2020 American Control Conference
Denver, CO, USA, July 1-3, 2020

Decentralized Navigation Systems for Bearing-based Position and
Velocity Estimation in Tiered Formations
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Abstract—This paper presents a decentralized navigation
system, capable of estimating positions and fluid velocities, for
vehicle formations. Some vehicles have access to a measurement
of their own position while the others have access to one or
more bearing measurements and may have a depth measure-
ment. Local observers with globally exponentially stable error
dynamics are designed by obtaining an equivalent observable
linear time-varying system using conveniently defined artificial
outputs. The local observers rely on local measurements as well
as limited communications between the vehicles. The stability
of the system as a whole is obtained by studying the robustness
of the local observers to exponentially decaying perturbations.
Simulation results are presented to show the behaviour and
convergence of the proposed solution.

I. INTRODUCTION

There are many applications where the use of formations
of vehicles is an advantage. In [1], [2], and [3] some appli-
cations of vehicle formations are studied for the purposes of
minesweeping, surveillance, and localization, respectively.

While centralized control and navigation systems are con-
ceptually simpler, the use of decentralized solutions have sev-
eral advantages as, for example, the formation not depending
on a central system, which, due to failure, may compromise
the entire formation. A centralized system would need to be
able to communicate with each element of the formation.
However, in underwater applications, communications are
limited. Decentralized solutions may help coping with this
issue. In [4]-[7], examples of decentralized solutions for
underwater applications are proposed.

The fact that GPS systems do not work underwater leads
to the necessity of developing alternative navigation systems,
such as the ones proposed in [8] and [9]. While the majority
of the solutions available in the literature are based on range
measurements, it is possible to develop navigation systems
based on bearing measurements. A sensor that provides
bearing measurements is developed and discussed in detail
in [10]. Work on the observability issues of target motion
analysis based on angle measurements can be found in [11].
Particle filters based on bearing measurements are proposed
in [12] and [13], while in [14] a square cubature Kalman
filter is presented.
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In this paper, a decentralized navigation system for vehicle
formations operating underwater is designed. The formations
are assumed to be tiered and acyclic, with the vehicles of
the top tier having access to their own position due to, for
example, GPS availability on the surface. In the rest of the
tiers, vehicles measure bearings and have communication
with vehicles in the upper tier.

Local state observers, capable of estimating the vehicle
position and the surrounding fluid velocity, are designed.
These local observers have access to bearing measurements
and positions estimates communicated from the vehicles
in the tier above. They also have access to several local
measurements, such as attitude angles, velocity relative to
the surrounding fluid and, in some cases, depth.

In [15], a continuous time navigation system based on
one bearing measurement is proposed. The bearing measure-
ments and the communications are not available at frequency
high enough to consider a continuous-time system. Thus,
the navigation system is designed considering discrete-time
kinematics. In [16], a similar solution to the one proposed in
[15] is developed, but in a discrete-time context instead. In
[17], the previous work is extended to the case when multiple
bearings are available.

The bearing measurement will lead to a system with
nonlinear outputs. For such systems, the traditional solution
is an extended Kalman filter (EKF), however, that does not
offer any guarantee of stability. To obtain local observers
with globally exponentially stable (GES) error dynamics, an
artificial output based on the bearing measurement is used
instead of the bearing itself.

Two different cases of local observers are considered:
i) when one bearing and depth are available; and ii) when
two or more bearings, but no depth, are available. More cases
could be added but due to limitations on the available space
they were left out.

The robustness of the local observers to exponentially
decaying perturbations on the position estimates received
through communication is analysed and the results obtained
are used to ensure that the decentralized system as a whole
will also have GES error dynamics. In [18], a similar solution
is proposed, but for a continuous time range-based navigation
system.

Simulation results are presented to show the behaviour and
convergence of the proposed solution.

A. Notation

Throughout the paper, the symbol O denotes a matrix
of Os of proper dimensions and I, denotes the n x n
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identity matrix. A block diagonal matrix is represented by
diag(A,...,A,,). The special orthogonal group is denoted
by SO(3) := {X € R®*3 : XTX =1, det(X) = 1}, and the
set of unit vectors is defined as S(2) := {x € R3 : ||x|| = 1}.
For x € R3, x*, x¥ and x* denote the first, second, and
third component of x, respectively. The transpose operator
is defined as (.)7.

II. PROBLEM STATEMENT

Consider a formation of N vehicles, indexed from 1 to V.
All the vehicles are evolving in a fluid whose velocity is as-
sumed to have a time-invariant spatial distribution. Moreover,
it is assumed that the velocity of the vehicles is small enough
such that the fluid’s velocity can be considered constant for
each vehicle. Since the vehicles may be operating in different
regions of the space, it is assumed that the velocity of the
fluid may differ from vehicle to vehicle. As so, v;(t) € R?
denotes the fluid velocity around vehicle i, expressed in
a local inertial frame, {I}. The position of the vehicle i,
expressed in {I}, is denoted by p;(t) € R3.

Each vehicle is moving with a velocity relative to the fluid,
measured by a relative velocity sensor, such as a Doppler
velocity log (DVL), and denoted by v;(t) € R3, expressed
in the body frame, {B;}. Each vehicle is also equipped with
an attitude and heading reference system (AHRS), which
provides a rotation matrix, R;(t) € SO(3), from {B;} to
{I}.

The kinematics of vehicle ¢ are given by

{pi (t) = vyi(t) + Ri(t)vi(t)
vyi(t) =0 .

The formation is assumed to be organized in a tiered
topology, and each vehicle has access to either:

¢ An absolute position measurement, provided by, for
example, GPS or a long baseline system, if they are
in the first tier; or

o Bearing measurements and position estimates of one or
more vehicles in the tier above and, in some cases, depth
measurements.

The focus of this paper is on the second case, since the
position is available in the first one. In the second case, the
outputs are available at discrete-time and are given by

p;(tk) — Pi(tr) ,
’ J S Dz
1P (tk) — Pilti) | ,
if depth available,

dij(k) = R{ (1)

hi(k) = p; (tk),
where D); is the set of vehicles to which vehicle ¢ has bearing

measurements.
From now on, and unless specified otherwise, it is consid-

ered
— pi(tk) — pilte)
Ipj(tr) — pite)ll’
since this simplifies the computations. This is done without
loss of generality since the matrix R;(¢;) is available and
invertible. For simulation purposes, the original bearing
measurement is used.

dy; (k) J €D, )

Because the communication and the bearing measurements
between vehicles are only available at low frequency, the
system must be discretized, which leads to

Pi(tr+1) = Pi(te) + Tvyi(ty) + (k)
Vii(tet1) = vyite)

i(Tk) — Palt , 2
dy;(k) = pj( ) p.( ) . JeD; @
1P (tk) — pilt) |
hi(k) = pi(tx), if depth available
where T is the sampling period and u;(k) is given by
tht1
tr

The problem addressed in this paper is that of designing
a decentralized observer, with globally exponentially stable
error dynamics, for the position and local fluid velocity of
each vehicle, p; and vy; respectively. The decentralized
observer is composed by local observers, each one with
access to the local measurements described before.

III. LOCAL OBSERVER DESIGN

Depending on the available measurements, the design of
a local observer for (2) differs. Due to limitations on the
available space, only two cases are discussed: i) when one
bearing and depth are available; and ii) when two or more
bearings are available. The first case is analysed in detail
while, in the second, results obtained in [17] are used. From
now on, the study will be focused on the design of the local
observer for vehicle i. To simplify the notation, the index
1 will be omitted from this point onward, resulting in the
system

P(tk+1) = P(tk) + Tvs(tg) +u(k)
Vi(tkt1) = vi(te)

o Pjte) — p(tk)
G = o, (00— p(e
h(k) =p*(tx), if depth available

A. Artificial output

jeD’ @)

The dynamic system (4) is nonlinear due to the bearing
outputs. To address this issue, and obtain a linear time-
varying (LTV) system, the bearing outputs will be replaced
by artificial ones. First, note that

d; (k)dj (k)d; (k) = d; (k)

since d;(k) is a unit vector, from which it is possible to
write
(I—d;(k)d] (k))d;(k) = 0. )

Substituting the last term d;(k) of (5) using the third
equation of (4) leads to

(I—d;(k)d] (k) (p;(tr) = p(te)) = 0.
From this, z;(k) € R? is defined as

z;(k):= (I=d;(k)d] (k))p; (tx) = (I~d;(k)d] (k))p(tx).

5226

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on January 18,2021 at 10:41:19 UTC from IEEE Xplore. Restrictions apply.



This quantity is known since (I—d;(k)d] (k))p;(tx) can be
computed using known measurements. Also, because d; (k)
is a known measurement, z;(k) is linear on the state p(k).
Replacing d, (k) by z;(k) in (4) yields
P(te+1) = p(t) + Tvs(ty) +u(k)
Vi(teyr) = vi(te)
z;(k) = (I —d;(k)d] (k))p(tx), j€ D
h(k) = p*(t), if depth available

(6)

This is an LTV system and can be written in the form

x(k+1) = Agx(k) + Bru(k)
y(k) = Cpx(k) 7

where
x(k) = [p" (tx) v" (ts)]" € R,
and
y(k) = [z] (k) ... 21 (k) h(k)]" € R*H1,

y(k) = [z1 (k) ... z] (k)]" € R*F,
with L representing the number of elements in D.

B. Observability

When studying the system with only one bearing available,
the index j will be omitted in d; (k). The state matrices when
depth and only one bearing measurement are available are
thus given by

_ Iz TT3 6x6 _ I3 6x3
Ak—|:0 I3:|€R R B, = 0 eR s

_ T
C — {13 d(e/;)d (k) g] € R4*6,
3

with e3 := [0 0 1]7. The following theorem addresses the
observability of this system.

Theorem 1: The system (6) with depth and only one
bearing available is observable on the interval [k,, k, + 2] if
and only if d*(k,) # 0 and d*(k, + 1) # 0.

The proof of this theorem is not presented due to space
limitations but is done by showing that the rank of the
observability matrix is equal to the number of states.

When more than one bearing is available but there is no
depth measurement, the state matrices are given by

Ak _ |:]63 j;£3:| c ]RGXG7 Bk — |::[(i3:| c RGXS’
I; —di(k)di (k) ©
Ck =

I, — d(k)dZ(k) 0

where L is the number of vehicles in D. This system has
been studied in [17], from where the following theorem can
be used.

Theorem 2: The system (6) with more than one bearing
and no depth measurement is observable on the interval

3Lx6
€ R2V*°,

[kq, ko + 2] if and only if there exists m,n,l,p € {1, ..., L}
such that
dm(ka) 3& aldvz(ka)

and
di(ka 4 1) # aady (ke + 1)

for all aq, a0 € R.

Remark 1: The conditions of the first theorem are easy to
achieve, considering the tiered topology of the formations. If
the tiers are related to the vertical spacial distribution, being
any tier deeper than the upper tier, then these conditions
will be always met. For the second theorem, even if only
two bearings are available, it is enough that the vehicle of
the system and the two vehicles to which the bearings are
measured are not aligned. Even though this might not be
the case, both conditions are not hard to achieve. If the
conditions are not met during a finite interval of time, the
observers may diverge, but will converge again once they are
met again.

With the observability studied, the design of a Kalman
filter is the obvious choice since it is applied to a system
that is linear in the state. This is due to the fact that d;
is known. The Kalman filter yields globally exponentially
stable error dynamics if the system is shown to be uniformly
completely observable [19]. Here, only observability was
shown due to space limitations but the proof of uniform
complete observability, while tedious, follows similar steps
considering uniform bounds in time.

IV. DECENTRALIZED SYSTEM
A. Filter Robustness
The conditions for stability of the local observers have
already been established. However, these local observers
have access to the position of the vehicles to which bearings
are measured. When the observers are put together into a

decentralized system, they will only have access to position
estimates, which can be written as

p;(tr) = p;(tx) +€;(k),
where p;(t;) is an estimate of the position of vehicle j
and e;(k) is a term with GES dynamics representing the

estimation error of p;(t;). This will alter the value of the
artificial output, which will be given by

zj(k) = (1= d;(k)dj (k))p(te) + &;(k), ()
where €;(k) is defined as
&;(k) = (I d;(k)d] (k))e;(k).

Since e;(k) decays exponentially and (I — d;(k)d] (k)) is
bounded, €;(k) will also decay exponentially.

As so, the effect of not having the true position of the
other vehicles can be regarded as an exponentially decaying
perturbation on the outputs of system (6). This will not alter
the dynamics of the Kalman filter covariance matrix

Pk\k—l = AkPk-—l\k—lA,l{ + Q
K, = Pk‘k,IC£(R+CkPk\k—1C£)_1 ’
Pk\k’ = (I - chk)PHk—l(I - chk)T + KkRkK{
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where Q and R are the process and output noise covariance
matrices, respectively. P is the estimation error covariance
and K is the observer gain. Since these equations are not
affected by the perturbation, they will remain bounded. The
estimates will be given by

x(k+1) = Aek(k) + Bru(k) + K (2(k) — Cpx(k)).

Considering (7), the exponentially decaying perturbation will
be multiplied by a bounded matrix, K, which will cause an
exponentially decaying error on the estimate of the state X.

B. Chain Propagation

All the local observers of the vehicles of the second tier
receive true information of the position of the vehicles of the
tier above, as it is assumed that the first tier has access to its
own position. Therefore, they will produce estimates of their
own position with GES error dynamics. As shown before,
all the vehicles receiving position estimates with GES error
dynamics will also produce positions estimates with GES
error dynamics of their own. As so, the observers of all the
tiers will converge, since the errors that are propagated will
always have GES error dynamics.

V. SIMULATION RESULTS

Simulations were performed to study the behaviour and
convergence of the proposed solution. In this section, the
results are presented.

A. Setup

To perform the simulations, the formation depicted in
Fig. 1 was used. The vehicles in Tier 1 measure depth and
bearing to one of the vehicles in Tier 0. The vehicle in Tier 2
measures bearing to all four vehicles of Tier 1 and has no
access to depth measurements.

All the vehicles performed the same type of trajectory but
with different starting points. The trajectory was generated
with way points, which are described in Table 1. The accel-
eration was limited to 0.01 m/s2, which resulted in the curve
presented in Fig. 2. The fluid velocities were chosen with
different values for each vehicle. The starting points and the
fluid velocities can be seen in Table II. The fluid velocity for
the first two vehicles was not specified since the observers
for the upper tier were not simulated. This is done without
loss of generality since the observers of Tier 0 do not depend
the rest of the formation.

A sampling period of 1Is is assumed for both the
bearing measurements and the communications between
the vehicles, while all the other measurements are as-
sumed to be available at 100Hz. Azimuth and inclina-
tion are measured, from which the bearing is obtained as
d = [sin(#)cos(¢) sin(#)sin(¢) cos(f)]?, where ¢ and 6 are,
respectively, the azimuth and inclination angles to another
vehicle. Zero-mean white Gaussian noise with a standard
deviation of 1° was added to both angles. For the vehicles in
Tier 0, the position is available but zero-mean white Gaussian
noise was added with a standard deviation of 0.Im in each

Fig. 1. Formation graph
0
-5
-10
5 Start
z(m)
-20
-25
30
80 S~
a0 o 60
O e Jx(m) “0
0 o
Fig. 2. Trajectory for vehicle 1
Time (s) | Position (m)
0 [0 0 0]
100 [50 0 0]
200 [50 20 0]
300 [20 20 0]
400 [20 40 0]
500 [50 40 0]
600 [50 60 0]
800 [5 30 -30]
1000 [5 0 -30]
TABLE I

TRAJECTORY WAYPOINTS FOR VEHICLE 1

Vehicle | Initial Position (m) | Fluid Velocity (m/s)
1 [0 0 0] —

2 [100 100 0] —

3 [11-50] [0.19 0.13 0.30]

4 [0 10 -60] [0.20 0.10 0.30]

5 [110 100 -40] [0.18 0.11 0.28]

6 [90 90 -50] [0.21 0.10 0.27]

7 [50 50 -100] [0.21 0.12 0.27]

TABLE I
INITIAL POSITIONS AND FLUID VELOCITIES USED IN THE SIMULATIONS.

component. Some correlation was added, resulting in the
covariance matrix

1 01 01
0.01x |01 1 0.1
0.1 01 1

Zero-mean white Gaussian noise with a standard deviation
of 0.lm was added to the depth measurements. For the
Euler angles used to obtain the rotation matrix, uncorrelated
zero-mean white Gaussian noise was added with a standard
deviation of 0.01° for the pitch and roll angles and 0.03° for
the yaw angle. Finally, the relative velocity to the fluid was
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Fig. 3. Vehicle 3: Position estimate transient error.
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Fig. 4. Vehicle 3: Position estimate steady error.

corrupted by uncorrelated zero-mean white Gaussian noise
with standard deviation of 0.01 m/s. The integral in (3) was
computed using the trapezoidal rule.

B. Results

The developed solution consists of a Kalman filter for
(6) for each vehicle. The state covariance matrices were
set to diag(0.01%I;0.001°I), while the output covariance
matrices were set to diag(0.12; 10I) or 101, depending on the
availability of depth measurements. The initial state estimate
was generated by a Gaussian distribution centred on the true
state and with covariance diag(102L;1).

The estimates converged for all vehicles, but due to space
limitations only the results for vehicles 3 and 7 are presented.
The results for vehicle 3 can be seen in Fig. 3 and Fig. 4
for the position estimate and in Fig. 5 and Fig. 6 for the
velocity fluid estimate. The estimates converge rapidly to
the true state, with the position converging faster. There is
no visible bias and the error on the z component is smaller,
as expected, since a depth measurement is available.

The results for vehicle 7 can be seen in Fig. 7 and Fig. 8
for the position estimate and in Fig. 9 and Fig. 10 for the
fluid velocity estimate. The same conclusions can be drawn.
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Fig. 5. Vehicle 3: Fluid velocity estimate transient error.
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Fig. 6. Vehicle 3: Fluid velocity estimate steady error.

VI. CONCLUSIONS

The communication bandwidth is very limited in under-
water scenarios, rendering centralized navigation solutions
impossible to implement. This paper presents a cooperative,
decentralized navigation solution for formations of underwa-
ter vehicles based on bearing measurements. Two cases of
interest are analyzed: i) in the first, a vehicle has access to
its depth and bearing to another vehicle of the formation;
and ii) in the second, the vehicle has access to bearings to
at least two other vehicles of the formation. In order to cope
with the nonlinear nature of the outputs, artificial outputs are
employed that render the dynamics linear, thus allowing for
the design of local Kalman filters with GES errors dynamics.
Then, the error dynamics of the formation as a whole are also
shown to be GES. Finally, simulation results are presented
to show the behaviour of the solution.
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