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Abstract—This paper presents a nonlinear trajectory tracking
controller for an autonomous surface craft under the presence of
external time-varying environmental disturbances generated by
wind, wave and ocean current. The proposed controller is able
to drive the craft towards an arbitrarily small neighborhood of a
smooth desired trajectory, obtaining global practical stability as
the vehicle eventually remains within that neighborhood for all
time. To demonstrate the efficacy of the designed control strategy,
we give and analyze simulation results.

Index Terms—underactuated surface craft, trajectory tracking,
robust control, environmental disturbances.

I. Introduction

In the past few years, autonomous surface crafts (ASCs)
have been applied in many different areas, such as surveillance,
search, marine data acquisition, among others [1], [2]. Un-
like fully actuated vehicles, underactuated vehicles have less
control inputs than degrees of freedom, raising new and chal-
lenging control problems. This paper presents a solution the
problem of trajectory tracking for underactuated autonomous
surface crafts which are actuated in force and torque, as the
craft depicted in Fig. 1.

Diverse control strategies for stabilizing ASCs have been
reported in the literature, such as in [3], where a tracking
controller for an underactuated ship is proposed through the
use of partial feedback linearization technique. The proposed
controller drives the position of the ship exponentially to the
desired trajectory without controlling the ship’s course angle.
By applying a combined integrator backstepping and averaging
methodology, two tracking feedback control laws for an un-
deractuated ship are developed in [4], which can exponentially
drive the ship to an arbitrarily small neighborhood of the
desired trajectory. The authors of [5] proposed a continuous
position tracking controller for a surface vehicle that globally
stabilizes the position and orientation errors to a ball centered
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at the origin with arbitrarily small radius. However, external
disturbances are not considered in [4] and [5]. To reject
external disturbances and achieve robust performance, in [6],
[7], [8], under the assumption that disturbances are constants,
disturbance observers are designed to compensate constant
disturbances. To deal with external time-varying disturbances,
a nonlinear disturbance estimator for a general nonlinear
system was given in [9], with arbitrarily small estimation error.
In [10], the authors employ a self-constructing fuzzy neural
network to estimate unknown disturbances. Relevant work on
robust control of surface crafts can also be found in [11] and
[12].

Figure 1: Underactuated surface craft.

Motivated by our recent work [13] [14], this paper proposes
a nonlinear robust tracking controller for an underactuated au-
tonomous surface craft that achieves global practical stability.
The stability of the overall closed-loop system is evaluated,
and simulation results are presented to validate the efficacy of
the developed control strategy.

The remainder of the paper is organized as follows. Section
II introduces the notation used throughout the paper. The
craft’s kinematic and dynamic models and trajectory tracking
problem are presented in Section III. The tracking controller
and stability proof are given in Section IV. Section V presents
and analyzes the simulation results. The contents of this paper
are summarized in Section VI.

2019 IEEE 7th Conference on Systems, Process and Control  (ICSPC 2019), 13–14 December 2019, Melaka, Malaysia

978-1-7281-1826-0/19/$31.00 ©2019 IEEE 54

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on January 18,2021 at 13:17:20 UTC from IEEE Xplore.  Restrictions apply. 



II. Notation

In this paper, Rn represents the n-dimensional Euclidean

space. A function g is of class Cn if the derivatives

g′, g′′, . . . , g(n) exist and are continuous. The norm of a vector

g ∈ Rn is defined as ||g|| = √gTg. For a scalar x ∈ R,

its absolute value is denoted by |x|. The unit vectors e1 and

e2 are introduced as e1 = [1 0]T, e2 = [0 1]T. In addition,

Table I shows some main symbols and their corresponding

descriptions used throughout the paper.

Symbol Description

{I}, {B} inertial frame and body frame

dl, dr damping coefficients

bv, br disturbances

p craft’s position expressed in {I}
R rotation matrix from {B} to {I}
v linear velocity expressed in {B}
r angular velocity expressed in {B}
Iz craft’s moment of inertia

m craft’s mass

T thrust input

τ torque input

Table I: Symbols and descriptions

III. Problem Formulation

This section presents the craft’s model, and formulates the

trajectory tracking problem.

A. Craft Modeling
The craft, shown in Fig. 1, is modeled as a rigid body

subjected to external forces and torques. Consider a fixed

inertia frame {I} and a body-fixed frame {B} attached to the

craft’s center of mass, as depicted in Fig. 2, we have the

following kinematic equations [15], given as

ṗ = Rv
Ṙ = RSr

(1)

where p = [x, y]T are the coordinates of the craft’s center

of mass, v = [u, v]T represents the linear velocity while r is

angular velocity of the craft. The matrix R is the rotation

matrix from {B} to {I}, with

R =
[
cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)

]
, S =

[
0 −1

1 0

]
.

where ψ is the orientation of the craft. The dynamic equations

Mv̇ = −SrMv − vldl + u1T + RTbv(t)

Jṙ = −drr + τ + br(t)
(2)

where M = diag(m − Xu̇,m − Yv̇), J = Iz − Nṙ; m and Iz denote

the mass and the inertial moment of the craft, respectively;

Xu̇, Yv̇,Nṙ represent the added masses; dl = [Xu, Yv] and

dr = Nr are linear damping coefficients, vl = diag(ur, vr); T
and τ represent thrust force and torque, respectively; external

disturbances are denoted by bv = [bu(t), bv(t)]T and br(t),
satisfying |bu(t)| ≤ bu, |bv(t)| ≤ bv, |br(t)| ≤ br, where bu, bv, br

are positive numbers.

{I} xI

yI

{B}

xB
yB

T
v

Figure 2: Illustration of {I}, {B}.

B. Trajectory Tracking Problem

The objective of trajectory tracking is to design a control

law, including thrust force and torque, for an underactuated

surface craft so that the craft can track a desired trajectory

pd(t) ∈ R2 (a curve of class at least C4), with arbitrarily small

position error ||p − pd(t)||.
IV. Controller Design

In this section, a nonlinear trajectory tracking controller

is proposed for an underactuated autonomous surface craft,

which is robust to external environmental disturbances. We

start the controller by defining the position error as

z1 = RT(p − pd)

which is expressed in the body frame. Then, we define our

first Lyapunov candidate function as

V1 =
1

2
zT

1 z1

and compute its time derivative, we have

V̇1 = −W1(z1) + zT
1

(
v − RTṗd + k1M−1z1

)
(3)

where W1(z1) = k1zT
1 M−1z1, k1 is a positive number.

Taking a cue from [13], [16], a second error is defined as

z2 = v − RTṗd + k1M−1z1 − δ

where δ = [δ1, δ2]T is a constant vector whose properties will

be specified later. Then, we rewrite (3) as

V̇1 = −W1(z1) + zT
1 (z2 + δ).

Continuing with the backstepping procedure, a new Lya-

punov candidate function is defined as

V2 = V1 +
1

2
zT

2 M2z2

with time derivative

V̇2 = −W2(z1, z2) + zT
1δ + zT

2 M
(
− SM(RTṗd + δ)r

+MSRTṗdr + e1T − vldl − MRTp̈d + k1(v − RTṗd)

+ k2M−1z2

)
+ zT

2 MRTbv.

(4)
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where W2(z1, z2) = k1zT
1 z1 + k2zT

2 z2, k2 is a positive number.
Following [17], the inequality

|χ| ≤ χ tanh(χ/ε) + κε (5)

is used, where κ = 0.2785, ε is any positive number. Then, we
have

zT
2 MRTbv ≤ zT

2 MRTβ1 + κε

with

β1 =
[
bu tanh

(
eT

1 RMTz2bu/ε
)
, bv tanh

(
eT

2 RMTz2bv/ε
)]T
.

Rewriting (4), we have

V̇2 ≤ −W2(z1, z2) + zT
1δ + zT

2 M
(
αr + e1T + η

)
+ κε (6)

with α = −SM(RTṗd + δ) + MSRTṗd,

η = −vldl −MRTp̈d + k1(v − RTṗd) + k2M−1z2 + RTβ1.

To cancel the first component of (αr+η), we choose the thrust
force as

T = −eT
1 (αr + η). (7)

Substituting (7) into (6), we have

V̇2 ≤ −W2(z1, z2) + zT
1δ + zT

2 Me2

(
e2(αr + η)

)
+ κε.

Define the last error, angular velocity error, as

z3 = e2(αr + η)

and define a new Lyapunov candidate function

V3 = V2 +
1
2

z2
3.

Taking the time derivative of V3, we obtain

V̇3 ≤ −W3(z1, z2, z3) + zT
1δ + z3

(
eT

2α̇r + eT
2α

(
− J−1drr

+ J−1τ + J−1br(t)
)

+ eT
2 η̇ + zT

2 Me2 + k3z3

)
+ κε

(8)

Notice that in η̇ there still exist unknown disturbances bv, and
to emphasize the linear dependence on bv, we express η̇ as

η̇ = η̇ +
∂η

∂v
RTbv.

Furthermore, (8) can rewritten as

V̇3 ≤ −W3(z1, z2, z3) + zT
1δ + z3

(
eT

2α̇r + eT
2α

(
− J−1drr

+ J−1τ
)

+ eT
2 η̇ + zT

2 Me2 + k3z3

)
+ z3eT

2αJ−1br

+ z3eT
2
∂η

∂v
RTbv + κε.

(9)

Using inequality (5), we get

z3eT
2
∂η

∂v
RTbv ≤ z3eT

2
∂η

∂v
RTβ2 + κε

and
z3eT

2αJ−1br ≤ z3eT
2αJ−1β3 + κε

with

β2 =
[
bu tanh

(
eT

1 R(
∂η

∂v
)Te2z3/ε

)
, bv tanh

(
eT

2 R(
∂η

∂v
)Te2z3/ε

)]
and

β3 = br tanh
(
eT

2αJ−1brz3/ε
)
.

Then, we can rewrite (9) as

V̇3 ≤ −W3(z1, z2, z3) + zT
1δ + z3

(
eT

2α̇r + eT
2α

(
− J−1drr

+ J−1τ
)

+ eT
2 η̇ + zT

2 Me2 + k3z3 + eT
2
∂η

∂v
RTβ2

+ eT
2αJ−1β3

)
+ κεn.

(10)

where εn = 3ε.
Choosing the torque as

τ = −J(eT
2α)−1

(
eT

2α̇r − eT
2αJ−1drr + eT

2 η̇ + zT
2 Me2

+ k3z3 + eT
2
∂η

∂v
RTβ2 + eT

2αJ−1β3

) (11)

to zero out (eT
2α̇r + eT

2α
(
− J−1drr + J−1τ

)
+ eT

2 η̇ + zT
2 Me2 +

k3z3 +eT
2 (∂η/∂v)RTβ2 +eT

2αJ−1β3). To avoid singularity in the
control law, we need to guarantee

eT
2α , 0

which is equivalent to

eT
1δ ,

Xu̇ − Yv̇

m − Xu̇
(eT

1 RTṗd).

To achieve this objective, we choose δ, such that

|δ1| >
∣∣∣∣Xu̇ − Yv̇

m − Xu̇

∣∣∣∣vmax

where vmax ≥ ||ṗd ||.
Substituting (11) into (10), we get

V̇3 ≤ −W3(z) + zT
1δ + κεn. (12)

where z = [zT
1 , z

T
2 , z3]T,W3(z) = k1zT

1 z1 + k2zT
2 z2 + k3z2

3, k3 is a
positive number. The main result of this work is summarized
in the following theorem.

Theorem 1: Let the craft’s model be described by (1)-(2) and
pd ∈ C

4 be the reference trajectory whose time derivatives are
bounded. Considering the control inputs, (7), (11), the constant
vector δ = [δ1, δ2]T is chosen such that

|δ1| >
∣∣∣∣Xu̇ − Yv̇

m − Xu̇

∣∣∣∣vmax.

For any initial condition, the tracking error ||z|| will be driven to
a ball centered at the origin with radius

√
κεn/λ + ||δ||2/(2ελ),

where k1 > ε/2 > 0, λ = min{k1 − ε/2, k2, k3}, which can be
made arbitrarily small by increasing control gains k1, k2, k3 and
reducing εn, ||δ||.

Proof 1: We apply Young inequality to (12), and conclude
that

V̇3 ≤ −
(
k1 −

ε

2

)
zT

1 z1 − k2zT
2 z2 − k3z2

3 +
(
κεn +

||δ||2

2ε

)
≤ −λ||z||2 +

(
κεn +

||δ||2

2ε

)
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where k1 > ε/2, ε > 0 and λ = min{k1 − ε/2, k2, k3}. From
which we can further get that V̇3 is strictly negative definite
for ||z||2 > κεn/λ + ||δ||2/(2ελ), leading to the conclusion that
||z|| is uniformly bounded by

√
κεn/λ + ||δ||2/(2ελ).

V. Simulation Results

To validate the efficacy of the developed controller herein,
simulation results are given in this section. The main param-
eters used for simulation are presented in Table II, the distur-
bances are chosen as bv(t) = [bu cos(t), bv sin(t)]T (N), br(t) =

br sin(t) (N ·m), with bu = 10, bv = 8, br = 1.

Parameter Value Parameter Value
m 25 Yv̇ -15.25
Iz 5.0715 Nṙ -1.23
Xu 10.7797 k1 60
Yv 16.9827 k2 10
Nr 9 k3 15
Xu̇ −5.91 δ [−0.31, 0]T

Table II: Parameters used in simulation

The desired trajectory is an ellipse defined as

pd(t) =

[
d1 cos(ωt)
d2 sin(ωt)

]
(m)

where d1 = 10, d2 = 6, ω = 0.1 (rad/s). Fig. 3 contrasts the
actual and desired trajectories, showing that the craft tracks the
desired trajectory closely. Correspondingly, the time evolution
of ||z1||, denoted by the blue line, is depicted in Fig. 4. In
steady state, its root mean square error (RMSE) and standard
deviation (SD) are 0.163(m) and 0.029(m), respectively. In
order to show the developed control methodology is capable
of rejecting the external disturbances, Fig. 4 also displays the
time evolution of ||z1|| for an identically derived controller
but without the disturbance rejection terms, represented by
the red line. When it arrives at the steady state, its RMSE
and SD are 0.335(m) and 0.095(m), respectively, which are
much larger that these obtained using the proposed dealing
with disturbances approach, therefore justifying the use of the
proposed control structure. Moreover, Fig. 5 shows the time
evolution of eT

2α, from where we can see it is always larger
than zero, guaranteeing τ, defined in (11), is well-defined.

VI. Conclusion

This paper proposes a solution to the trajectory tracking
problem for an underactuated autonomous surface craft in the
presence of external environmental disturbances. The devel-
oped nonlinear tracking controller can stabilize the craft to
an arbitrarily small neighborhood of the desired trajectory,
obtaining global practical stability. Simulation results are given
and analyzed, validating the efficacy of the proposed control
laws.

-10 -5 0 5 10
x(m)

-10

-5

0

5

10

y(
m

)

Actual Trajectory
Desired Trajectory

Figure 3: Time evolution of the actual craft position and the
desired trajectory.
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Figure 4: Time evolution of ||z1|| with and without dealing
with external disturbances.
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Figure 5: Time evolution of eT
2α which is always nonzero.
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