wind, available fuel,
heat, terrain geography, etc. Depending on the application, the
possible approach of estimating g via system identification
might not be possible. Be it due to the complex dynamics
associated with this process or because it is an initial alert,
there is a large uncertainty regarding the state value z and
therefore of the external inputs u.

Moreover, we assume that there is a collection of sensors
or human actors providing measurements of a portion of the
system state. This is modeled by the equation:

y(k) = C(k)z(k) + n(k) 2

where, for simplicity of notation, matrix C(k) € Rmdxn
models all possible measurements m of size d regarding the

state . The noise signal n(k) € R™? is unknown and acts on
all measurements for which no prior stochastic information or
any bounds are known. Given that not all measurements will be
available in each time instant k, some of the rows in C'(k) and
in (k) can be set to zero (or any other value that corresponds
to the null measurement). We remark that even though the state
equation in (1) is written in continuous-time, measurements
are received in discrete-time slots. To further simplify, after
removing the null measurements, we define M (k) as the set
of all received data at time k.

A summary of the problem addressed in this paper is given
in Problem 1.

Problem 1: Given the available measurement set M (k) at
time instant k, find an estimate Z (k) for the state (k) without
prior knowledge of the function g and noise associated with
each sensor/contributor, i.e., unknown statistics for n(k).

[1l. OUTLIER REMOVAL TECHNIQUES

The problem outlined in Section II and summarized in
Problem 1 can be seen as the task of removing outliers
from the set of measurements or the need to average the
noise of each batch of data points. Before introducing the
proposed algorithm, we first detail possible solutions based
on this concept and show in simulation that their performance
is subpar due to the dynamical nature of the underlying
process. This analysis will serve as a motivation and a rationale
to understand the current proposal. For the comparison, we
consider a case of m = 10 sensors that with a 0.5 probability
will gather a noisy measurement and send it to the estimator.
The process is moving in a straight line but this information
is not made available. Noises for the measured positions are
drawn uniformly in a square [—a, a] with the values of a being
{1072,0.1733,0.3367, 0.5, 45,56, 67, 78,89, 100}, simulating
4 nodes with small errors whereas the remaining almost work
as faulty equipment.

A. Average estimator

A first option to get Z(k) could be the idea of taking
averages of the measurements in each time instant to reduce
the effect of the noise. Naturally, this solution is ill-behaved
when the average of the expected values of the distributions
for each noise signal is nonzero. Nevertheless, lets us define
this mechanism and simulate it to assess whether posing
the assumption of zero mean noise is sufficient for accurate
estimates. We remark that the average estimator corresponds
to the least squares solution of the estimation problem for a
given set of measurements. The average method defines the

estimate as: ]
(k) = ——— Z
®= w2z,

The mean error from the initial time up to the last iteration
is 13.61. This approach presents poor performance as it cannot
take advantage of the contributors with small noise values to
eliminate the bad data points. In the next section, we present
a method in the literature that improves by removing extreme
points. We remark to the reader that statistical methods such
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Fig. 1. Error in each iteration and mean error of the Mean Subsequence
Reduce (MSR) estimator against the mean error of the Average Estima-
tor (AE).

as the ones using the quantiles distance or a number of
standard deviations from the average are hard to generalize
to the dynamical case as measurements are taken at different
time instants. Using them by considering the data set to be
the collections of points gathered into a single instant could
suffer from the low dimension expected for the number of
measurements.

B. Mean Subsequence Reduce Estimator

In the literature, whenever designing a resilient consensus
system, it is often used the concept of mean subsequence that
aims at removing the extreme points from the ones received
by all the neighbors [17]. Given that the state belongs to R?
in the running example, we discard the points with the largest
and smallest value for each of the coordinates. If the function
returning the accepted points after discarding f values in each
coordinate is denoted by MSR(M (k), f), then the estimate is
given by:

1
NSROMT Ao
As observed in Figure 1, the MSR method outperforms the

AE given that it removes the nodes with extreme coordinates
as to avoid the influence of large noise values. The mean
error for MSR over the entire simulation was 9.08 and larger
values of f improve the quality of this method. However,
given the dynamical nature of the underlying state, we could
be removing data points relevant to the estimation in a blind
manner. Therefore, the proposed solution lies on eliminating
data points using a provided metric based on ratings in
reputation systems.

V. PROPOSED SOLUTION

In this section, we draw inspiration from rating/reputation
in ranking systems to provide suggestions and propose a rating
function (applied to the data points) and reputation (scores for
the agents/sensors) in order to decide which data points and
contributors are relevant. Our method also uses a discarding
parameter f similar to MSR. Increasing f allows to discard
more data points and reduce the possible effect of bad data at
the expenses of less capability to average out the noise. The
design of f corresponds to the designer choice of the trade-off

between removal of bad data points and losing the ability to
reduce the error by the averaging operator. In the proposed
rating and reputation method an optimal design would force
the assumption of knowing either the covariances of the noises
or the number of bad sensors

A. Rating System

The first step in our proposal is to design a rating system
for the acquired measurements M (k) based on previous and
current data points. Therefore, we assumed that there is a
sliding window H of size h storing past values. When there
exists a cluster of data points, these are more significant than
isolated measurements and should have a better score. As a
consequence, we resort to the Euclidean distance to define the
rating function:

rating(p, H

=Y llp—vil3 3)

v, €EH

thus, equating a small rating to a desirable point p. The
algorithm main step is rating all new data points and discard
values that have the largest score. However, in order to avoid
having all the new measurements being discarded because the
dynamics changed the state to a value very different from
past measurements, we included the update(-) function that
removes an older value from the sliding window before adding
the new measurements. In doing so, it is guaranteed that at
least one new measurement is added to the set. The algorithm
is summarized in Algorithm 1.

Algorithm 1 Rating-based estimator.

1: /* Initialize sliding window */
2: 7‘[(0) =0

3: for each £ > 0 do

4 /* Receive data points */
5: Receive M (k)

6: I* Update sliding window */
7

8

9

H(k) = update(H(k — 1), M(k))
/* Rate all points */
: for each z; € H(k) do

10: r; = rating(z;, H(k))

11: end for

12: /* Discard f points */

13: for each j < f do

14: H(k).discard(arg max; ;)

15: end for

16: /* Compute estimate */

17: Z(k) = mean(z; € M(k) N H(k))

18: end for

The rating-based algorithm ignores the fact that “consis-
tently” good sensors data points should be taken in higher
consideration in the rating methodology than those of agents
with poor performance. In the next section, we present an
algorithm that can take advantage of the quality of the sender
and not only on the received data.
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B. Reputation System

The concept of reputation translates the quality of the pro-
vided information and, in turn, influences how measurements
are rated. Let us introduce the reputation of a sensor as:

wj=1-— d—J,Vj <m
Sj

where w; is the weight (reputation) associated with sensor
J using the number of discarded d; messages and the total
s; messages of sensor j over all time instants. We remark
that the removed data points at the beginning of each time
instant due to the update function do not count towards the
discarded messages (variable d; only counts points removed
due to a bad rating). Having defined the reputation of a node,
the rating function in (3) can be generalized for asymmetric
reputations in the following manner:

rating(p, H,w) = Y w;llp — vy 3
vij€H
where we made clear that the messages v;; € H are the
message with id ¢ of node j in the sliding window. The general
algorithm is similar to that in Algorithm 1 with the exception
that prior to the calculation of the rating, the reputation has to
be updated, which is summarized in Algorithm 2.

Algorithm 2 Reputation-based estimator.
1: /* Initialize sliding window and reputation vector */
2H=10
3:r=0,,
4: for each k > 0 do
5 /* Receive data points */
6 Receive M (k)
7: /* Increment total data points per sensor */
8
9

s(k) = increment(s(k — 1), M(k))
: /* Update sliding window */
10: H(k) = update(H(k — 1), M(k))
11: /* Discard points until H(k) is of size h */
12: while |H (k)| > h do

13: /¥ Compute reputations */

14: for each j < m do

15: wi(k)=1- fjgg

16: end for

17: /* Rate all points using the reputations */
18: for each z; € H(k) do

19: r; = rating(z;, H(k), w(k))

20: end for

21: H(k).discard(arg max; ;)

22: /* Update number of discarded points */
23: d; = dj + 1, for discarded z;;

24: end while

25: /* Compute estimate */

26: Z(k) = mean(z; € M(k) N H(k))

27: end for

V. THEORETICAL RESULTS

In this section, we evaluate the theoretical guarantees of
the proposed rating and reputation mechanisms. The first

result states that noisy measurements with larger variance will
receive a higher expected rating, i.e., on average they will be
removed more times. This is given in Theorem 2.

Theorem 2 (Expected Rating): Assume two measurements
z1(k) and z3(k) corresponding to the full state corrupted by
zero-mean independent noise signals with diagonal covariance
matrices I'; and I's, respectively. If I'y < I'y holds element-
wise, then E[ry (k)] < E[ra(k)].

Proof: Given that the noise is independent for all entries
of the measurements, we can prove the conclusion for a scalar
measurement and the result follows for the vector case by
applying to each entry the same reasoning. From (2), we have:

z1(k) = z(k) + nu(k)

zo(k) = z(k) + n2(k)
with 7y (k) and n2(k) satisfying Var(n;(k)) < Var(na(k)).
To lighten the notation, we will omit the dependence of all

variables on the time variable k. One can then compute the
expected value for r; using its definition (3):

E[r] =E Zﬂa—mﬂ )

Lv,€H
=E Z (z+m —x—ni)ﬂ
Lv,€H
=E2mﬁmﬂ
Lv,€H

= > E|m - n’]

v €H

where the last equality is due to the linearity of the expected
value operator. Given that n; and all 7; are independent
random variables, the variance of the subtraction satisfies:

Var (n1 —n;) = Var (n1) + Var (n;)
=E [n{] +E [n]]

and on the other hand, given its definition:
2
Var (g1 —n;) =E [(771 — 1) } :

Therefore, the expected value of r; in (4) can be further
simplified to:

Efr] =Y E[n] +E ]
v EH

=hE[ni] + > E[n].

v, EH

We can now compute:

E[ri] — Ero] = hE [nf] + > E[n?] — hE [53] = Y E [n7]

v, EH v, EH
= hE [nﬂ — hE [773]
<0
and the conclusion follows. ]

The result in Theorem 2 demonstrates that our proposed
rating function rates on average consistently with the added
noise. In the next theorem, we provide a similar analysis for
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the reputation system with an additional assumption that the
probability distribution of the noise causes the rating of a node
to be higher than the other with a probability of at least 0.5. In
the following, we will denote by P[] the probability operator
whereas E[a|b] stands for the conditional expected value of
knowing b.

Theorem 3 (Expected Reputation): Assume two sensors
sending the same number of messages and providing measure-
ments z1 (k) and z5(k) corresponding to the full state corrupted
by zero-mean independent noise signals. If wi(k — 1) >
wa(k — 1) and Plri(k) < r2(k)] > 0.5, then E[w; (k)|w(k —
1)] > Efwa(k)[w(k — 1))

Proof: Let us denote p =1 — P[r1(k) < ra2(k)] < 0.5.
Since both nodes send the same number of messages, s =
$1 = s3. One can compute the expected value of the next
reputation value conditional to the previous one for sensor 1
as:

Bt -0 =p (1= 57 ) v aon (-5

7d1+p
s+1

=1

and similarly for sensor 2:

Blua(luli - 1] = (0 -p) (1= 21 ) 4 (1- S5

_d+(1-p)
s+1
Combining both equations we have:

=1

s+1 s+1
. 1-2p+ds —d;y

s+1

Ew; (k) — we(k)|w(k —1)] =1 — hrp_ (1 - m)

> 0.

The last inequality comes from the facts that i) p < 0.5 implies
1—2p > 0 and ii) from the statement of the theorem, w; (k —
1) > wa(k — 1) implies that dy < dg. Thus, the conclusion
follows. u
Please note that the assumption of Theorem 3 regarding the
probability density function is satisfied for noise signals with
similar distributions. For example, if both noise values follow a
Gaussian distribution with covariance matrices as in Theorem
2, the probability of the rating of z; being smaller than z5 is
at least 0.5. However, this condition fails for example when
sensors have very small noise levels but at some time instants
they will introduce very large values. Such cases, even though
they can satisfy conditions in Theorem 2 will fail the ones in
Theorem 3.

VI. SIMULATIONS

In this section, we present simulation results in compar-
ison with the state-of-the-art in resilient mechanisms for
linear iterative algorithms. We first recover the example of
a straight line to illustrate the performance of the proposed
methods with respect to the MSR algorithm. The scenario
consists of m = 10 sensors that with some probability

Reputation error
AE mean error
MSR mean error
Rating mean error

4t \

S5 S

0 20 40 60 80 100 120 140 160 180 20C
k

e

Fig. 2. Error in each iteration and mean error of the Reputation
algorithm in Algorithm 2 in comparison with Mean Subsequence Reduce
(MSR) estimator, Average Estimator (AE), and rating algorithm mean
errors for p = 0.5.
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Fig. 3. Error in each iteration and mean error of the Reputation
algorithm in Algorithm 2 in comparison with Mean Subsequence Reduce
(MSR) estimator, Average Estimator (AE), and rating algorithm mean
errors for p = 1.

will gather a noisy measurement and send it to the esti-
mator. Noises are again uniformly selected with parameters
{1072,0.1733,0.3367, 0.5, 45, 56, 67, 78,89, 100}

When using the reputation-based method in Algorithm 2,
the estimation is improved as reported in Figure 2 where the
final mean error of both strategies approach 0.99. For this
simulation, once the reputations converge, nodes providing
bad data points are disregarded given that the rating of their
measurements will be worse than those with higher scores.

Intuitively, a rating/reputation mechanism should work bet-
ter if given more data. The second simulation uses the same
parameters except all nodes send their information in all
time instants. Figure 3 presents the results for the reputation
algorithm with the clear distinction that it is never affected
by the erroneous sensors. The rating mechanism presents a
worse mean error given that points in the sliding window
might be better rated given that the dynamical nature of the
state can cause some bad points to be closer to the rest of the
window. As a consequence, the rating mechanism in Algorithm
1 may add newer noisier data points while removing older
(and better) measurements, which degrades the estimation
performance. By keeping track of the reputation of each
sensor, this effect is removed as it can be observed in Figure
3. The algorithm will assign a worse reputation and prevent
bad points from being added to the window at the end of the
iteration cycle.

The previous simulations were all based on the underlying
state moving in a straight line, which will not be similar to
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Fig. 4. Error in each iteration and mean error of the Reputation
algorithm in Algorithm 2 in comparison with Mean Subsequence Reduce
(MSR) estimator, Average Estimator (AE), and rating algorithm mean
errors for p = 1 in a random walk.

real data. The second simulation defined a dynamical system
composed of an integrator with stochastic input (generating a
random walk trajectory). Figure 4 shows the mean errors and
the iteration error for the reputation algorithm. The results are
very similar to the ones in Figure 3 given that it is the noise
levels and available data that has the most influence on the
reputation and rating.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we tackle the problem of deciding which
data points from a group of sensors should be used in the
estimation task. Given that the underlying dynamical system
is unknown and possibly complex, it precludes the use of
system identification techniques to resort to resilient state
estimation filter available in the literature. Moreover, outlier
removal based on the quartile range does not cope well with
a small number of data points and is not appropriate for time-
varying variables. On the other hand, the current state-of-
the-art in resilient consensus presents large estimation errors.
The proposed solution is based on a rating function for the
data points and a sliding window given the dynamical nature
of the underlying state. Additionally, by keeping track of
the reputation of the sensors, it is possible to achieve better
estimations. The expected values of the ratings are computed
and shown to map the variances of the noise signals.

In simulation, it is shown that the proposed methods a
better performance in comparison with the state-of-the-art.
However, there are two main avenues of research to pursue.
The first one is validating the methodology using real data
that is expected to occur in the next two years. The second
one is on how to deal with users that intentionally try to
undermine the objective of the application. Two strategies can
be investigated: i) validate reputation with verified data from
the authorities; and, ii) redefine the reputation system to have a
reset operation whenever the ratings of the data points without
reputation present a conflict. Strategy i) is highly dependent on
the availability of verified data whereas option ii) could work
for general application by having the algorithm self check
its detection. Another possibility is to investigate different
weighting mechanisms for the reputation of the contributors.
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