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Abstract—Localization is one of the most critical tasks in 

wireless sensor networks, but achieving a relatively accurate 

location estimation is challenging when there have Byzantine 

fault and non-line-of-sight (NLOS) bias simultaneously. In this 

context, a localization method, based on received signal 

strength (RSS), is proposed in this letter to mitigate the impact 

of Byzantine fault and NLOS bias on the localization accuracy 

of wireless sensor networks. The proposed method relies on a 

Byzantine fault-tolerant localization algorithm (BFLA), which 

converts the localization problem into a generalized trust-region 

subproblem (GTRS) by applying certain approximations. In 

order to obtain a feasible solution to the GTRS, a block-

coordinate update (BCU) function with a regularization term is 

used to divide the localization problem into two subproblems. 

An iterative method, whose start-point is obtained by an 

unconstrained squared-range (USR) algorithm, is then used to 

obtain a solution. Numerical simulations are carried out to show 

the effectiveness of the proposed method, compared with the 

state-of-the-art approaches in different scenarios. 

Index Terms—Target localization, sensor networks, Byzantine 

fault, received signal strength (RSS), generalized trust region sub-

problem (GTRS), non-line-of-sight (NLOS). 

I. INTRODUCTION 

ARGET localization using radio-frequency (RF) is of 

paramount importance to military and industrial 

applications [1], [2], where only georeferenced data are 

significant [3]. Recently,  an upsurge of interest has been drawn 

on received signal strength (RSS)-based localization methods 

since they are cost-effective and synchronization-free, 

compared to time of arrival (TOA), angle of arrival (AOA), and 

time difference of arrival (TDOA) based techniques [4]. 
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    Extensive research has driven notable advances in RSS-

based localization methods [4]–[12]. However, most of the 

research is studied under the assumption that anchors in the 

network operate as expected when locating the target. 

Unfortunately, the assumption may not always hold in practice 

[13], especially under malicious attacks [2], [13]. The anchors 

may send falsified measurements to the fusion center (FC) 

during malicious attacks, and this prevents FC from accurately 

locating the target. It has been concluded that FC may 

completely lose the ability to accurately locate the target when 

numerous malicious attacks occur [14]. A Byzantine fault 

occurs when an anchor node deviates from its expected 

operation, including sending falsified measurements. And the 

anchor that deviates from its expected operation is known as the 

Byzantine node [15]. Locating the target accurately can become 

a challenging problem, especially in the presence of Byzantine 

faults. Besides, the non-line-of-sight (NLOS) bias is another 

negative factor that prevents FC from accurately estimating the 

target’s position [6], [7]. However, very few studies have been 

conducted on localization methods for wireless sensor networks 

that simultaneously experience NLOS bias and Byzantine fault.   

In this context, the letter proposes an RSS-based localization 

method, which relies on a Byzantine fault-tolerant localization 

algorithm (BFLA), and is suitable for the network that 

experiences the NLOS bias and Byzantine fault simultaneously. 

The considered localization problem is transformed into a 

generalized trust-region subproblem (GTRS) by applying 

certain approximations. To avoid the GTRS to be ill-posed, a 

block coordinate update (BCU) function with a regularization 

term is used to divide the problem into two subproblems. An 

iterative method, whose start-point is obtained by an 

unconstrained squared-range (USR) algorithm, is then utilized 

to obtain the feasible solution. It should be noted that most 

existing localization algorithms detect and exclude Byzantine 

nodes before localization. However, BFLA locates the target 

without the need for detection and exclusion. 

II. PROBLEM FORMULATION 

Consider a two-Dimensional sensor network with 𝑁 anchors 

at known locations and a target at an unknown location. 

Suppose the target’s position 𝒙 = [𝑥1, 𝑥2]𝑇 and the 𝑖th anchor 

node’s position 𝑎𝑖 = [𝑎𝑖x, 𝑎𝑖y]
𝑇

, where 𝑖 = 1, ⋯ , 𝑁 , and 𝑇 

denotes the transpose. 

Assume the target can transmit radio signals with RSS 

information to anchors. Such signals are modeled in [4]: 

( )r s 0 10

0

10 log ,
i

i i iP P PL d
d

  
−

= − − − +
x a

      (1) 

where 𝑃r𝑖 is the power of the signal received by the 𝑖th anchor 
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node from the target, 𝑃s is the transmit power of the target, 𝛼 is 

the path loss exponent, 𝑃𝐿(𝑑0) is the loss in signal strength 

when reference distance 𝑑0 = 1 m , 𝛿𝑖  is the positive NLOS 

bias that is expressed as 𝛿 by assuming the biases between the 

target and the anchors are the same, ‖∙‖ is ℓ2 norm, and 𝛾𝑖  is 

the noise modeled as Gaussian distribution 𝛾𝑖~𝒩(0, 𝜎𝑖
2). 

The probability density function (PDF) of the observation 

vector 𝑷 = [𝑃r𝑖]𝑇 is given by  
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where 𝑃0 = 𝑃s − 𝑃𝐿(𝑑0). 

By maximizing the PDF, the maximum likelihood estimator 

(MLE) of 𝒙 could be derived as [16] 
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Assume there are 𝐵 Byzantine nodes in the network, the ratio 

of Byzantine nodes to the total number of anchors 𝜆 = 𝐵 𝑁⁄  is 

also the portion of falsified measurements. In the letter, 

Byzantine attacks occur during data transmission. The anchors 

typically compute measurements before transmitting them to 

FC. However, during transmission, attackers attempt to add 

interference noise to the measurements to prevent FC from 

locating the target accurately. Without loss of generality, the 

interference noise is assumed to be the non-Gaussian noise 𝜂 

[3]. The simultaneous occurrence of Byzantine fault and NLOS 

bias is challenging to a network because it is infeasible to 

determine if measurements contain inference noise (falsified 

measurements), and the localization problem in Eqn. (3) is 

highly non-convex, which is difficult to solve. 

III. BYZANTINE FAULT-TOLERANT LOCALIZATION 

A. GTRS framework 

First, a simple transformation based on Eqn. (1) is  
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When the noise is relatively small and 𝑑0 = 1 m, the right 

side of Eqn. (4) can be approximated using the first-order 

Taylor series expansion [6], as given by 
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The considered problem in Eqn. (3) is then converted into a 

non-linear least-square form by using squared range operation.  
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where 𝑟̂𝑖  is the approximated distance between the 𝑖th anchor 

node and the target, and 𝜔𝑖 is the weight that can be expressed 

as 𝜔𝑖 = 1 − 𝑟̂𝑖  (∑ 𝑟̂𝑖  
𝑁
𝑖=1 )⁄ . 

   By expanding the squared norm part in Eqn. (6), the problem 

is further converted into the GTRS. 
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where 𝒚 = [𝒙𝑇 , ‖𝒙‖2]𝑇, 𝝎 = diag([𝜔1
2, ⋯ , 𝜔𝑁

2 ]); 

( )

( )

2 2

1 1
1 2 1

2 2 1

1 22 2

1

,      , ,1
0

1 2

T

T

N N N

a ra

a a r






 − −   
     = = = =      −    −   − 

 



0
I 0

,D f
0

  

where 𝑰  and 𝟎  represent identity matrix and zero matrix, 

respectively.  

B. BFLA 

However, Byzantine fault and NLOS bias may cause this 

problem to become ill-posed, which decreases the stability of 

the solution. In this case, a regularization function of 𝝎  is 

developed in GTRS. 
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where g(ωi) is the regularization function, 𝝎𝑖 , ℘𝑖  and 𝜿𝑖  

represent the 𝑖th row of the corresponding matrix. 

Inspired by [17], we propose to use the regularization 

function g(ωi) as 
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where 𝜀 is the robust factor. 

Further, the GTRS is separated into two sub-problems as  
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where 𝑘 is the number of iterations. 

The problem of (II) in Eqns. (10) is strictly convex; thus, its 

global minimizer is  

2 2

1
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However, the problem of (I) in Eqns. (10) is non-convex due 

to the constrained condition; thus, we develop a BCU function 

with a Lipschitz continuity constant 𝑙  to the aforementioned 

function.   
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where 

( )1 1 2ˆ ,k k k k k− − −= + −y y y y                     (13) 

and 𝜉𝑘  ( 𝜉𝑘 ≠ 𝝎𝑖
𝑘 ) is the weight related to 𝑙𝑘 , i.e., 𝜉𝑘 =

(√𝑙𝑘−1 𝑙𝑘⁄ ) 12⁄ , and 𝑙0 = 2‖℘𝑇𝝎𝑘℘‖.  

Assumption 1: ∇𝒚=J(𝒚̂𝑘 , 𝝎𝑘−1)  has a Lipschitz continuity 

constant 𝑙𝑘 in respect of 𝒚𝑘 with  
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Remark: In BCU, the variables are determined based on 

blocks. The blocks in the sub-problems in Eqns. (10) are 𝑥1, 𝑥2, 

and ‖𝒙‖2. Besides, the GTRS in Eqn. (8) has a global minimum 

that is obtained using the bisection method. Therefore, the 

function of J (𝒚, 𝝎) is lower bounded.  

Proposition: Let {𝒚}𝑘 be the sequence obtained by Eqn. (12), 

𝒚𝑗
𝑘  be the 𝑗th  block at 𝑘th  iteration, 𝑙𝑗

𝑘  be the Lipschitz 

continuity constant of the 𝑗th block at 𝑘th iteration, and 𝜉𝑗
𝑘 be 

the weight of the 𝑗th  block at 𝑘th  iteration with 0 ≤ 𝜉𝑗
𝑘 ≤

𝜒√𝑙𝑗
𝑘−1 𝑙𝑗

𝑘⁄  for 0 < 𝜒 < 1.If Assumption 1 is satisfied, we have 
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Proof: From the Lipschitz continuity of the function 

∇𝒚𝑗
=J(𝒚𝑘, 𝝎𝑘−1) about 𝒚𝑗, it holds by a direct application of 

the Lemma 2.1 in [18] that  
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Then, we have 
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As for the whole blocks, Eqn. (17) still holds. Hence, 
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Suppose the total number of iterations is 𝐾, we sum the above 

inequality and obtain  
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The function J  (𝒚, 𝝎)  is lower bounded; thus, 𝐾 → ∞ 

completes the proof.                                                                                  □ 

Under Assumption 1, for any limit point 𝒚̅ of {𝒚}𝑘  in line 

with Proposition 1, there exists a subsequence that converges 

to 𝒚̅ using the Theorem 1 in [19].  

Definition 1:  𝑞: ℝn → ℝ and 𝑐: ℝn → ℝ  are the quadratics, 

and  {𝜏 ∈ ℝn: 𝑐(𝜏) = 0} is not empty. If  

0, 0 0,T Tv v Cv v Qv =                     (20) 

where 𝑄 = ∇2𝑞 , 𝐶 = ∇2𝑐 , then the optimization problem 

min{𝑞(𝜏): 𝑐(𝜏) = 0} has a global minimizer.  

Under Definition 1, we can easily verify that Eqn. (20) holds 

for the considered problem. Therefore, a global minimizer of 

the solution of (I) in Eqns. (10) is acquired. And 𝒚𝑘  is an 

optimal solution if there is a multiplier 𝜍 that satisfies the Kuhn-

Tucker condition, i.e., 
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where 𝜗 is the largest eigenvalue of (℘𝑇℘)−
1

2𝑫(℘𝑇℘)−
1

2. 

The initiation should be defined in BFLA; otherwise, the 

solution is inaccurate. In the letter, we utilize the USR algorithm 

to obtain the iteration start-point, where 𝒚0 = (℘𝑇℘)−1℘𝑇𝜿 

and 𝝎0 = diag([𝑰𝑁]). 

C. Cramer-Rao lower bound (CRLB) 

CRLB is used to be the benchmark for the estimators [20]. 

The CRLB can be indicated as the trace of the inverse of the 

Fisher information matrix (FIM) when the noise is Gaussian. 
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where Σ denotes diag(𝜎1, ⋯ , 𝜎𝑁), Tr(∙) is the trace of a matrix;  
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with 
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ln10


 = . 

However, the attack (non-Gaussian noise) makes the closed-

form expressions of the FIM unavailable. In this case, we 

exploit a Monte Carlo simulation to obtain the closed-form 

expression. 
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where 
( )

 

2

2
1

,1

( , )

C

sample
N

i

sample
sampleC i

p
I

N p

  

 =

 
 

  . 

IV. NUMERICAL RESULTS 

Numerical simulations are carried out in Matlab to verify the 

effectiveness of the proposed method (BFLA), compared with 

other state-of-the-art methods, including fault-tolerant 
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maximum likelihood (FTML) [15], weighted least squares 

(WLS) with an RSS-only in the non-cooperative scheme in [7], 

squared range weighted least squares (SRWLS) in [6], USR in 

[5], USR-based majorization-minimization (USRMM) in [8] 

and CRLB. The target and anchors are deployed randomly in 

the square area, with length 𝐺𝑟𝑖𝑑 = 25 m, during each Montel 

Carlo trial (MCT). The remaining fixed simulation parameters 

are set as 𝑃0 = −35 dBm, 𝑑0 = 1 m, 𝛼 = 3, and 𝑀𝐶𝑇 = 200. 

It is worth noting that the precise NLOS bias cannot be directly 

determined in practice. However, the maximum possible error 

can be determined, and NLOS bias can be obtained from a 

specific distribution [6], [21]. Inspired by [6], the NLOS bias is 

assumed to be drawn from an exponential distribution, and the 

rate is drawn from a uniform distribution 

𝑏𝑖𝑎𝑠~Exp(U[0, 𝛿max]) . It is also assumed that noise from 

attacks obeys a uniform distribution, i.e., 𝜑(𝜂)~U[−√2 ×

𝐺𝑟𝑖𝑑, √2 × 𝐺𝑟𝑖𝑑]. Noise with uniform distributions has been 

used to simulate malicious attacks in many studies [2], [3], [22]. 

To ensure accurate statistics, the estimator is made 95% 

asymptotically efficient through selecting an appropriate factor 

𝜀 [23]. In this study, the robust factor 𝜀 = 1.34√3𝜎𝑖, according 

to [17]. Root mean square error (RMSE) is used to evaluate the 

performance of the methods: 𝑅𝑀𝑆𝐸 =

√∑ (‖𝒙𝑚𝑐𝑡 − 𝒙𝑚𝑐𝑡‖) 𝑀𝐶𝑇⁄𝑀𝐶𝑇
𝑚𝑐𝑡=1 , where 𝒙𝑚𝑐𝑡and 𝒙𝑚𝑐𝑡  denote 

the exact position and the estimate in the 𝑚𝑐𝑡th  trial, 

respectively.  

 
Fig. 1. RMSE versus variable N with 𝛿max = 5 dB, 𝜎𝑖 = 5 dB, 𝜆 = 0.5, and 

𝑁NLOS = 𝑁. 

 
Fig. 2. RMSE versus variable 𝜆 with 𝛿max = 5 dB, 𝜎𝑖 = 5 dB, and 𝑁NLOS =
𝑁 = 8.  

In some scenarios, all anchors suffer the NLOS links, i.e., the 

number of NLOS nodes (𝑁NLOS) is equal to the total number of 

anchors 𝑁, referred to as Fig. 1, Fig.2, Fig. 3, Fig.4, and Fig.6.  

A comparison between RMSE and the total number of 

anchors 𝑁  is illustrated in Fig. 1. It is worth noting that the 

available information for localization increases while 𝑁 grows. 

Thus, the performance is improved for all methods in Fig. 1. 

Although the performance of some approaches is relatively 

close when 𝑁 = 8 , the proposed method, BFLA, performs 

better than others, and the margin is sizeable when 𝑁 increases. 

A comparison of the RMSE (m) versus variable 𝜆  is 

presented in Fig. 2. As expected, the localization error of all 

considered algorithms increases as 𝜆  grows. However, the 

localization error of BFLA is the lowest than others, which 

illustrates the outperformance of the proposed method when 

existing Byzantine nodes. 

 
Fig. 3. RMSE versus variable 𝛿max with 𝜆 = 0.5, 𝜎𝑖 = 5 dB, and 𝑁NLOS =
𝑁 = 8.  

 
Fig. 4. RMSE versus variable 𝜎𝑖 with 𝜆 = 0.5, 𝛿max = 5 dB, and 𝑁NLOS =
𝑁 = 8. 

 
Fig. 5. RMSE versus variable number of NLOS nodes with 𝜎𝑖 = 5 dB, 𝜆 = 0.5, 

𝛿max = 10 dB, and 𝑁 = 8. 

 
Fig. 6. CDF of ‖𝒙̂ − 𝒙‖ with 𝜎𝑖 = 5 dB,  𝜆 = 0.5, 𝛿max = 10 dB, and 𝑁NLOS =
𝑁 = 6. 

The RMSE (m) versus variable 𝛿max  and variable 𝜎𝑖  are 
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presented in Fig. 3 and Fig. 4, respectively. Interestingly, 

although the performance of the algorithms deteriorates as 𝛿max 

and 𝜎𝑖 grow, the rate of deterioration is relatively low. Among 

them, the performance of the proposed method, BFLA, seems 

to be better than others. Besides, the performance of CRLB 

degrades dramatically as the rise in 𝜆 and 𝜎𝑖, and even worse 

than others in some scenarios. This is because when 𝜆 is large, 

the PDF of 𝛾𝑖  deviates from the Gaussian model, and the 

intrinsic accuracy 𝐼  is small, leading to deteriorated 

performance of the estimator. It is also worth noting that the 

bias gradient matrix is zero due to the known NLOS bias. 

Therefore, the biased CRLB that we conduct is equivalent to 

the unbiased one. In other words, the performance of CRLB is 

stable no matter what the bias is, referred to as Fig. 3. It has 

been proven that allowing a small amount of the bias into an 

estimator can improve the performance, which sometimes is 

better than the unbiased CRLB [24]. From Fig. 1, Fig. 2, and 

Fig. 4, we can see that when 𝛿max = 5 dB, some of the biased 

estimators outperform the CRLB. Nevertheless, the 

performance of these biased estimators would be worse than 

that of the CRLB if the NLOS bias is too large. We have carried 

out several simulations with the same conditions in Fig. 3 and 

find that the performance of these biased estimators is worse 

than that of the CRLB if the maximum bias exceeds 12dB. 
CRLB performance continues to reduce as 𝜎𝑖  increases, 

provided 𝜆  is determined. On the contrary, with the good 

quality of the initial guess, the biased estimator, BFLA, can 

mitigate the bias through iteration. 

The RMSE (m) versus the variable number of NLOS nodes 

is depicted in Fig.5. RMSE is similar for most localization 

algorithms at 𝑁NLOS = 0. However, the performance becomes 

divergent when parts of anchors suffer NLOS links. From Fig. 

5, we can see that all considered algorithms show relatively 

good robustness to the ratio of LOS/NLOS links, wherein the 

proposed method performs better than the rest. Fig. 6 shows the 

cumulative distribution function (CDF) of the algorithms. From 

Fig. 6, we can see that the proposed method, BFLA, to some 

extent, beats the rest of the methods. The performance of BFLA 

achieves ‖𝒙̂ − 𝒙‖< 20 m at 100%, whereas others attain the same 

probability in the case of ‖𝒙̂ − 𝒙‖> 25 m or more. 

V. CONCLUSION 

In this letter, an RSS-based localization method is proposed 

to mitigate the impact of Byzantine fault and NLOS bias on the 

localization accuracy of wireless sensor networks. The 

proposed method relies on BFLA, which studies the 

localization problem in a GTRS framework by exploiting 

certain approximations. To avoid the GTRS to be ill-posed, a 

BCU function with a regularization term is developed to divide 

the problem into two subproblems. An iterative method, whose 

start-point is obtained by USR, is then used to obtain a solution. 

Numerical simulations are executed to demonstrate the 

outperformance of BFLA against other state-of-the-art 

approaches in different scenarios. However, this letter assumes 

that NLOS bias follows a specific distribution with a known 

maximum possible error. Future studies may discard the 

aforementioned assumption and develop an adaptive bias 

estimator.   
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