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Broadcast and Gossip Stochastic Average
Consensus Algorithms in Directed Topologies

Daniel Silvestre , João P. Hespanha , Fellow, IEEE, and Carlos Silvestre

Abstract—We address the problem of a set of agents
reaching consensus by computing the average of their ini-
tial states. We propose two randomized algorithms over a
directed communication graph where either a random node
broadcast its value or a randomly selected pair of nodes
communicate in a distributed fashion. The proposed al-
gorithms guarantee convergence in three important defi-
nitions, namely: almost surely, in expectation, and in the
mean-square sense. We show how the parameters of the
algorithm can be optimized to improve the rate of conver-
gence and compare its rates of convergence for directed
and undirected graphs.

Index Terms—Communication networks, consensus, net-
works of autonomous agents, stability.

I. INTRODUCTION

CONSENSUS refers to the problem where a group of agents
needs to agree on a function of their initial state by means

of a distributed algorithm, in which the communication between
agents is constrained by a network topology. Such problem is
of prime importance and examples of application range from
distributed optimization [1], [2]; motion coordination tasks like
flocking, leader following [3]; rendezvous problems [4]; and
resource allocation in computer networks [5].

Many practical applications have been reformulated as a con-
sensus problem and in other cases as a building block for
algorithms to address more complicated challenges. In [6], a
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distributed Kalman Filter is developed based on two consensus
systems that compute averages. The filter is than applied to the
estimation of the motion of a target in the plane. An experimen-
tal evaluation of distributed Kalman filters based on consensus
can also be found in [7] where the estimation of the motion
of a real robot was performed. Computing the average through
a consensus system in a distributed environment can leverage
the use of algorithms with mild assumptions on the communi-
cation model between the local observers, which motivates the
study of this paper (i.e., considering a gossip and asymmetric
communication at each time step with improved convergence).

In the context of a smart grid, the authors of [8] have used
consensus to implement an incremental cost consensus algo-
rithm that solves the economic dispatch problem, which is the
problem of allocating electrical power and generation to the
different buses and generators. The work in [9] also discusses
how thermal energy storage in a smart building, autonomous
space satellites, and frequency control of power systems can be
seen as a consensus dynamics. The interested reader is directed
to [10] and the vast number of references therein that describe
various works where consensus has been used for many differ-
ent practical applications, namely: biology, sociology, parallel
computation, power networks, robotics, etc. Apart from all the
references more traditionally related with control and automa-
tion, emphasizes is place on: [11] where Hegselmann and Krause
introduced a consensus algorithm to sociology, describing the
dynamics of opinion formation among different persons; [12]
with Evans and Patterson investigating the consensus behavior
in flocks of estrildine finches; in [13], Mirollo and Strogatz stud-
ied the synchronization of pulse-coupled biological oscillators;
and Monus and Barta researched the degree of synchroniza-
tion of sparrows under different predation risk in [14]. All such
examples motivate the study of consensus algorithms.

The average consensus problem has been solved using linear
distributed algorithms with each agent computing a weighted
average of its state and the values received from its neighbors
(see, e.g., [15] and [16]). Several instances of this problem have
been proposed such as considering stochastic packet drops and
link failures [17], [18], quantized data transmissions [19], and
time-varying communication connectivity [15].

An important class of solutions capable of dealing with a
varying network topology caused by nodes joining and leaving
the network was introduced in [20] as a randomized gossip
algorithm. The main feature of this algorithm is that each
agent communicates with a randomly selected neighbor at each
transmission time. In [20], each pair of communicating nodes
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exchange their state information, which assumes bidirectionality
in the communication. In contrast, we do not assume that
communication is bidirectional in the same transmission time.

In this study, we consider the average consensus problem in
scenarios where communication is unidirectional at each time
slot, i.e., at each transmission time, a single agent transmits data
to one or several agents, but does not receive data. Note that at
a different time slot receiver and sender agents may invert their
roles, i.e., the word unidirectional refers only to communica-
tion at a given transmission time. For concreteness, we consider
the two following scenarios: 1) randomized gossip algorithms
in wireless networks, where each agent becomes active at ran-
domly chosen times, transmitting its data to a single neighbor;
and 2) broadcast wireless networks, where each agent transmits
to all the other agents, access to the network occurs with the same
probability for every agent, and the intervals between transmis-
sions are independent and identically distributed. As we shall
see, the unidirectionality communication constraint precludes
in general the existence of a linear distributed algorithm where
associated to each agent there is a single scalar state. The state
of a node is updated based on the values of the other agents, as
in related problems where the communication topology of the
network is also time varying, but satisfies different assumptions
(see [15] and [16]).

The state-of-the-art related to our study of a consensus algo-
rithm based on the gossip communication includes the works
in [20] and [21]. As supra cited, [20] considers bidirectional
communications but provides upper and lower bounds on the
convergence to the average consensus. More recently, [21] pro-
poses a linear algorithm converging almost surely and in the
mean square sense to consensus. The study presented in this
paper can be seen as a generalization of the one in [21] since a
careful selection of the parameters returns the algorithm in [21]
as a worst-case performance. We illustrate via simulations for
a directed topology example and a bidirectional one how the
convergence rate can vary. Additionally, by employing a tech-
nique based on a Lyapunov function, it is possible in this paper
to provide a proof of the exponential mean square stability as
opposed to asymptotic convergence in [21].

To that extent, we focus on symmetric communication topolo-
gies, meaning that if an agent a can communicate with an agent
b, then the reverse is also possible, although this does not take
place at the same transmission time, i.e., at each transmission
time, the graphs modeling communications are in general asym-
metric. Note that this is typically the case in wireless networks,
and therefore, this assumption is reasonable to assume in both
scenarios (1) and (2).

The main contributions of this paper are twofolded.
1) We introduce a new algorithm based on state augmen-

tation to deal with the case that communication is uni-
directional in each time slot. We consider two scenar-
ios, namely the gossip—where each node communicates
with one neighbor; and broadcast—where each node
transmits to the whole network but does not receive in-
formation at that time slot. We show that such an al-
gorithm is faster than the ones in the state-of-the-art
and provide results regarding three different stochastic

convergence definitions (including the exponential mean
square stability) and present the necessary and suffi-
cient conditions for convergence. Results regarding con-
vergence rates in discrete time are presented for both
scenarios.

2) We address the problem of finding the fastest converg-
ing directed algorithm showing that such an optimization
can be separated into optimizing the probabilities matrix
using standard techniques from convex optimization and
using a brute force strategy (or other form) to select the
algorithm’s parameters.

The body of research focusing on consensus algorithms is
quite extensive. For example, in [22], a technique using a scal-
ing variable is employed and the network model consists of
all nodes communicating to its neighbors with the correspon-
dent communication graph being strongly connected. In [23], a
gossip algorithm is presented using an asynchronous commu-
nication between the pairs of nodes. The average consensus is
achieved using a state augmentation technique and a nonlin-
ear operation based on the received state and the node’s own
state. The method does not assume a symmetric communication
topology, but it is only proved to converge almost surely and not
in the mean square sense. Our algorithm is the directed linear
parallel of the standard gossip algorithm presented in [20] and
relates to the linear distributed algorithms [16].

The study of convergence using ergodic infinite sequences of
stochastic matrices has also been applied to study the consensus
problem. In [24], the underlying network is generated by a ran-
dom graph process and convergence is shown to be equivalent
to the spectral radius of the expected value matrix having the
second largest eigenvalue inside the unit circle. The chain prod-
uct of stochastic matrices is studied in [25] for balanced and
strongly aperiodic chains. In [26], the concept of ergodicity is
explored to prove that a weighted gossip algorithm, which uses
a variable to estimate the sum of all initial states and a weight
variable to count the number of nodes, converges to the aver-
age consensus. These proposals using the ergodicity concept
require each matrix in the chain to have strict positive diagonal,
which differs from the class of algorithms studied in this paper.
The same concept of a variable to track the sum and another
for the number of nodes is used in [27], even though, the main
focus is on bounds for the time of convergence. In [28], mul-
tiple dynamic weight assignment techniques are proposed and
the algorithm is showed to converge if the underlying graph is
strongly connected. In essence, all these proposals that require
strongly connected graphs as the support graph for each update
matrix differ from our work in the sense that in each iteration
more than a pair of nodes need to communicate.

This paper extends the work done in [29] by providing a proof
for converge in the mean square sense and almost surely and
also by showing how to use the structure of the expected value
matrix to simplify the nonconvex optimization of the average of
the nonsymmetric transmission matrices.

The remainder of this paper is organized as follows. In
Section II, we introduce the average consensus problem and
the network model. We proceed to the proposed solution in
Section III, and state convergence and respective rates results

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on January 26,2021 at 11:01:54 UTC from IEEE Xplore.  Restrictions apply. 



476 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 6, NO. 2, JUNE 2019

in Sections IV and V. Concluding remarks and directions for
future work are given in Section VI.

Notation: The transpose and the spectral radius of a ma-
trix A are denoted by Aᵀ and rσ (A), respectively. We let
1n := [1 . . . 1]ᵀ and 0n := [0 . . . 0]ᵀ indicate n-dimension vec-
tor of ones and zeros, and In denotes the identity matrix of di-
mension n . Dimensions are omitted when no confusion arises.
The vector ei denotes the canonical vector whose components
equal zero, except component i that equals one. The notation
diag([A1 . . . An ]) indicates a block diagonal matrix with blocks
Ai . The Kronecker product is denoted by ⊗. The operation
vec(A) returns a vector resulting from stacking all columns of
matrix A.

II. PROBLEM DESCRIPTION

We consider a set of n agents with scalar state xi(k), 1 ≤ i ≤
n, and our goal is to construct a distributed iterative algorithm
that guarantees convergence of the state to its initial average
value, i.e.,

lim
k→∞

xi(k) = xav :=
1
n

n∑

i=1

xi(0). (1)

We refer to this problem as the average consensus problem.
In gossip algorithms, each node has a clock which at random

times chooses one of its neighbors to communicate its own state.
The time a communication is attempted is called a transmission
time k and assumed that each node has the same probability
of being the node that initiated the communication. Such node,
denoted by i, chooses a random out-neighbor j according to
the probability distributions wi1 , wi2 , . . . , win ,

∑n
j=1 wij = 1

∀i. The set of all out-neighbors of i is denoted by Nout(i),
with the number of elements in the set being given by nout, and
equivalently, the set of all in-neighbors of i is denoted by Nin(i).

The communication topology is modeled by a directed graph
G = (V, E), where V represents the set of n agents, also called
nodes, and E ⊆ V × V is the set of communication links, also
called edges. The node i can send a message to the node j, if
(i, j) ∈ E. If there exists at least one i ∈ V such that (i, i) ∈ E,
we say that the graph has self-loops, which can model, for
example, packet drops since node i only has access to its own
value at that transmission time. We associate to the graph G a
weighted adjacency matrix W with entries

Wij :=

{
wij , if (i, j) ∈ E

0, otherwise
;wij ∈ [0, 1].

Our goal is to solve this problem using a linear randomized
gossip algorithm defined by the iteration

x(k + 1) = Ukx(k) (2)

where Uk is selected randomly from a set {Qij , 1 ≤ i ≤ n, 1 ≤
j ≤ n}. The matrices Qij implement the update on state vari-
ables xi and xj caused by a transmission from node i to
node j and represent a set of column stochastic matrices (i.e.,
1ᵀQij = 1ᵀ) to keep the average between iterations.

Since matrices Uk in (2) are randomly chosen, the state in (2)
is a stochastic process and we need to specify how to interpret
the convergence in (1).

Definition 1 (Stochastic Convergence): We say that the
state of (2):

1) converges almost surely to average consensus if

lim
k→∞

xi(k) = xav :=
1
n

n∑

i=1

xi(0) ∀i∈{1,...,n}

almost surely;
2) converges in expectation to average consensus if

lim
k→∞

E[xi(k)] = xav ∀i∈{1,...,n}

3) converges in the mean square sense to average consensus
if

lim
k→∞

E[(xi(k) − xav)2 ] → 0 ∀i∈{1,...,n}

4) converges exponentially in the mean square sense to av-
erage consensus if for all k

E[(xi(k) − xav)2 ] ≤ λk (xi(0) − xav)2 ∀i ≤ n,

0 < λ < 1.

III. PROPOSED SOLUTION

Our original proposed solution [29] to the randomized gossip
case is presented next. In [30], it has been showed that the asym-
metric randomized gossip algorithm does not achieve average
consensus even if the expected value transmission matrix is a
symmetric matrix.

We start by augmenting the original state x(k) with an auxil-
iary vector y(k) ∈ Rn , and define

z = (x, y). (3)

We consider a linear distributed algorithm taking the form

z(k + 1) = Ukz(k) (4)

where z(0) = (x(0), y(0)), y(0) = 0. Intuitively, the purpose of
y it to assure that at each iteration the total state average is kept
constant, i.e., that

∑n
1 xi(k + 1)+

∑n
1 yi(k + 1)

2n
=

∑n
1 xi(k)+

∑n
1 yi(k)

2n
. (5)

If we initialize y to zero and guarantee that y(k) goes to zero,
then average consensus is achieved. More specifically, the pro-
posed algorithm can be described as follows.

At time k, a given node i sends a message containing xi(k)
and yi(k) to one out-neighbor. The node i does not change its
state, i.e.,

xi(k + 1) = xi(k) (6)

and resets the auxiliary state to zero

yi(k + 1) = 0. (7)

A node j receiving this message, updates its state xj (k) accord-
ing to

xj (k + 1) = (1 − α)xj (k) + αxi(k) + βyj (k) + γyi(k) (8)
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Algorithm 1: Gossip algorithm G.

Require: Set initial state x(0).
Ensure: Computation of the average of x(0).
1: /* Initialize z */

2: z(0) :=
[

x(0)
0n

]

3: for each k do
4: /* Randomly select a pair (i, j) */
5: i = rand()
6: j = rand()
7: /* Update the state of node i */
8: zi(k + 1) according to (6) and (7)
9: /* Update the state of node j */

10: zj (k + 1) according to (8) and (9)
11: end for

and updates its variable yj (k) according to

yj (k + 1) =
yi(k)

nout(i, k)
+ yj (k) + xj (k) − xj (k + 1) (9)

so that the total state average is kept constant, i.e., (5) holds.
In the following sections, we present the details for each of the
considered scenarios.

A. Gossip Algorithm G
The matrices Uk are taken from the set {Qij , 1 ≤ i, j ≤ n},

where each Qij corresponds to a transmission (see the pseu-
docode of the algorithm for each transmission in Algorithm 1)
from node i to an out-neighbor node j, and these matri-
ces are described as follows. Let Λi := diag(ei) and Ωij :=
I − (Λi + Λj ). Then

Qij =

[
Aij Bij

Cij Dij

]
(10)

where

Aij := I − αΛj + αej eᵀ
i

Bij := βΛj + γej eᵀ
i

Cij := Λj (I − Aij )

Dij := Ωij + Λj (I + ej eᵀ
i − Bij ). (11)

The matrices defined in (10) also model the case where a node
i picks itself when there is a clock tick (with probability wii).

The matrices Uk are by construction independent and identi-
cally distributed, and satisfy

Prob[Uk = Qij ] =
1
n

wij

( 1
n is the probability that node i is the one whose clock ticks at

k and wij the probability that i picks its out-neighbor node j).

B. Broadcast Algorithm B
The matrices Uk are taken from the set {Ri, 1 ≤ i ≤ n},

where each Ri corresponds to a transmission (see Algorithm 2)

Algorithm 2: Broadcast algorithm B.

Require: Set initial state x(0).
Ensure: Computation of the average of x(0).
1: /* Initialize z */

2: z(0) :=
[

x(0)
0n

]

3: for each k do
4: /* Randomly select an updating node i */
5: i = rand()
6: /* Update the state of node i */
7: zi(k + 1) according to (6) and (7)
8: for each j ∈ Nout(i) do
9: /* Update the state of node j */

10: zj (k + 1) according to (8) and (9)
11: end for
12: end for

from node i to every other node. Let Λi := diag(ei), Ωi =
(I − Λi). Then

Ri =
[

Ai Bi

Ci Di

]
(12)

Ai = (1 − α)I + α1neᵀ
i

Bi = Ωi(βI + γ1neᵀ
i )

Ci = Ωi(I − Ai)

Di = Ωi

(
I +

1neᵀ
i

n − 1
− Bi

)
.

The matrices Uk are independent and identically distributed due
to our assumption that nodes access the network with the same
probability, i.e.,

Prob[Uk = Ri ] =
1
n

.

Hereafter, we denote by gossip algorithm G, the linear dis-
tributed algorithm modeled by (4) and (10), and denote by
broadcast algorithm B, the linear distributed algorithm mod-
eled by (4) and (12). Note that, by construction, for both gossip
and broadcast algorithms, the matrices {Uk , k ≥ 0} are such
that

[
1ᵀ

n 1ᵀ
n

]
Uk =

[
1ᵀ

n 1ᵀ
n

]
(13)

which means that the total average is preserved at each iteration,
i.e., 1ᵀ

2nz(k + 1) = 1ᵀ
2nz(k), and

Uk

[
1n

0n

]
=

[
1n

0n

]
(14)

which means that if consensus is achieved at iteration k, i.e.,
if x(k) = c1n and y(k) = 0n , the state remains unchanged at
iteration k + 1, i.e., x(k + 1) = c1n and y(k + 1) = 0n .

IV. CONVERGENCE

In this section, we provide results regarding the conver-
gence for the two considered scenarios. We start by providing
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necessary and sufficient conditions to test the convergence of the
algorithms for a particular network topology, which can be seen
as a generalization of the bidirectional case for a unidirectional
case with state augmentation.

The next theorem provides necessary and sufficient condi-
tions for convergence of any of the algorithms with state aug-
mentation.

Theorem 1: Consider a linear distributed algorithm (4)
where {Uk , k ≥ 0} are characterized by (13) and (14), and are
randomly chosen from a setM := {Bi, 1 ≤ i ≤ np}, according
to

Prob[Uk = Bi ] = pi,

np∑

i=1

pi = 1.

Then, the linear distributed algorithm converges in expectation
to average consensus if and only if

rσ

( np∑

i=1

piBi − 1
n

[
1n

0n

][
1ᵀ

n 1ᵀ
n

])
< 1 (15)

and converges in the mean square sense to average consensus if
and only if

rσ

( np∑

i=1

piBi ⊗ Bi − S

)
< 1 (16)

where

S :=
1
n2

([
1n

0n

]
⊗

[
1n

0n

])
(
[

1ᵀ
n 1ᵀ

n

] ⊗ [
1ᵀ

n 1ᵀ
n

]
).

Proof: We start by proving (15). Let R := E[Uk ] =∑np

i=1 Bi . Since Uk are i.i.d matrices, we have E[z(k + 1)] =
RE[z(k)]. By conditioning k times, we have E[z(k + 1)] =
Rkz(0), from which we must have Rk → 1

n [ 1n

0n
] [1ᵀ

n 1ᵀ
n ] since

we want z(k) to converge to consensus. By linearity of the ex-
pected value operator and since we defined Bi as in (13) and
(14), we have an eigenvalue of 1 corresponding to the left eigen-
vector [1ᵀ

n 1ᵀ
n ] and to the right eigenvector [ 1n

0n
]. We need to

have the remaining eigenvalues to have magnitude strictly less
than 1, which gives (15).

To prove (16), we calculate the E[z(k + 1)z(k + 1)ᵀ] =
E[Ukz(k)z(k)ᵀUᵀ

k ]. Let us define Z(k) = z(k)z(k)ᵀ, then

Z(k + 1)ij = ((Ukz(k))(Ukz(k))ᵀ)ij

= (Ukz(k))i(Ukz(k))j .

Defining Z̃(k) = vec(Z(k)), we have Z̃(k + 1) = (Uk ⊗
Uk )Z̃(k). Let R2 := E[Uk ⊗ Uk ] =

∑np

i=1 Bi ⊗ Bi . Since Uk

are i.i.d, E[Z̃(k + 1)] = R2E[Z̃(k)], which by repeating the
conditioning, we get E[Z̃(k + 1)] = Rk

2 Z̃(0). Thus, Rk
2 → S

for the system to go to consensus. Take v = [ 1n

0n
] and w =[

1ᵀ
n 1ᵀ

n

]
and again due to linearity of the expected value op-

erator, R2 has eigenvalue 1 for the right eigenvector v ⊗ v and
the left eigenvector w ⊗ w. To have convergence all the remain-
ing eigenvalues must have magnitude strictly less than 1, which
gives (16). �

The previous theorem related the convergence with the spec-
tral radius of a matrix for a given network topology and probabil-

ities of communication. The result can be used to test if a given
configuration produces an exponential convergent solution in
some stochastic sense.

Remark 1: We remark that the algorithm in [21] is a par-
ticular instance of G, where α = w, β = εw, and γ = 0 (where
w and ε are mixing parameters of the algorithm in [21]). There-
fore, by setting γ = 0 and picking sufficiently small α and β, we
recover the same result that the algorithm G converges asymp-
totically in the mean square sense.

In the following theorem, we show that algorithm G con-
verges exponentially in the mean square sense for any strongly
connected graph with symmetric communication probabilities.

Theorem 2 (Convergence of G): For any graph G, which is
strongly connected and admits a symmetric weighted adjacency
matrix W , the algorithm G with parameters α = β = γ = 1/2
converges to consensus:

1) almost surely;
2) in expectation;
3) in mean square sense.
Proof: We start by proving convergence (2). Let

R := E[Uk ] =
n∑

i=1

∑

j∈Nout(i)

wijQij .

Since E[z(k + 1)] = RE[z(k)] from the fact that Uk are inde-
pendent, we have that

E[z(k + 1)] = E

[[
x(k + 1)
y(k + 1)

]]
= Rkz(0) = Rk

[
x(0)

0

]

and therefore, it suffices to prove that

lim
k→∞

Rk =
1
n

[
1n

0n

][
1ᵀ

n 1ᵀ
n

]
(17)

from which we conclude that limk→∞ E[x(k + 1)] = 1nxav,
xav = 1ᵀ

nx(0).
From (10) and (11), we notice that we can partition R into

blocks R =
[

R1 R2
R3 R4

]
where each block is a linear combination

of the following three matrices:

X =
n∑

i=1

∑

j∈Nout(i)

wijΛj , Y =
n∑

i=1

∑

j∈Nout(i)

wijΛi

Z =
n∑

i=1

∑

j∈Nout(i)

wij ej eᵀ
i .

It is easy to see that Z = W ᵀ = W (since we assume that matrix
W is symmetric) and Y = I . Moreover

X =
n∑

j=1

∑

i∈Nin(j )

wijΛj =
n∑

j=1

Λj = I

where we used the fact that
∑

i∈Nin(j ) wij = 1, i.e., the sum of
weights for the in-neighbors of i equals to one, due to the key
assumption that W : Wij = wij is a doubly stochastic matrix.
Therefore, each Ri is a linear combination of the matrices W
and I and we can write

R = P1 ⊗ Im + P2 ⊗ W
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where for α = β = γ = 1
2 ,

P1 =

[
1 − 1

2n
1

2n
1

2n 1 − 3
2n

]
, P2 =

[
1

2n
1

2n

− 1
2n

1
2n

]
.

We denote an eigenvalue of a matrix A by λi(A) and the set
of eigenvalues by {λi(A)}. Let PS (δ) := P1 + δP2 . Then, one
can obtain that

λi(PS (δ)) = 1 +
δ − 2 ±√

2 − δ2

2n
, i ∈ {1, 2}. (18)

Let wP i be the two eigenvector of PS (δ), and vP j denote the n
eigenvectors of W (note that W is symmetric, and therefore, it
has n eigenvectors). Then, R has 2n eigenvectors wP i ⊗ vP j ,
since one can show that

R(wP i ⊗ vP j ) = λ�(R)wPi
⊗ vP j

where the set of eigenvalues of R is given by

{λ�(R), 1 ≤ � ≤ 2n} = {λi(PS (ηj )) : ηj ∈ {λj (W )}
1 ≤ i ≤ 2, 1 ≤ j ≤ n}

Since W is symmetric and doubly stochastic, and it is a weighted
adjacency matrix of a strongly connected and aperiodic graph,
the eigenvalues of W are real, W has a simple eigenvalue at
1, and all the remaining eigenvalues belong to the set (−1, 1).
Corresponding to the simple eigenvalue 1 of W , R has two
eigenvalues at {λi(P1 + P2)} = {1, 1 − 1/n}. Corresponding
to the eigenvalues of W that belong to the set (−1, 1), the
eigenvalues of R are inside the unit circle. This can be shown by
noticing that (18) is a strictly increasing function when −1 <
δ < 1 for each i, and using this fact, it is easy to conclude
that rσ (P1 + δP2) < 1 for −1 < δ < 1. Thus, R has a single
eigenvalue at 1, all the remaining eigenvalues are inside the unit
disk, and the vectors vR := [ 1n

0n
] and wR :=

[
1ᵀ

n 1ᵀ
n

]
are left

and right eigenvalues of R, respectively, associated with this
eigenvalue 1. This implies that

lim
k→∞

Rk =
1

wRvR
vRwR

which is (17).
To prove convergence (3), let us introduce the shorter notation

for the minimum and maximum as

xmin(k) := min
�

x�(k), xmax(k) := max
�

x�(k)

and a Lyapunov function

V (x(k)) = xmax(k) − xmin(k).

Then, we have that ∀k ≥ 0

‖x(k) − xav1n‖2 =
n∑

�=1

(x�(k) − xav)2

≤ (n − 1)V (x(0))
n∑

�=1

xmax(k) − xmin(k)

(19)
where the inequality in (19) comes from the fact that, given the
iteration defined in (8) and (9), any product of matrices Qij have

a constant sum of entries equal to 2n and any entry is not larger
than 1. Combining these two facts, the maximum difference
between two nodes is obtained when the row in the product of
matrices Qij corresponding to �max := arg max� x�(k) is

e�max

[−(n − 1) 1ᵀ
2n−1

]
+

[
1n

0n

]
∗ eᵀ

1

i.e., the xmax(k) ≤ (n − 1)(xmax(0) − xmin(0)) ∧ xmin(k) ≥
xmin(0) (and following the same reasoning, xmax(k) ≤
xmax(0) ∧ xmin(k) ≥ xmin (0) − (n − 2)(xmax(0) − xmin(0))
for the case of selecting the row in the product of ma-
trices Qij corresponding to the xmin(k)). In both cases,
V (x(k)) ≤ (n − 1)V (x(0)).

Using (19), it follows

E[‖x(k) − xav1n‖2 |x(0)] ≤ (n − 1)V (x(0))E[V (x(k))|x(0)].

We shall prove that

E[V (x(k))|x(0)] ≤ cγ̄kV (x(0)) (20)

for a constant c from which stability in the mean square sense
follows, because

E[‖x(k) − xav1n‖2 |x(0)] ≤ (n − 1)cγ̄kV (x(0))2

for some positive constant c and γ̄ < 1.
To prove (20), it is sufficient to show that

E[V (x(k + τ))|x(k)] − γV (x(k)) ≤ 0 (21)

for time interval of size τ , constant γ < 1, which relates to γ̄
through γ

k
τ = γ̄k , and where E[·|·] is the conditional expected

value operator.
In order to upper bound the expected value in (21), we can de-

fine a finite sequence θ, of size τ , such that θ1 = Uk+1 , . . . , θτ =
Uk+τ . Since by assumption the graph G is strongly connected
and symmetric, there exists a path of nodes of at most n − 1
links that go from the maximum to the minimum-value nodes.
Let us assume the longest path possible of n − 1 links and define
the random variables π1 , . . . , πn such that π1(k) = xmax(k) and
πn (k) = xmin(k) with each πi(k) being the ith node in the path
from the maximum and minimum-value nodes at time k.

With the objective of writing xmin(k + τ) and xmax(k + τ)
with terms that include both xmin(k) and xmax(k), we consider
a finite sequence, for the time instant k, θ
 . This sequence is
constructed as follows: θ


1 = Qπ1 π2 , θ


2 = Qπ2 π1 , . . . , θ



τ−1 =

Qπn −1 ,πn
, θ


τ = Qπn ,πn −1 , where we omitted the dependence of
π on k to improve the readability. Therefore, each θ


i is also
a random variable as it depends on the path given by π. This
sequence of updates, of size τ = 2(n − 1) occurs with nonzero
probability

pgood =
1

n2(n−1)

n−1∏

�=1

([W ]π� ,π� + 1 )
2

as all weights [W ]π� ,π� + 1 are nonnegative and
[W ]π� ,π� + 1 = [W ]π� + 1 ,π�

. Computing the product
Qπ1 π2 Qπ2 π1 . . . Qπn −1 ,πn

Qπn ,πn −1 x(k), the expected value of
function V (·) subject to the chosen sequence θ
 to occur from
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time k to k + τ becomes

E[V (x(k + τ))|x(k), θ = θ
 ] =
1
2
xπn

(k) +
1
2
xπn −1 (k)

−
n−1∑

�=1

[
1
2�

xπ�
(k)

]

− 1
2n−1 xπn

(k)
(22)

where we draw attention for the fact that conditioning on x(k)
means that the variable π becomes deterministic. We can upper
bound (22) and get

E[V (x(k + τ)|x(k), θ = θ
 ] ≤ xπn
(k)

−
[(

1 − 1
2n−1

)
xπ1 (k) +

1
2n−1 xπn

(k)
]

≤
(

1 − 1
2n−1

)
(xπn

(k) − xπ1 (k))

≤
(

1 − 1
2n−1

)
V (x(k))

where all the xπ�
(k) inside the summation in (22) were

replaced by xπ1 (k). Let us introduce the notation Θ :=
{θ
}⋃

Θn
⋃

Θb
⋃

Θc , where Θ is the set of all finite sequences
of updates of size τ , Θn is a subset of the sequences that do not
increase the expected value, Θb is the subset of sequences in-
creasing the expected value in at most ϑ for some constant ϑ,
and Θc is the subset of sequences that decrease of at least ϑ.
Sets {θ
},Θn ,Θb , and Θc are chosen to be mutually disjoint.
Thus, the expected value in (21) can be written as

E[V (x(k + τ))|x(k)] =
∑

θ∈Θ

pθE[V (x(k + τ))|x(k), θ]

= pgoodE[V (x(k + τ))|x(k), θ = θ
 ]

+
∑

θn ∈Θn

pθn E[V (x(k + τ))|x(k), θ = θn ]

+
∑

θb ∈Θ b

pθb E[V (x(k + τ))|x(k), θ = θb ]

+
∑

θc ∈Θ c

pθc E[V (x(k + τ))|x(k), θ = θc ]

(23)
where pθ is the probability of occurring the finite sequence θ
out of all possible finite sequences of size τ .

Let us define the random variables πs
i (k) of length �

as each representing a node in a sorted path of nodes.
All sequences θb , of size τ = � + 1, are characterized by
θb

1 = Qπs
1 πs

2
, . . . , θb

τ−1 = Qπs
� −1 πs

�
, θb

τ = Qκπs
�
, for some node

κ (once again to improve the readability, we omitted the depen-
dence of πs on k).

We focus on showing that there is an equivalent sequence θc

with a greater or equal probability and decrease of the function
V (·) as that of θb . Since matrix W is symmetric, the probability
Wij = Wji , which means we can reverse paths and maintain the
same probability. Also, the selection of matrices Qij is indepen-

dent that makes probability of Qi1 j1 Qi2 j2 equal to Qi2 j2 Qi1 j1 .
We must consider following three cases.

1) κ = πs
�—i.e., failed transmission of the last node, which

must be the minimum or the maximum.
2) κ = πs

�−1—i.e., a sequence that ends in the minimum or
the maximum.

3) κ �= πs
�—i.e., a communication from a node different

than the minimum and maximum.
Let us construct a sequence θc , of size τ = � + 1 for case

1). Intuitively, the problem with case 1) is that the failed trans-
mission forces the sum of the accumulated y variable with x.
For 1), we have θc

1 = Qπs
� π s

�
, θc

2 = Qπs
1 πs

2
, . . . , θc

τ = Qπs
� −1 πs

�
,

where we changed the place of the failed transmission. In this
case, we are in the same conditions, then 2), which we address
next, but for sequences of size τ = �.

For case 2), if πs
1 ∈ {xmin(k), xmax(k)}, we can construct

θc
1 = Qπs

� π s
� −1

, . . . , θc
τ = Qπs

2 πs
1
, where we reversed the path.

In doing so, pθc = pθb and the variation ϑ for θc is greater
or equal than the variation for θb since πs

1 − xav ≥ πs
ρ − xav.

Intuitively, the bad case was due to nodes above the average
contacting the minimum node, which was closer to the average
than the maximum, or vice versa. If πs

1 /∈ {xmin(k), xmax(k)},
we will have to consider all the sequences πs of the same length
entering πs

� . Since W is symmetric, all the in-communications
links sum to one, and therefore, the probabilities of all sequences
πs for xmin(k) have the same probability as the sequences πs

ending in xmax(k) and the total variation is negative by the same
reasoning.

Finally, the construction for case 3) follows θc
1 =

Qπs
� π s

� −1
, . . . , θc

τ−1 = Qπs
2 πs

1
, θc

τ = Qπs
� κ . The sequence θc uses

the same communicating pairs of nodes, so it happens with the
same probability.

The main consequence is that
∑

θb ∈Θ b

pθb ≤
∑

θc ∈Θ c

pθc .

Given that

∀θn ∈ Θn : E[V (x(k + τ))|x(k), θ = θn ] ≤ V (x(k))

∀θb ∈ Θb : E[V (x(k + τ))|x(k), θ = θb ] ≤ V (x(k)) + ϑ

and

∀θc ∈ Θc : E[V (x(k + τ))|x(k), θ = θc ] ≤ V (x(k)) − ϑ

it is possible to overbound the terms in θn , θb , and θc in (23) as
(1 − pgood)V (x(k)) and get

E[V (x(k + τ))|x(k)] ≤ pgood

(
1 − 1

2n−1

)
V (x(k))

+ (1 − pgood)V (x(k)).

(24)

By simplifying (24), we get

E[V (x(k + τ))|x(k)] ≤
[
1 − pgood

1
2n−1

]
V (x(k))

which satisfies (21) for γ = 1 − pgood
1

2n −1 , getting convergence
in the mean square sense.
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To prove 1) notice that we verified 2) and 3), which means
convergence for both the expected value and the expected value
of the square occur with an exponential rate. Using the Borel–
Cantelli first lemma [31], [32], the sequence converges almost
surely.

Remark 2: In Theorem 2, the parameters α, β, and γ were
made 1

2 to alleviate the proofs since the main objective is to show
that the algorithm has a possible selection of parameters that
achieves the exponential mean square stability for undirected
graphs. The study for a general value is a laborious task but
follows the same steps.

Let us recall the definition of disagreement δ(x) [33], which is
interesting for proving convergence for the broadcast algorithm.

Definition 2 (Disagreement): For any vector x ∈ Rn , let
us define its disagreement δ with respect to some norm ||.|| as

δ(x) = ||x − 1xav||.
In particular, if using the ||.||∞ and introducing the notation
x = maxi=1,...,n xi and x = mini=1,...,n xi , we get

δ(x) =
x − x

2
.

Definition 2 is particularly important to give properties about
the evolution of the state in each iteration, which we introduce
in the following definition.

Definition 3 (Nonexpansive and pseudocontraction): A
matrix A ∈ Rn is said to be nonexpansive if

||Ax − 1xav||∞ ≤ ||x − 1xav||∞
which is equivalent to say that

δ(Ax) ≤ δ(x)

and if the strict inequality holds then the matrix is a pseudocon-
traction.

Definition 4: A phase corresponds to an interval of time
[k̃τ , k̃τ +1) such that ∃k


i ∈ [k̃τ , k̃τ +1)∀i : 1 ≤ i ≤ n, node i
transmits at time k


i .
The following lemma gives the nonexpansive behavior using

the time scale of phases for the algorithm B.
Lemma 1: For λ > 0, define Sλ = {z ∈ Rn : δ(z) < λ},

where z is defined in (3) and satisfy the algorithm specified
by (4) and (6)–(9). If z(0) ∈ Sλ, then z(k̃τ ) ∈ Sλ∀k̃τ > 0 with
probability 1. Equivalently

Prob

[
sup

0≤k̃ τ <∞
δ(z(k̃τ )) ≥ λ

]
= 0.

Proof: From (6)–(9) and taking all the parameters to
be 1/2, we get that ∀i ∈ V,∀k > 0 : Rk

i = Ri . For the base
case of a two-node network, and assuming without the loss
of generality that we label as node 1 the node that trans-
mitted first, we will get z(k̃1) = Rk

1 R2z(0) = R1R2z(0) =
1
2

[
12
02

][
1ᵀ

2 1ᵀ
2

]
z(0). This implies z(k̃0) ≥ z(k̃1), and con-

versely, z(k̃0) ≤ z(k̃1), which gives δ(z(k̃1)) ≤ δ(z(k̃0)). The
same reasoning is valid for subsequent k̃τ , thus meaning that
for a two-node network, we have δ(z(k̃τ +1)) ≤ δ(z(k̃τ )).

If we assume that δ(z(k̃τ +1)) ≤ δ(z(k̃τ )) for any τ and a net-
work of n nodes, then let us prove the statement for a network of
n + 1 nodes. Let us label node n + 1 as the last to transmit for the
first time since k̃τ . By assumption, all the remaining nodes will
have δ(z−(n+1)(k̃τ +1)) ≤ δ(z−(n+1)(k̃τ )), where the variable
z−(n+1) represents all the states except for the one of node n + 1.
Prior to time k̃τ +1 , node n + 1 state is denoted by zn+1(k̃−

τ +1)
and in its x component, it has xn+1(k̃−

τ +1) ≤ xn+1(k̃τ ), and in
the y component, a value η, which is the difference changed in
the x variable to keep the sum of the states constant. See that
η < 0 if x(0) < xav and nonnegative otherwise. When node
n + 1 had xn+1(0) < xav, this implies that it will decrease the
state variable of the remaining nodes on a proportion η

n+1 .
Therefore, the quantity

∑n
i=1 xi − xav + yi decreases (as the

sum of deviation above the average are greater than the devia-
tions below the average when excluding the node n + 1, which
directly implies that δ(z(k̃τ +1)) ≤ δ(z(k̃τ )). Conversely, it also
holds when the node n + 1 has x(0) ≥ xav. Then, by induction,
we have the property δ(z(k̃τ +1)) ≤ δ(z(k̃τ )) for all n, which
proves the lemma. �

Based on Lemma 1, it is possible to state the following theo-
rem regarding the convergence of B.

Theorem 3 (Convergence ofB): For any complete graph G,
the algorithm B with parameters α = β = γ = 1/2 converges
to consensus:

1) almost surely;
2) in expectation;
3) in mean square sense.
Proof: We start by proving convergence in 2) by showing

that rσ (R) ≤ 1. We start by noticing that matrix R in this case
can be rewritten as

R = P1 ⊗ In + P2 ⊗ 1n1ᵀ
n

n

where

P1 =

[
1 − α −γ+(n−1)β

n

α n−2
n−1 + γ−(n−1)β

n

]
, P2 =

[
α γ

−α 1
n−1 − γ

]
.

Then, R has two simple eigenvalues in 1 and 1/n and two
eigenvalues with multiplicity n − 1 corresponding to

λi(R) =
n − n2 + 1 ±√

n4 − 4n3 + 5n2 − 2n + 1
2n(1 − n)

. (25)

Using the derivatives of this expression for the eigenvalues
in (25), we have λ1 ∈ [ 1

2 ; 1] and λ2 ∈ [0; 5−√
13

12 ]. Therefore,
rσ (R) ≤ 1, which concludes the proof of convergence in ex-
pectation.

To establish 3), let us select time instances as in the Definition
4 of phase and, by Lemma 1, the variable x is pseudocontracting
meaning that x(k̃) ∈ Sλ, λ > 0 and that the derivative is nega-
tive over phase intervals (also see [34] and references therein).
An equivalent formulation is that with probability one, we have
∀k̃ : V (x(k̃)) ≤ V (x(0)).
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Given the definition of the function V (x(k)) := xmax(k) −
xmin(k), it holds that ∀k ≥ 0

‖x(k) − 1nxav‖2 =
n∑

�=1

(x�(k) − xav)2

≤ V (x(0))
n∑

�=1

|x�(k) − xav|

≤ V (x(0))
n∑

�=1

xmax(k) − xmin(k) (26)

where the aforementioned inequalities come from the defini-
tion of maximum and minimum and ∀� ≤ n, k ≥ 0 : |x�(k) −
xav| ≤ xmax(k) − xmin(k).

Using (26), it follows that

E[‖x(k) − 1nxav‖2 |x(0)] ≤ nV (x(0))E[V (x(k))|x(0)].
(27)

However, given the result in 2), we have that

E[V (x(k + 1))|x(k)] ≤ ζV (x(k))

for 0 < ζ < 1. Therefore, (27) becomes

E[‖x(k) − 1nxav‖2 |x(0)] ≤ nζkV (x(0))2

from which the conclusion follows.
The result in 1) is given by the exponential convergence in the

mean square sense in 3). In more detail, the Markon’s inequality
states for a random variable X that

P [X ≥ a] ≤ E[X]
a

.

If we define the error as e(k) = x(k) − 1xav, we can compute

lim
k→∞

P

[‖x(k) − 1nxav‖
‖x(0) − 1nxav‖ ≥ ε

]
= lim

k→∞
P

[
e(k)ᵀe(k)
e(0)ᵀe(0)

≥ ε2
]

≤ lim
k→∞

ε−2 E[e(k)ᵀe(k)]
e(0)ᵀe(0)

= lim
k→∞

ε−2ζk

= 0

for the 0 < ζ < 1 constant found for the convergence in the
mean square sense. �

V. CONVERGENCE RATES

The interesting problem of finding the fastest distributed lin-
ear algorithm is addressed and the convergence rates are pro-
vided in discrete time. We show that the rates relate to the second
largest eigenvalue of the linear combination of the transmission
matrices. We start by providing a result available in the literature
and showing how both algorithms G and B can be seen in that
framework.

Definition 5 (ε-averaging time): For any 0 < ε < 1, the ε-
averaging time, denoted by tavg(ε, p), of a linear distributed algo-
rithm (4), where {Uk , k ≥ 0} are characterized by (13) and (14),
and randomly chosen from a set M := {Bi, 1 ≤ i ≤ np},

where

Prob[Uk = Bi ] = pi,

np∑

i=1

pi = 1

is defined as

sup
z (0)

inf

{
t : Prob

[
||z(k) − zav1||

||z(0)|| ≥ ε

]
≤ ε

}

where ||v|| denotes the l2 norm of the vector v.
Using the aforementioned definition, we provide the unidi-

rectional version of the bounds found in [20].
Theorem 4 (Convergence in discrete time): The averaging

time tavg(ε, p) (measured in terms of clock ticks) of the linear
distributed algorithm, as defined in Definition 5 is bounded by

tavg(ε, p) ≤ 3 log ε−1

log λ2(R2)−1

and

tavg(ε, p) ≥ 0.5 log ε−1

log λ2(R2)−1

where

R2 =
np∑

i=1

piBi ⊗ Bi.

Proof: The proof follows from the fact that both algorithms
G and B can be casted into the formulation of Definition 5,
which is the same as [20, Th. 3].x �

A. Distributed Optimization

In the previous section, we presented convergence results
for the directed gossip algorithm, assuming the second largest
eigenvalue of the expected value matrix. In practical applica-
tions, either we postulate that a network designer had access to
the entire topology and was able to compute the second largest
eigenvalue of the expected value (if the network is large such
assumption becomes unreasonable and defeats the purpose of
a distributed solution) or that the nodes at some point in time
optimize their convergence rate. The current section focusses
on addressing the issue for the latter case.

The question of optimizing the second largest eigenvalue can
be reformulated to a semidefinite program in the symmetric
case, which can be solved in a distributed setting by many off-
the-shelf solvers. The nonsymmetric matrices Qij render the
problem not convex. We now describe how the objective of
minimizing the second largest eigenvalue can be separated into
two problems, i.e., minimizing the eigenvalues of the probability
matrix, and then, selecting the optimal values for the parameters
using a nonconvex technique.

Theorem 5 (Distributed optimization): The directed gossip
algorithm G for a system of the form (4) with the linear iteration
as in (10) can be cast as a distributed convex optimization for the
communication probabilities in matrix W and as a nonconvex
for parameters α, β, and γ.
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Proof: When optimizing for matrix W , we are interested in
solving the following optimization problem:

minimize λ2(R)

subject to R =
n∑

i,j=1

1
n

WijQij

Wij ≥ 0, Wij = 0, if {i, j} /∈ E

W1n = 1n .

However, notice that we used the fact that λi(PS (δ)) is a
monotonically increasing function with λ2(W ) to prove the
convergence, which allows us to rewrite the problem as

minimize t

subject to W − 1n1ᵀ
n � tIn

Wij ≥ 0, Wij = 0, if {i, j} /∈ E

W1n = 1n .

Let us introduce for each directed link (the optimization
can be carried out for nonsymmetric matrices W), a new vari-
able ηk , 1 ≤ k ≤ |E| and a correspondent flow matrix Fk =
−(ei − ej )(ei − ej )ᵀ where the pair {i, j} is our kth link. The
optimization can be written in the distributed form

minimize λ2

⎛

⎝In +
|E |∑

k=1

ηkFk

⎞

⎠

subject to L1n = 1n

ηk ≥ 0, 1 ≤ k ≤ |E|
where the matrix L is just to short the notation and has Lij = ηk

for the corresponding k to the vertex {i, j} and zeros elsewhere.
Using the standard epigraph variable techniques and due to the
fact that λ(In + A) = 1 + λ(A)

minimize t

subject to
|E |∑

k=1

ηkFk − 1n1ᵀ
n � tIn

L1n = 1n

ηk ≥ 0, 1 ≤ k ≤ |E|.
The formulation of the problem has separated optimization vari-
ables, which can be performed in a distributed fashion using
techniques such as alternating direction method of multipli-
ers [35] or other techniques (see [36] and [37] and references
therein).

Regarding parameters α, β, and γ, the optimization is non-
convex and can be carried out using the brute force both for
the eigenvalues of the expectation and mean square matri-
ces using the sufficient and necessary conditions presented in
Theorem 1. �

Fig. 1. Communication graph with different out-neighbor degrees.

Fig. 2. Evolution of the second largest eigenvalue of the mean square
matrix as a function of ε and β for the algorithm in [21] (two-parameter)
and the algorithm G (three-parameter).

B. Comparison Between Unidirectional and Bidirectional
Cases

In the previous section, we showed how to optimize the prob-
abilities and parameters of the gossip algorithm and how to dis-
tribute that computation over the nodes of the network. Using
the previous optimization, it is possible to show the difference
between the convergence rates of this study and that in [21]. The
initial example in [21] is recovered next.

In Fig. 1 is depicted the ten node digraph used in [21] with
the selected mixing parameter of w = 1

2 . All edges are assumed
to have equal probability of being activated with a constant
distribution over time. AlgorithmG is also simulated setting α =
w and β = εw and the optimized γ value. The second largest
eigenvalue of the mean square expected value is presented for
both cases in Fig. 2. From this example, it shows that for larger
values of ε, the two algorithms become the same for this directed
graph and choice of w.

In order to assess the convergence rate for other examples,
an undirected topology obtained by making all the edges in
Fig. 1 bidirectional is simulated. The correspondent evolution
of the second largest eigenvalue is depicted in Fig. 3. Similarly
to the previous example, the same trends emerge where the
algorithm G outperforms (in this case, the difference is higher)
the proposal in [21]. Figs. 2 and 3 also illustrate the fact that the
current proposal has as worst-case convergence rate the values
for the algorithm in [21].
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Fig. 3. Evolution of the second largest eigenvalue of the mean square
matrix as a function of ε and β for the algorithm in [21] (two-parameter)
and the algorithm G (three-parameter).

Fig. 4. Communication graph with different out-neighbor degrees.

It is also interesting to compare how the convergence rate is
affected when going from bidirectional to unidirectional gossip
randomized algorithms. In the sequel, we present results about
three communication graphs with different out-neighbor degree
to give a general overview.

In selecting different cases to illustrate how the second largest
eigenvalue of the matrix of the expected value and second mo-
ment varies with parameters choice, we took into consideration
what should be the best- and worst-case scenarios and an av-
erage case, where we are by no means stating that the chosen
case is an average case since our aim is to give an example with
different out-neighbor degrees. Fig. 4 presents the graph, which
we called as the average case example. The best-case scenario is
when connectivity is at its maximum (i.e., each node can com-
municate to every other node) and the worst case is when node
i is connected to nodes i − 1 and i + 1 except for node 1 and
m, which connect to only one neighbor. For all the examples,
we take the number of nodes n = 5.

Provided that the nodes optimize the matrix of probabilities
W , we get the following results:

Wbest =
1

n − 1
(1n1ᵀ

n − In )

Wworst =
1
2
(tri(n) − In + e1eᵀ

1 + eneᵀ
n )

TABLE I
SECOND LARGEST EIGENVALUE FOR THE BIDIRECTIONAL (B_λ2 ) AND THE

PRESENTED UNIDIRECTIONAL (U_λ2 ) ALGORITHMS FOR THE THREE
STUDIED CASES

TABLE II
UPPER AND LOWER BOUNDS FOR THE MEAN SQUARE ON THE NUMBER OF

TICKS FOR THE ALGORITHMS TO REACH A NEIGHBORHOOD OF THE
SOLUTION OF ε = 10−2 FOR THE BIDIRECTIONAL CASE (B_TICKS) AND THE

PRESENTED UNIDIRECTIONAL (U_TICKS) ALGORITHMS

Waverage =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0.2835 0.433 0.2835 0
0.2835 0.2165 0 0 0.5
0.4330 0 0.567 0 0
0.2835 0 0 0.2165 0.5

0 0.5 0 0.5 0.0000

⎤

⎥⎥⎥⎥⎥⎥⎦

where tri(m) is a tridiagonal matrix of size m with the elements
in the three main diagonals all equal to 1.

Using the computed matrix W for the probabilities, we cal-
culate the second largest eigenvalue for both expectation and
second moment, which are presented in Table I for the three
considered cases. Those values were obtained by searching in
a brute force fashion for α, β, γ ∈ [0, 1], which minimized λ2 .
Regard, however that the minimum for the expectation and sec-
ond moment were not obtained jointly since one may wish to
optimize for one or the other.

In order to give a better perspective about the values in
Table I, let us compute the upper and lower bound of clock
ticks so that the system is in a neighborhood ε of the solution
xav. Such bounds were provided in [20], although see references
therein for additional information. The convergence rate in con-
tinuous time is provided in [29, Th. 9 and Corollary 10]. It is
important to notice that, in reality, a bidirectional algorithm is
using two communication steps in each transmission so the val-
ues presented in Table II for the bidirectional case should be seen
in a unit of measure, which is double from the unidirectional
case.

VI. CONCLUSION

In this chapter, the problem of studying the convergence of
the state of an average consensus algorithm with unidirectional
communications is tackled. The motivation behind constructing
an asynchronous and unidirectional algorithm was to better map
the characteristics of wireless networks. In doing so, the algo-
rithm can progress to the average of the initial values even in a
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realistic scenario with a high packet drop rate as it can use the
received information instead of having to wait for a successful
two-way communication.

We first provide results to test the convergence for a spe-
cific instance of the connectivity graph for a generic algorithm
obeying the definitions for the interactions. These relate to deter-
mining if the spectral radius of the matrix defining the expected
value and the second moment is the unit circle. It is then shown
that convergence holds for any connectivity graph that is sym-
metric.

Selecting the fastest converging algorithm for the average
consensus problem is also presented in this chapter. By noticing
that the spectral radius depends monotonically with the second
largest eigenvalue of the expected value matrix, allowed us to
first rewrite that optimization as a semidefinite program, and
then, optimize in a brute force fashion for the parameters of
the algorithm. The convergence rate is compared to both the
unidirectional and bidirectional case.
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[32] F. P. Cantelli, “Sulla probabilità come limite della frequenza,” Atti Accad.
Naz. Lincei, vol. 26, no. 1, pp. 39–45, 1917.

[33] M. Porfiri and D. Stilwell, “Consensus seeking over random weighted
directed graphs,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1767–
1773, Sep. 2007.

[34] L. Moreau, “Stability of continuous-time distributed consensus algo-
rithms,” in Proc. IEEE 43rd Conf. Decision Control, Dec. 2004, vol. 4,
pp. 3998–4003.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multiplier,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[36] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Rev., vol. 46, pp. 667–689, 2003.

[37] A. S. Lewis, “Convex analysis on the Hermitian matrices,” SIAM J. Opti-
mization, vol. 6, pp. 164–177, 1996.

Daniel Silvestre received the B.Sc. degree in
computer networks and the Ph.D. degree in elec-
trical and computer engineering from the Insti-
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