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ABSTRACT

Complex surveillance scenarios comprise different types of
agents (e.g., bikers, cars, and pedestrians) that must be effi-
ciently characterized in order to facilitate tasks such as track-
ing or abnormality detection. This paper proposes an unsuper-
vised hierarchical multiple motion fields model to represent
different types of agents, which relies in the combination of
hierarchical Markov model and velocity fields. Model param-
eters are estimated using the expectation-maximization algo-
rithm. The proposed framework was applied to synthetic and
real datasets (Stanford Drone Dataset), showing the ability to
characterize and classify different agents in an unsupervised
way.

Index Terms— Surveillance, trajectory analysis, motion
fields, hierarchical Markov models

1. INTRODUCTION

The development of motion models that provide reliable de-
scriptions of object trajectories plays an important role in sev-
eral applications, such as surveillance, robot navigation, and
person re-identification [1, 2, 3]. However, most motion mod-
els assume that there is only one type of agent in the video,
usually pedestrians, and treat other agents (e.g., bikers or cars)
as abnormalities [4, 5, 6]. Although this may be valid in in-
door scenes, where vehicles are not expected, several appli-
cations require the analysis of outdoor videos, where multiple
types of agents (e.g., pedestrians, cars, bikers) interact with
the environment in different ways and exhibit distinctive mo-
tions. Moreover, each type of agent is associated with specific
abnormal behaviors. Thus, it is important to develop methods
that consider the possibility of multiple agent classes. This
task may be solved in a supervised fashion, where we have
access to both the trajectories and their respective classes, as
reported in [7]. However, fully annotated datasets (see Fig.
1) are difficult to obtain. Hence, it is important to develop a
motion model that is able to represent and group the motion
patterns of different agent classes in an unsupervised fashion,
thus suitable to deal with any kind of data.
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Fig. 1. Image from the Stanford Drone Dataset [10]. The
bounding box colors identify different agents.

In this work, we propose a framework based on motion
fields and a hierarchical hidden-Markov model (HHMM) to
group and characterize motion patterns of different agent
classes, in an unsupervised way. Recently, the interactions
between different types of agents were also modeled in an
unsupervised framework, using both the social forces model
and recurrent neural networks [8, 9]. However, the goal of
those methods was to perform trajectory prediction, while
our goal is to identify and characterize class-specific motion
patterns, which can be incorporated into a generative motion
model for different applications (e.g., tracking, prediction,
abnormality detection).

2. RELATED WORK AND EXTENSION TO
MULTI-AGENT

Motion fields have been used for trajectory analysis in many
applications, such as the characterization of trajectory data
from multiple sources, namely GPS positions of pedestrians
and vehicles, call detail records of cellphones, and hurricane
data [11].

Our work is related with [12], where it was assumed that
pedestrian trajectories could be divided into segments, each of
them generated by one motion field. The transition between
motion fields was possible and defined as a first-order hid-
den Markov (HMM) model, where the transition probabilities
vary across space. The aforementioned method was proposed
to deal with pedestrians, and its extension to multiple classes
would require either: i) separate estimation of motion mod-



els for each of the agent classes; or ii) estimation of a large
number of motion fields, as well as the setting of constraints
on the transition matrices, to avoid transitions between fields
associated with different classes. The former approach would
demand a fully annotated dataset, which is not available in
most cases, while the latter would require a proper initializa-
tion of the model parameters in order to enforce the desired
constraints.

In this paper, we address the aforementioned limitation,
and propose a new probabilistic formulation for the motion
model. In particular, we propose to replace the HMM by a
HHMM, which will allow us to condition both the motion
fields and the transition matrices on a specific agent class, as
described in Section 3. We will show that this new proba-
bilistic formulation allows the grouping of motion patterns of
a specific class, without the need for a fully annotated dataset,
and still provides reliable representations.

3. HIERARCHICAL SWITCHED MOTION MODEL

Let us assume that the various agents in a scene (e.g., skaters,
pedestrians) exhibit a finite number of motion patterns, which
are specific of their class c ∈ {1, ..., C}. Each agent will be
associated with a trajectory x = (x1, x2, ..., xL), where L is
the length of the trajectory and xt ∈ [0, 1]2 is the position
at time instant t. The motion patterns that characterize the
trajectories may be summarized into a set ofKc motion fields,
where T c

k : [0, 1]2 → R2 is the k − th motion field belonging
to class c. Thus, we generate the position xt as follows

xt = xt−1 + T ctkt (xt−1) + wkt , (1)

where T ct
kt

is the active motion field, conditioned on class
ct, and wkt

∼ N (0,Σct
kt

(xt−1)) is the class-specific space-
varying white Gausian noise perturbation, associated with the
uncertainty of the position.

Only one motion field may be active at each time instant.
However, we assume that it is possible to switch between mo-
tion fields of the same class at specific positions. Additionally,
we postulate that is also possible for an agent to change class,
although with a lower probability, at certain positions of the
space (e.g., a skater picks up the skate and starts walking).
These transitions are modeled as a HHMM, as explained in
the following sub-section.

3.1. Hierarchical Motion Model

HHMM have been introduced by Fine et al. [13] as an ex-
tension of the standard HMM to problems that exhibit a hi-
erarchical structure. The main idea of this model is that the
hidden states are organized in hierarchical levels, such that
the hidden states at the uppers levels, called “internal” states,
are responsible for activating states at the lower levels. Each
internal state is only able to activate some of the states of the
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Fig. 2. Graphical representation of the proposed switched
model.

level below it, and these lower states are not shared. The pro-
cess of activation is carried out until a state at the lowest level
is reached. This level, usually called “production”, is respon-
sible for generating the observations, similarly to a traditional
HMM [14].

Our model can be defined as a two-level HHMM (see
Fig.2), where the upper level models the class and the lower
level the active motion field. A binary variable ft is used to
identify the end of the production level; this allows the model
to decide whether to stay in the production level (ft = 0),
or to leave the production level and return the control to the
upper level (ft = 1). This makes it possible for the model to
generate the next position by either: i) maintaining the same
class; or ii) changing class.

Based on the aforementioned formulation, we define the
following probabilities for our motion model [15]:

p(kt = j|kt−1 = l, ft−1, ct = u, xt−1) =

{
B̃ulj(xt−1), if ft−1 = 0

πuj (xt−1), if ft−1 = 1
,

(2)
where B̃u

lj(x) is the element (l, j) of the stochastic matrix
B̃u(x) associated with class u, and πu

j (x) is the initial dis-
tribution of motion field j, given the class u. Both variables
are evaluated at position x. Similarly to the traditional HMM,
B̃u(x) comprises the probabilities of transition between states
l and j. However, it is also necessary to account for the end-
ing probabilities, i.e., the probability of transition to ft = 1,
which we will loosely refer to end

p(ft = 1|kt = j, ct = u, xt−1) = Bujend(xt−1). (3)

Thus, we define Bu
lj = (1 − Bu

lend(xt−1))B̃u
lj(xt−1) as a

rescaled version of B̃u
lj(xt−1). At the upper level, the tran-

sition between classes is also governed by a stochastic matrix
A(x) evaluated at position x, such that

p(ct = u|ct−1 = v, ft−1, xt−1) =

{
δ(v, u), if ft−1 = 0

Avu(xt−1), if ft−1 = 1
.

(4)
Here δ(v, u) is the Kronecker delta and Avu(x) is the (v, u)
element of A(x). Based on this formulation, the joint proba-
bility p(x, k, f, c) of a trajectory x associated with a sequence
of motion fields k, classes c, and binary variables f , is defined
as follows:



p(x, k, f, c) = p(x1, k1, f1, c1)

L∏
t=2

p(xt, kt, ft, ct|xt−1, kt−1, ft−1, ct−1)

= p(x1, k1, f1, c1)

L∏
t=2

p(xt|xt−1, kt, ct)p(ct|xt−1, ct−1, ft−1)

.p(kt|xt−1, ct, ft−1, kt−1)p(ft|kt, ct, xt−1). (5)

3.2. Model Estimation

All the model parameters θ = (T ,B,A,Π,Σ) are defined
on a regular grid of

√
n ×

√
n nodes, where T is a dic-

tionary of motion fields, B and A are dictionaries of fields
and classes transition matrices, Π is the dictionary of motion
fields probabilities, and Σ is a dictionary of covariance ma-
trices. The parameters are estimated at the grid nodes and
computed elsewhere using bilinear interpolation [16]. These
values may be estimated using a set of S observed trajectories
X =

{
x(1), ..., x(S)

}
, with variable lengths:

θ̂ = argmax
θ

[log p(X|θ) + log p(θ)] . (6)

Since there are several hidden variables in the model (the se-
quences k(s), c(s), and f (s)), for s = 1, ..., S, we will natu-
rally resort to the expectation-maximization (EM) algorithm
(see details in [17]). The auxiliary function to be maximized
w.r.t. θ, given the previous estimate θ′, is

U(θ, θ′) = E
{
log p(X ,K|θ)|X , θ′

}
+ log p(θ)

= U1(θ, θ
′) + U2(θ, θ

′) + U3(θ, θ
′) + U4(θ, θ

′) + U5(θ, θ
′),
(7)

where

U1(θ, θ
′) =

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

1∑
f=0

γ
(s)
ckf (t) log det

(
Σc
k(x

(s)
t−1)

)
,

U2(θ, θ
′) =

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

1∑
f=0

γ
(s)
ckf (t)‖v

(s)
t −T

c
k (x

(s)
t−1)‖

2

Σc
k
(x

(s)
t−1)

,

U3(θ, θ
′) = 2

S∑
s=1

Ls∑
t=2

C∑
c=1

Kc∑
k=1

ξ
(s)
ck1(t) logB

c
kend(x

(s)
t−1)

+ ξ
(s)
ck0(t) log(1−B

c
kend(x

(s)
t−1)),

U4(θ, θ
′) = 2

S∑
s=1

Ls∑
t=2

C∑
c=1

[
Kc∑
k=1

η
(s)
ck (t) log π

c
k(x

(s)
t−1)

]

+

[
Kc∑
p,q

w(s)
cpq(t) log B̃

c
pq(x

(s)
t−1)

]
,

U5(θ, θ
′) = 2

S∑
s=1

Ls∑
t=2

C∑
j,c

χ
(s)
jc (t) logAjc(x

(s)
t−1),

where, v(s)
t = x

(s)
t − x

(s)
t−1, γ(s)

ujf (t) = p(k
(s)
t = j, c

(s)
t =

u, f
(s)
t−1|x(s), θ′) is the smooth state probability, ξ(s)

ujf (t) =

p(k
(s)
t = j, c

(s)
t = u, f

(s)
t |x(s), θ′) gives us the ending and
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Fig. 3. Datasets: Synthetic (left) and Stanford Drone Dataset
- Little (right). The colors represent the two classes.

non-ending probabilities, η(s)
uj (t) = p(k

(s)
t = j, c

(s)
t =

u, f
(s)
t−1 = 1|x(s), θ′) is the probability of a vertical transi-

tion from the class level to the motion model one, w(s)
uij(t) =

p(k
(s)
t−1 = i, k

(s)
t = j, c

(s)
t = u, f

(s)
t−1 = 0|x(s), θ′) is the

probability of an horizontal transition at the motion model
level, and χ(s)

vu (t) = p(c
(s)
t−1 = v, c

(s)
t = u, f

(s)
t−1 = 1|x(s), θ′)

is the probability of an horizontal transition at the class level.
All of these values are computed in the E-step, using the
generalized Baum-Welch algorithm [13].

The M-step consists in maximizing U(θ, θ′). While T
and Σ are updated as proposed in [18, 19], the estimation of
B,A, and Π pose a new problem. We refer to [17] for details.
Unfortunately, these updates do not have an explicit solution,
thus we resort to the gradient descent algorithm, followed by
a projection on the simplex [20], to ensure that the obtained
parameters are probabilities.

4. EXPERIMENTAL RESULTS

We test the proposed approach on: synthetic trajectories and
real trajectories from the Stanford Drone Dataset [10], which
were recorded using a quadcopter with a 4k camera. Each
type of dataset comprises trajectories of two classes of agents,
as we will detail below. The hierarchical motion models are
trained as described in Section 3.2. In both experiments, we
have set the grid size to 23× 23 nodes.

To evaluate the estimated models, we check if trajecto-
ries of the same type of agent are grouped together. The
ground-truth class labels are available for both synthetic and
real datasets, and it is possible to predict the class of each tra-
jectory segment using the smooth state probability as follows

ĉ
(s)
t = argmax

c

Kc∑
k=1

∑
f

γ
(s)
ckf (t), (8)

where γ
(s)
ckf (t) is computed using the generalized Baum-

Welch algorithm [13].

4.1. Synthetic Data

A synthetic dataset composed of S = 100 samples, was cre-
ated (see Fig. 3-left). We assume C = 2 classes of agents,
each with Kc = 2 possible motion fields. One of the classes



Fig. 4. Estimated motion fields per class (1st and 2nd rows)
and associated trajectories for synthetic example. The arrows
are colored according to the most probable class and their
length is proportional to the velocity module.

exhibits an upward motion pattern, with the possibility of
switching to a ”left-to-right” motion (magenta). The second
class exhibits a downward motion pattern, also with the pos-
sibility of switching to a ”left-to-right” pattern (green). How-
ever, in this case, the velocity is 1

10 of that observed for the
first class. Moreover, we define the possibility of switching
between classes at a specific node that corresponds to ap-
proximately the position (0.75, 0.5) in the image, such that
the agent switches from moving from ”left-to-right” accord-
ing to the velocity of class 2 and starts moving at the velocity
of class 1. The corresponding transition matrix is = [ 1.0 0

0.3 0.7 ].
The estimated fields in Fig. 4 show that the proposed

model is able to correctly separate most of the trajectories and
motion patterns of a given class. In particular, we observe that
99.5% of the examples from ground-truth class were correctly
classified as c = 1 (top row), and 99.8% of the elements from
class two were classified as c = 2 (bottom row). Additionally,
we are able to compare the estimated class transition matrix
Â = [ 0.99 0.01

0.28 0.72 ] with the ground-truth one, and observe that
they are very similar.

4.2. Real Data

The experiments with real data were carried out on the Stan-
ford Drone Dataset [10], using the videos from the Little sce-
nario (see Fig. 3-right). In these videos, the authors have
tracked and manually labeled the agents according to several
possible classes. Here, we focus on the trajectories of pedes-
trians (#200, magenta) and bikers (#385, green), due to the
large number of trajectories for each of these classes. The
videos were not recorded from the same position, had to be
aligned through a spatial transformation.

Three of the Little videos (IDs 1,2,3) were used for train-
ing the motion model, considering C = 2 classes, each with
Kc = 4 fields. These fields were roughly initialized to repre-
sent the directions North-South, South-North, East-West, and

Fig. 5. Estimated motion fields per class (1st and 2nd rows)
for the Little scenario. The arrows are colored according to
the most probable class and their length is proportional to the
velocity module.

Table 1. Confusion matrix: model vs ground truth labels.
Ground-Truth

Model Labels Biker Pedestrian
c = 1 69.3% 30.7%
c = 2 29.3% 70.7%

West-East. During training, the model did not have access to
the ground truth labels of the trajectories. The test video (Id
0) was used to evaluate the estimated fields and classes, us-
ing a moving window strategy. Consecutive portions of the
trajectory (xto , ..., xto+∆) with an overlap of ∆

2 (∆ = 10)
were analyzed and associated with a class by using (8) to la-
bel consecutive time instants. Majority voting gave a label for
the whole portion. Finally, these labels were compared with
the ground-truth and a confusion matrix was built (Table 1).

These results yield a balanced accuracy of 70% for the
two classes on the test set, which is very promising and tes-
tifies for the potential of the proposed framework. Fig. 5
shows the estimated fields for each of the classes. We believe
that this interesting performance may be further improved, be-
cause currently the model is too flexible. This may be tack-
led using appropriate priors to constraint the ending and class
transition probabilities B.

5. CONCLUSIONS

This paper proposes a hierarchical model for unsupervised
trajectory analysis. The model is able to successfully describe
and group trajectories from different kinds of agents, both
synthetic and real (bikers and pedestrians). Moreover, the
experimental results show the ability of the proposed method
to estimate the model parameters and to identify agents of the
same class. Forthcoming steps will include the use of pri-
ors, extension to other types of agents (e.g, vehicles), and an
extensive comparison with other approaches, in particular su-
pervised ones.



6. REFERENCES

[1] E. Maggio and A. Cavallaro, Video tracking: theory and
practice, John Wiley & Sons, 2011.

[2] M. S. Ibrahim, S. Muralidharan, Z. Deng, A. Vahdat,
and G. Mori, “A hierarchical deep temporal model for
group activity recognition,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, 2016, pp. 1971–1980.

[3] H. Yao, A. Cavallaro, T. Bouwmans, and Z. Zhang,
“Guest editorial introduction to the special issue on
group and crowd behavior analysis for intelligent multi-
camera video surveillance,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 27, no. 3,
pp. 405–408, 2017.

[4] W. Li, V. Mahadevan, and N. Vasconcelos, “Anomaly
detection and localization in crowded scenes,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 36, no. 1, pp. 18–32, 2014.
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