
Petri Net Based Multi-Robot Task Coordination from Temporal Logic
Specifications
Bruno Lacerdaa,∗, Pedro U. Limab
aOxford Robotics Institute, University of Oxford, UK
bInstitute for Systems and Robotics, Instituto Superior Técnico, Portugal

ART ICLE INFO
Keywords:
Multi-robot coordination
Linear temporal logic
Supervisory control
Petri nets

ABSTRACT
We propose a methodology for enforcing a set of coordination rules onto a multi-robot system, based
on the use of Petri nets to model the team of robots, safe linear temporal logic to specify a set of
coordination rules to be enforced, and supervisory control theory to synthesise a supervisor that
enforces the coordination rules. We introduce a composition algorithm that allows us to build a Petri
net that represents the largest restriction of the team behaviour that still satisfies the specification. Such
a Petri net can be interpreted as a candidate for a supervisor, for which one needs to verify admissibility.
We present a general verification procedure for this problem. We also present a syntactic restriction
to safe linear temporal logic that guarantees admissibility of the composition a priori. We finish by
providing an illustrative example, where we show how the use of temporal logic allows the designer to
write the specifications intuitively, and the use of Petri nets allows us to tackle the large state spaces
and high concurrency associated with multi-robot systems.

1. Introduction
A wide range of applications, such as logistics, environ-

mental monitoring, and smart transportation systems require
fleets of autonomous mobile robots. For such systems, formal
guarantees concerning aspects such as safety, predictability,
performance, robustness and reliability are essential to sup-
port the acceptability of the systems. However, in the field
of robotics innovation is often associated with non-formal
approaches. Novel ideas and concepts are typically intro-
duced for particular applications, through well-engineered
systems, but lack the ability to provide formal guarantees.
A particularly important class of guarantee is safety, which
allow for specifying that something “bad” never happens.
Safety properties include requirements that must be satisfied
in all states (e.g., robots should avoid collisions) or can dy-
namically change depending on observations (e.g., robots
should change from a surveillance to a evacuation behaviour
if a fire is detected).

In this work, we introduce a framework, based on a com-
bination of concepts from discrete event systems and formal
verification, that allows a designer to enforce a set of safety
requirements on a multi-robot team. The framework pro-
poses the use of Petri nets (PNs) to model the uncontrolled
behaviour of the robot team, and safe linear temporal logic
(LTL) for the specification of the coordination requirements.
Then, we build upon concepts from supervisory control (SC)
to synthesise a PN representation of a supervisor that restricts
the behaviours of the team such that the coordination require-
ments are met. With this approach, we exploit the ability
of PNs to compactly model systems with high concurrency
and the powerful and intuitive ability to specify behaviours

bruno@robots.ox.ac.uk (B. Lacerda);
pedro.lima@tecnico.ulisboa.pt (P.U. Lima)

ORCID(s): 0000-0003-0862-331X (B. Lacerda); 0000-0002-8962-8050
(P.U. Lima)

naturally provided by LTL.
Figure 1 depicts a diagram illustrating the methodology.

To summarise, we start with a PN model of the team and a
syntactically safe LTL formula written over the set of events
of the system plus linear constraints on the markings of the
PN. We translate the safe LTL formula into a deterministic
finite automaton (DFA) that represents it. The DFA is then
appropriately composed with the PN. This composition pro-
vides a structure that represents the smallest restriction – in
the sense that any restriction which is more permissive in the
events that can be fired by the system will not comply with
the specification – of the behaviour of the system that satis-
fies the LTL formula. Then, one needs to guarantee that the
composition is admissible. Intuitively, admissibility means
that the supervisor will not attempt to disable events it cannot
control. We provide two approaches to ensure admissibility.
The first, more general approach is based on the verification
procedure described in Subsection 5.1. With this approach,
if the composition is found to be admissible, then it can be
used to supervise the PN. However, if it is not admissible,
and since PNs are not closed under the supremal controllable
sublanguage operator [13], the designer has to re-write the
specification and re-check the new composition, which in
practical terms is not satisfactory. Given this fact, along with
the significant complexity of checking for admissibility, in
Subsection 5.2 we present a syntactic restriction that ensures
composition admissibility by design. Thus, if the specifica-
tion is written according to this restriction, the composition
is guaranteed to be an appropriate supervisor. As we will see,
in practical terms using the restriction provided in Subsec-
tion 5.2 is a better approach, as it allows for the supervision of
larger systems, and does not require formula re-writing. How-
ever, we also present the general algorithm for admissibility
check in Section 5.1 due to its theoretical interest.

Figure 1 also includes the paper organisation, referring
each of the required operations to the section where it is de-

Lacerda and Lima: Preprint submitted to Elsevier Page 1 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

Model the system as a PN G (3.2)
<latexit sha1_base64="D9twvCpUODbUd65akeXv3iZuEME=">AAACDHicbVC7TgJBFJ3FF+ILtbSZCCbYkF0opCSx0EaDiTwS2JDZ4QITZnc2M7MmZMMH2PgrNhYaY+sH2Pk3zsIWCp5kkpNzzs2de7yQM6Vt+9vKrK1vbG5lt3M7u3v7B/nDo5YSkaTQpIIL2fGIAs4CaGqmOXRCCcT3OLS9yWXitx9AKiaCez0NwfXJKGBDRok2Uj9fuBED4FiPAaup0uBjojDBjVtcvCriUrVcOc+ZlF2258CrxElJAaVo9PNfvYGgkQ+Bppwo1XXsULsxkZpRDrNcL1IQEjohI+gaGhAflBvPj5nhM6MM8FBI8wKN5+rviZj4Sk19zyR9osdq2UvE/7xupIc1N2ZBGGkI6GLRMDK3C5w0gwdMAtV8agihkpm/YjomklBt+ktKcJZPXiWtStmplu27SqFeS+vIohN0ikrIQReojq5RAzURRY/oGb2iN+vJerHerY9FNGOlM8foD6zPH46NmAY=</latexit>

Build G', by composing G and A' (4)
<latexit sha1_base64="uV+0JN0MQp0yZ/yxDo4bByyzcIk=">AAACIHicbVDLSgMxFM3UV62vUZdugq1QQcpMFdpl1YUuK9gHtEPJpJk2NJMMSaZQhn6KG3/FjQtFdKdfY/pAtPVA4HDOudzc40eMKu04n1ZqZXVtfSO9mdna3tnds/cP6krEEpMaFkzIpo8UYZSTmqaakWYkCQp9Rhr+4HriN4ZEKir4vR5FxAtRj9OAYqSN1LFLVzFlXZi76bSHSEZ9mjuD/ghiEUZCUd4zTg4ibhKXPwmYvzjt2Fmn4EwBl4k7J1kwR7Vjf7S7Asch4RozpFTLdSLtJUhqihkZZ9qxIhHCA9QjLUM5ConykumBY3hilC4MhDSPazhVf08kKFRqFPomGSLdV4veRPzPa8U6KHsJ5VGsCcezRUHMoBZw0hbsUkmwZiNDEJbU/BXiPpIIa9NpxpTgLp68TOrFgntecO6K2Up5XkcaHIFjkAcuKIEKuAVVUAMYPIAn8AJerUfr2Xqz3mfRlDWfOQR/YH19AwsjoFY=</latexit>

Is G' admissible? (5)
<latexit sha1_base64="nD/YOM82GsiZjZCgSMj636jAf2M=">AAACCHicbVDLSsNAFJ3UV62vqEsXDrZC3ZSkInZnwYW6q2Af0IYwmUzboZNJmJkUSujSjb/ixoUibv0Ed/6NkzYLbT0wcDjnHu7c40WMSmVZ30ZuZXVtfSO/Wdja3tndM/cPWjKMBSZNHLJQdDwkCaOcNBVVjHQiQVDgMdL2Rtep3x4TIWnIH9QkIk6ABpz2KUZKS655fCdh6cbtjZGIhrQEkR9QKamOX8HyxVnBNYtWxZoBLhM7I0WQoeGaXz0/xHFAuMIMSdm1rUg5CRKKYkamhV4sSYTwCA1IV1OOAiKdZHbIFJ5qxYf9UOjHFZypvxMJCqScBJ6eDJAaykUvFf/zurHq15yE8ihWhOP5on7MoAph2gr0qSBYsYkmCAuq/wrxEAmEle4uLcFePHmZtKoV+7xi3VeL9VpWRx4cgRNQBja4BHVwCxqgCTB4BM/gFbwZT8aL8W58zEdzRpY5BH9gfP4AjCqXsw==</latexit>

Supervise G using G' (3.3)
<latexit sha1_base64="Z5WgzQa1I4ZXElhQquf4Us32llk=">AAACEHicbZC7TgJBFIZnveJ6W7W0mQhGbMguFFKSWGiJUS4JEDI7nIUJs7ObmVkSQngEG1/FxkJjbC3tfBsH2ELBP5nky3/OyZnz+zFnSrvut7W2vrG5tZ3ZsXf39g8OnaPjuooSSaFGIx7Jpk8UcCagppnm0IwlkNDn0PCH17N6YwRSsUg86HEMnZD0BQsYJdpYXefiPolBjpgCnLvJ4UQx0TfUbY+IjAcsh/OlQunStrtO1i24c+FV8FLIolTVrvPV7kU0CUFoyolSLc+NdWdCpGaUw9RuJwpiQoekDy2DgoSgOpP5QVN8bpweDiJpntB47v6emJBQqXHom86Q6IFars3M/2qtRAflzoSJONEg6GJRkHCsIzxLB/eYBKr52AChkpm/YjogklBtMpyF4C2fvAr1YsErFdy7YrZSTuPIoFN0hvLIQ1eogm5RFdUQRY/oGb2iN+vJerHerY9F65qVzpygP7I+fwABBZnv</latexit>

Build DFA A' (3.5)
<latexit sha1_base64="w+jhDYzX9wn0bezxK0DJAY9DLH8=">AAACBnicbVDLSsNAFJ34rPEVdSnCYCvUTUhaxC5bFXFZwT6gDWEymbRDJw9mJoUSunLjr7hxoYhbv8Gdf2PSZqGtBy4czrmXe+9xIkaFNIxvZWV1bX1js7Clbu/s7u1rB4dtEcYckxYOWci7DhKE0YC0JJWMdCNOkO8w0nFG15nfGRMuaBg8yElELB8NAupRjGQq2drJVUyZC29uG7DUsPtjxKMhLcFyVb84V1VbKxq6MQNcJmZOiiBH09a++m6IY58EEjMkRM80ImkliEuKGZmq/ViQCOERGpBeSgPkE2Elszem8CxVXOiFPK1Awpn6eyJBvhAT30k7fSSHYtHLxP+8Xiy9mpXQIIolCfB8kRczKEOYZQJdygmWbJIShDlNb4V4iDjCMk0uC8FcfHmZtCu6WdWN+0qxXsvjKIBjcArKwASXoA7uQBO0AAaP4Bm8gjflSXlR3pWPeeuKks8cgT9QPn8AJmOVpw==</latexit>

G
<latexit sha1_base64="+2i0+G4rbOAFukRocXB6VS44qvw=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsspCSx0BKjfCRwIXvLHGzY27vs7pkQwk+wsdAYW3+Rnf/GBa5Q8CWTvLw3k5l5QSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfjm7nffkKleSwfzSRBP6JDyUPOqLHSQ/m23C+W3Iq7AFknXkZKkKHRL371BjFLI5SGCap113MT40+pMpwJnBV6qcaEsjEdYtdSSSPU/nRx6oxcWGVAwljZkoYs1N8TUxppPYkC2xlRM9Kr3lz8z+umJqz5Uy6T1KBky0VhKoiJyfxvMuAKmRETSyhT3N5K2IgqyoxNp2BD8FZfXietasW7qrj31VK9lsWRhzM4h0vw4BrqcAcNaAKDITzDK7w5wnlx3p2PZWvOyWZO4Q+czx9QhY0d</latexit>

'
<latexit sha1_base64="sEK5AYzmOBXROegEmaCPAOeneGg=">AAAB8HicbVA9TwJBEJ3DL8SvU0ubjWBiRe6wkJLExhIT+TBwIXvLHmzY3bvs7pGQC7/CxkJjbP05dv4bF7hCwZdM8vLeTGbmhQln2njet1PY2t7Z3Svulw4Oj45P3NOzto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5G7hd6ZUaRbLRzNLaCDwSLKIEWys9FTpT7FKxqwycMte1VsCbRI/J2XI0Ry4X/1hTFJBpSEca93zvcQEGVaGEU7npX6qaYLJBI9oz1KJBdVBtjx4jq6sMkRRrGxJg5bq74kMC61nIrSdApuxXvcW4n9eLzVRPciYTFJDJVktilKOTIwW36MhU5QYPrMEE8XsrYiMscLE2IxKNgR//eVN0q5V/Zuq91ArN+p5HEW4gEu4Bh9uoQH30IQWEBDwDK/w5ijnxXl3PlatBSefOYc/cD5/ADNpj/g=</latexit>

A'
<latexit sha1_base64="mOyAp52pfZd+KsDHBYusxp2DqoU=">AAAB8nicbVA9TwJBEN3DL8Qv1NJmI5hYkTsspMTYWGIiH8lxIXvLHmzY273szpGQCz/DxkJjbP01dv4bF7hCwZdM8vLeTGbmhYngBlz32ylsbe/s7hX3SweHR8cn5dOzjlGppqxNlVC6FxLDBJesDRwE6yWakTgUrBtO7hd+d8q04Uo+wSxhQUxGkkecErCSX70b9KdEJ2NeHZQrbs1dAm8SLycVlKM1KH/1h4qmMZNABTHG99wEgoxo4FSweamfGpYQOiEj5lsqScxMkC1PnuMrqwxxpLQtCXip/p7ISGzMLA5tZ0xgbNa9hfif56cQNYKMyyQFJulqUZQKDAov/sdDrhkFMbOEUM3trZiOiSYUbEolG4K3/vIm6dRr3k3NfaxXmo08jiK6QJfoGnnoFjXRA2qhNqJIoWf0it4ccF6cd+dj1Vpw8plz9AfO5w91a5Cs</latexit>

G'
<latexit sha1_base64="jMBSehq6p1Q5MPeHcoBuU7198gc=">AAAB8nicbVA9SwNBEN2LXzF+RS1tFhPBKtzFwpQBCy0jmA+4HGFvs5cs2ds9ducC4cjPsLFQxNZfY+e/cZNcoYkPBh7vzTAzL0wEN+C6305ha3tnd6+4Xzo4PDo+KZ+edYxKNWVtqoTSvZAYJrhkbeAgWC/RjMShYN1wcrfwu1OmDVfyCWYJC2IykjzilICV/Or9oD8lOhnz6qBccWvuEniTeDmpoBytQfmrP1Q0jZkEKogxvucmEGREA6eCzUv91LCE0AkZMd9SSWJmgmx58hxfWWWII6VtScBL9fdERmJjZnFoO2MCY7PuLcT/PD+FqBFkXCYpMElXi6JUYFB48T8ecs0oiJklhGpub8V0TDShYFMq2RC89Zc3Sade825q7mO90mzkcRTRBbpE18hDt6iJHlALtRFFCj2jV/TmgPPivDsfq9aCk8+coz9wPn8AfrmQsg==</latexit>

Yes<latexit sha1_base64="fvYvAySa32NL8NPIp/hAyDoUTBo=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4Kkk92GPBi8cK9kPaUDbbSbt0Nwm7G6GE/gUvHhTx6h/y5r9x0+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3dJeef/g8Oi4cnLa0XGqGLZZLGLVC6hGwSNsG24E9hKFVAYCu8H0Nve7T6g0j6MHM0vQl3Qc8ZAzanLpETUZVqpuzV2ArBOvIFUo0BpWvgajmKUSI8ME1brvuYnxM6oMZwLn5UGqMaFsSsfYtzSiErWfLW6dk0urjEgYK1uRIQv190RGpdYzGdhOSc1Er3q5+J/XT03Y8DMeJanBiC0XhakgJib542TEFTIjZpZQpri9lbAJVZQZG0/ZhuCtvrxOOvWad11z7+vVZqOIowTncAFX4MENNOEOWtAGBhN4hld4c6Tz4rw7H8vWDaeYOYM/cD5/AJ09jek=</latexit>

No<latexit sha1_base64="Ey44iFcugZd97onEF/LpJuD+oMw=">AAAB6XicbVBNSwMxEJ3Ur1q/qh69BIvgqezWgz0WvHiSKvYD2qVk02wbmk2WJCuUpf/AiwdFvPqPvPlvTNs9aOuDgcd7M8zMCxPBjfW8b1TY2Nza3inulvb2Dw6PyscnbaNSTVmLKqF0NySGCS5Zy3IrWDfRjMShYJ1wcjP3O09MG67ko50mLIjJSPKIU2Kd9HCnBuWKV/UWwOvEz0kFcjQH5a/+UNE0ZtJSQYzp+V5ig4xoy6lgs1I/NSwhdEJGrOeoJDEzQba4dIYvnDLEkdKupMUL9fdERmJjpnHoOmNix2bVm4v/eb3URvUg4zJJLZN0uShKBbYKz9/GQ64ZtWLqCKGau1sxHRNNqHXhlFwI/urL66Rdq/pXVe++VmnU8ziKcAbncAk+XEMDbqEJLaAQwTO8whuaoBf0jj6WrQWUz5zCH6DPH3EWjUE=</latexit>

Write safe LTL specification ' (3.4, 3.5)
<latexit sha1_base64="bTNYjNrhCd7XH9E9vVTYvO8XjrI=">AAACG3icbZBLS8NAFIUn9VXrK+rSzWArVJCQtIpdFty46KJCX9CGMpnetEMnD2YmhRL6P9z4V9y4UMSV4MJ/Y9IW0eqBgY9z7mW4xwk5k8o0P7XM2vrG5lZ2O7ezu7d/oB8etWQQCQpNGvBAdBwigTMfmoopDp1QAPEcDm1nfJPm7QkIyQK/oaYh2B4Z+sxllKjE6uultmAKsCQu4FqjhmUI9DvGhd6EiHDECrhYNi4vcNm4Os/19bxpmHPhv2AtIY+Wqvf1994goJEHvqKcSNm1zFDZMRGKUQ6zXC+SEBI6JkPoJugTD6Qdz2+b4bPEGWA3EMnzFZ67Pzdi4kk59Zxk0iNqJFez1Pwv60bKrdgx88NIgU8XH7kRxyrAaVF4wARQxacJEJqUxCimIyIIVUmdaQnW6sl/oVUyrLJh3pXy1cqyjiw6QaeoiCx0jaroFtVRE1F0jx7RM3rRHrQn7VV7W4xmtOXOMfol7eMLECueLA==</latexit>

Figure 1: The proposed methodology, along with pointers to
the sections where each operation is described.

scribed. Our contributions are mainly on the steps described
in Sections 4 and 5. Broadly speaking, these are:

1. The definition of a semantics to evaluate state/event
LTL formulas over PNs, where one can reason both
about linear combinations of the number of tokens in
each place plus the labels of transitions;

2. A novel composition algorithm between a PN and a
DFA representing the safe state/event LTL formula;

3. A general procedure to verify supervisor admissibil-
ity for the result of our composition algorithm, thus
proving decidability of the problem;

4. A syntactic restriction to the specification language
that guarantees admissibility by design, and can be
used in practical terms.

In Section 6, we present an illustrative example that shows
how our approach allows for the specification of intricate be-
haviours and the control of systems with large state spaces.
While the procedure we present can be computationally ex-
pensive, all the heavy computations are performed off-line.
Thus, the execution of the supervisor resulting from our
methodology requires very little in terms of computational
resources at run-time. This is crucial, given that the supervi-
sor is used in a feedback-loop with the system, hence it needs
to quickly react to changes in the system state.

2. Related Work
PNs have been used as a modelling formalism in sev-

eral sub-fields of robotics. For example, [53] use PNs to
model robot plans which support robust execution strategies
and [6] use generalised stochastic PNs (GSPNs) to model
and analyse the closed-loop execution of robot behaviour in
its environment. However, in these works behaviours are not
synthesised from the PN, as we do here. PN models have
also been proposed for human-robot collaboration [5].

Given their clear semantics and ability to compactlymodel
systems with high levels of concurrency, the application of

PNs to model the behaviour of multi-robot systems has at-
tracted particular interest. The work in [26] maps a homo-
geneous robot team to tokens in a PN to provide a compact
representation of interchangeable robots in order to generate
multi-robot paths that reach certain target locations in the
environment. This is extended in [38] to allow for synthesis
of multi-robot plans that satisfy a boolean team specification.
Finally, [39] uses GSPNs to coordinate a team of robots under
navigation duration uncertainty such that a reward represent-
ing system performance is maximised whilst maintaining a
global constraint on team behaviour. These works exploit the
mapping of robots to tokens to maintain a compact represen-
tation of the environment. Whilst this is not a requirement of
the work we present here, our application example uses the
same idea to keep the model compact.

In recent years, the use of formal methods for robotics, in
particular temporal logics for robot behaviour specification
and correct-by-construction synthesis have been advocated in
several works and tackling a range of different problems, such
as motion planning [27, 9, 8], partial satisfiability [35, 30]
or multi-objective planning [34, 36]. Furthermore, many of
these methods have been used as the basis for extensions that
deal with multi-robot systems, both with local specifications
for each robot [19, 42] or global, team-level, specification
for which parts of the specification must be assigned to each
robot [51, 47, 10]. All these works are based on a model
that explicitly enumerates the possible states of the system.
In our work, by using structural analysis of PNs, we strive
to mitigate the scalability issues associated with state space
enumeration. Furthermore, we show how our approach can
be applied to task assignment for a team of robots. This
problem has been addressed by several authors, and tackled
using different techniques such as auctioning [7, 43], hybrid
systems [17, 52], and fuzzy logic [50]. These solutions, how-
ever, are specific to the problem of task assignment, whilst
the approach we formalise here is more general and can be
applied to different problems, with task assignment being an
instance of a problem our approach is particularly well suited
for.

Supervisory control (SC) of discrete event systems (DES)
modelled as DFA models and language specifications was in-
troduced in the seminal work [45], being currently known in
the community as the Ramadge-Wonham (R-W) framework.
This work introduced the idea, also used here, of obtaining a
supervisor by composing the system model with the specifi-
cation model, and then analysing such composition in order
to check for controllability. A fairly complete introduction
to DES and SC is avaiable in [4]. The R-W framework was
then extended to PN models of DES in [14, 12, 15]. This
work shows some undesirable properties of PN languages
that hinder their usability as models on the R-W framework.
For example, general PN languages are not closed under
the supremal controllable sublanguage operator [13], which
makes it impossible to define general methods to find PN
representations of the least restrictive admissible supervisor
(i.e., the supervisor that is admissible, satisfies the specifica-
tion, and disables the minimal amount of transitions to do

Lacerda and Lima: Preprint submitted to Elsevier Page 2 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

so). In spite of this limitation, one can still check if a given
supervisor candidate is admissible. See [11] for a thorough
compilation of these results. The work presented here extends
the specification language from a solely event-based language
to a state/event-based language. This introduces a new chal-
lenge in terms of how to compose the plant model with the
supervisor model. Furthermore, we introduce safe LTL as
a specification language. We discuss these points further
in Subsection 4.4. Alternative to using language specifica-
tions is the so called supervision based on place invariants
(SBPI) or generalised mutual exclusion constraints (GMEC)
[16, 21, 22, 40]. In this approach, the specifications are writ-
ten as linear constraints on the reachable markings of the
system and the number of firings of each transition. This line
of work is based on a linear algebraic approach that deals
with several relevant notions for SC, such as admissibility [3],
observability [41], deadlock avoidance [23] and liveness [20].
We will further discuss the relation between our approach
and GMEC in Subsection 4.4.

The use of temporal logic for SC has mostly focused on
modelling both system and specification as a temporal logic
formula [24, 25] or in state-based models such as DFA [18,
48, 31]. The work presented here builds on [32], where LTL-
based approaches for SC was defined for PNs. Here, we
extend the semantics of LTL in order to reason directly over
markings. This not only enriches the specification language,
but also reduces the size of the supervisors, as we will show
in Section 6.

3. Preliminaries
3.1. Notation

Let A be a set. We define the set A∗ as the set of all finite
sequences that can be built fromA (including the empty string
�), and A! as the set of all infinite sequences that can be built
from A. For s ∈ A∗ and � ∈ A!, we define s.� ∈ A! as
the concatenation of s and �. If A is finite, we denote the
number of elements of A as |A|. The set of relations between
positive integers is denoted Λ = {<,≤,=,≠,≥, >}. Finally,
letM ,M ′ ∈ ℕn. We writeM ≤ M ′ ifM(k) ≤ M ′(k) for
all k ∈ {1, ..., n}.
3.2. Petri Nets

We will model our system as a Petri net (PN) with event
labels associated with the transitions. The alphabet for our
temporal logic specifications will be the union of the event
set and linear constraints on the markings of the system.
Definition 1 (Petri Net). A PN is a bipartite graph defined
as G = ⟨P , T ,W +,W −,M0, E,l⟩. The two types of nodes
are given by sets P (places) and T (transitions). Matrices
W −,W + ∈ ℕ|P |×|T | represent, respectively, the arc weights
from places to transitions, and the arc weights from transi-
tions to places. The vectorM0 ∈ ℕ|P | is the initial marking,
set E represents the events associated to the firing of transi-
tions, with labelling function l ∶ T → E assigning to each
transition a label from E.

A marking is a distribution of tokens among places and
represents a state of the system. Intuitively, places represent
different components of the system, e.g., number of robots
in a location or number of jobs in a queue. Transitions re
labelled with an associated event, and represent the dynamics
of the states of the system, i.e., changes in the marking of the
PN. Changes of state can be due to the triggering of actions
sent to the robots or the observation of a state update. These
map to controllable and uncontrollable events as we will see
later.
Definition 2 (Input and Output Weights). Let t ∈ T . We
define the vectors ∙t ∈ ℕ|P | (input weights of t) and t∙ ∈
ℕ|P | (output weights of t) as ∙t(p) = W −(p, t) and t∙(p) =
W +(p, t).

We say that p is an input place, or an output place, of t if
∙t(p) > 0, or t∙(p) > 0, respectively.
Definition 3 (Enabled Transition). LetM ∈ ℕ|P | and t ∈ T .
We say that t is enabled if ∙t ≤M .

An enabled transition can fire, updating the marking of
the PN according to the input and output weight vectors.
Definition 4 (Transition Firing). Let t be an enabled transi-
tion in markingM . The firing of t evolves the marking to
M ′ =M − ∙t + t∙. This is denotedM t

→M ′.
The notion of firing of a transition can be extended to

sequences of transitions.
Definition 5 (Firing Sequences). Let � = t1...tn ∈ T ∗. We
write M �

→ M ′ if exists M1, ...,Mn−1 ∈ ℕ|P | such that
M

t1
→M1

t2
→ ...

tn−1
→ Mn−1

tn
→M ′.

We can now define the set of reachable markings as the
set of reachable markings in G, starting inM0 and following
the firing rule.
Definition 6 (Reachable Markings). The set of reachable
markings for PN G is defined as:

R(G) = {M ∈ ℕ|P |
| exists � ∈ T ∗such thatM0

�
→M}

(1)
Furthermore, we represent the behaviour of the PN as

sets of generated languages.
Definition 7 (Generated Languages). We define the follow-
ing two languages generated by a labelled PN G:

Efin(G) = {l(t1)...l(tn) ∈ E
∗
| existsM1, ...,Mn

such thatM0
t1
→M1

t2
→ ...

tn
→Mn}

(2)

(G) = {(l(t1),M1)(l(t2),M2)... ∈ (E × R(G))! |

M0
t1
→M1

t2
→M2

t3
→ ...}

(3)

Lacerda and Lima: Preprint submitted to Elsevier Page 3 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

As we will see later, the elements of Efin(G) will beused in the supervisory control loop, and the elements of
(G) will be used to evaluate the LTL specifications. Also,
note thatM1 must be reachable from the initial markingM0through the firing of t1, butM0 is not included in (G). Thisis because we assume, without loss of generality, that G has
place init ∈ Pg and an initialise_system transition. The init
place has initial marking equal to 1, while all other places
have initial markings equal to 0. Also, the init place is not
an output place on any transition. The system always starts
by firing the initialise_system transition, which consumes
the token of the init place and distributes tokens to the other
places of G, according to the real initial state of the system.
This ensures that the initial marking of the system will be
taken into account by our composition algorithm. We require
the PNs in this work to be deterministic, to ensure that the
supervisor can keep track of the current marking of the PN
model of the system during execution while only observing
the generated sequence of events.
Definition 8 (Deterministic PN). Let G be a PN. We say
that G is deterministic if in all of its reachable markings
M ∈ R(G), ifM t

→ M ′,M t′
→ M ′′ andM ′ ≠ M ′′, then

l(t) ≠ l(t′).
Finally, we assume that P is partitioned into P! ∪ Pb,where P! is the set of unbounded places and Pb is the set ofbounded places.

Definition 9 (Bounded Place). Let p ∈ P . We say that p
is bounded, with bound �(p), if for allM ∈ R(G),M(p) ≤
�(p).

We also assume that, for each p ∈ Pb, its complement
place p is also in Pb.
Definition 10 (Complement Place). Let p ∈ Pb be a boundedplace. We define its complement place as the place p such
that M(p) +M(p) = �(p) for all M ∈ R(G). Note that
�(p) = �(p) and p = p.

Note that if we know the bound for a place, we can add its
complement place to the PN without changing its behaviour
[46]. Thus, we do not lose generality with our assumption.
Example 1. We introduce the multi-robot coordination ex-
ample that will be built throughout the paper. Assume a
team of nR robots that are in charge of performing a set
J = {j1, ..., jnJ } of different types of jobs. We assume that
there is a maximum number nji of jobs of type ji that areallowed to be processed by the system at any given time. Fur-
thermore, robots might fail while executing tasks. When this
happens, the robot gets into a broken state, and the task goes
to a queue of incomplete tasks. The PN is Figure 2 represents
this system, for task ji.Also, when a robot breaks, other robots can repair it.
When doing so, robots might be successful (leading to both
robots being able to continue executing tasks), fail (leading
to both robots being considered broken), or discover that the

Figure 2: PN model for job allocation. Complement places
that do not restrict the language of the model as omitted for
readability. Transitions in red are uncontrollable.

Figure 3: PN model for robot repair. Complement places
that do not restrict the language of the model as omitted for
readability. Transitions in red are uncontrollable.

broken robot is not repairable (leading to a state where the
broken robot needs to be replaced). This repair module of
the system is represented by the PN in Figure 3. The overall
model is obtained by merging places with the same name in
Figs. 2 and 3.

For simplicity, we do not depict all the complement places.
Furthermore, we define E = T , and l(t) = t, i.e., we will
refer the transitions by the event they represent, since all
events are unique. Also, for clarity, we depict the models
without the init place and initialise_system transition. The
initialise_system transition would put nR tokens in place
idle_robots, and nji tokens in ji_in_system, for each j1, ..., jnJ .
3.3. Supervisory Control

The purpose of supervisory control (SC), as introduced
in [45] is, given a model of the uncontrolled behaviour of a
system, to restrict its behaviour to an admissible language
a ⊆ (G), through a feedback loop. In this subsection, we
provide a brief overview on SC with language specifications
for PNs (see [11, 33] for further details).

One starts by partitioning the event setE into controllable
and uncontrollable transitions.
Definition 11 (Controllable and Uncontrollable Events). We
split the set of eventsE into two disjoint subsetsE = Ec∪Euc .We call Ec the set of controllable events and Euc the set ofuncontrollable events.

Lacerda and Lima: Preprint submitted to Elsevier Page 4 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

Ec is the set of events that can be prevented from hap-
pening by the supervisor and Euc is the events that cannot beprevented from happening. This partition is due to the fact
that, in general, there are events that make a system change
its state that are not of the “responsibility” of the system itself
(e.g., failures in execution). The set of uncontrollable events
induces a set of uncontrollable transitions for G.
Definition 12 (Uncontrollable Transitions). We define the set
of uncontrollable transitions as Tuc = {t ∈ T | l(t) ∈ Euc}.
Example 2. In the PN models depicted in Figs. 2 and 3,
controllable transitions, corresponding to actions that can
be taken on the system are depicted in black, and uncontrol-
lable transitions, corresponding to events that represent the
arrival of new jobs or a given action being successful, or
unsuccessful, are depicted in red.
Definition 13 (Supervisor). A supervisor for G is a function
S ∶ Efin(G) → 2E that, given s ∈ Efin(G), outputs the setof enabled events, i.e., the set of events that G can execute
next.

A supervisor restricts the language generated by G such
that some behaviour specification for the system is fulfilled.
Definition 14 (Controlled Language). The language gener-
ated by G when controlled by S is then given by:

(S∕G) = {(e1,M1)(e2,M2)... ∈ (G) |
ei+1 ∈ S(e1...ei) for all i ∈ ℕ}

(4)

The supervisor controls the system by, after the firing of
an event by G, “reading” the string s executed by G so far,
and outputting a set of enabled events S(s). When executing
the next event, G can only execute an event which is enabled
in its current state and which is enabled by S.

For analysis and implementation purposes, it is impor-
tant to represent the supervisor in a convenient way. In this
work, we will use a PN G' to represent the supervisor. In
order for G' to be implementable in the real system, we need
to guarantee that it is admissible. Intuitively, admissibility
means that the supervisor never disables enabled uncontrol-
lable events. We will discuss admissibility in Section 5. If the
composition is admissible, then it can be used to control the
system, i.e., we can directly represent the supervisor as a PN,
using G'. The feedback loop is then implemented as follows:
at each step, G executes an event e, according to the enabled
events in its current state and the current enabled events by
G', evolving to a new marking. This event is then sent toG',which passively executes e, also evolving to a new marking.
The set of enabled events after the execution of e is the set of
enabled events of G' in the new marking. Representing su-
pervisors with the same formalism used to model for system
modelling also gives us analysis benefits. These benefits stem
from the fact that, for this case, (S∕G) = (G'), i.e., G'also models the closed-loop behaviour of the system. Thus,
we can use all the analysis techniques available for PNs on
the controlled system.

3.4. Linear Temporal Logic
Linear temporal logic (LTL) is an extension of proposi-

tional logic developed as a means for formal reasoning about
concurrent systems [44]. It provides a convenient and power-
ful way to formally specify a variety of qualitative properties
of a system.
Definition 15 (Syntax). The syntax of LTL is defined over a
set of atomic propositions Π using the grammar below.
' ∶∶= true | � | ¬' |'∧' | X' |' U', where � ∈ Π (5)
We evaluate LTL formulas over!-strings � = �0�1�2... ∈

(G). Thus, we define the set of atomic propositions as
Π = E ∪ (ℤ|Pb| × Λ × ℕ).
Definition 16 (Atomic Propositions Satisfaction). Let �i =
(ei,Mi) ∈ E×ℕ|P | be an (event/marking) pair. �i = (ei,Mi)satisfies � ∈ Π if (i) � = ei ∈ E; or (ii) � = (v,⋈, b) with
v ∈ ℤ|Pb|, ⋈∈ Λ and b ∈ ℕ, and∑p∈Pb v(p)Mi(p) ⋈ b.

Intuitively, � = e means that the last event to occur
was e, and � = (v,⋈, b) is a linear constraint requiring
∑

p∈Pb v(p)M(p) ⋈ b to hold for the current marking M .
Note that we are allowing the writing of state/event specifica-
tions, i.e., we allow reasoning over both events and markings
generated by the system.

Now that we know how to evaluate atomic propositions
on � ∈ (G), we can define the LTL operators in the usual
way (see, for example, [44] for a formal semantics): The X
operator is read “next”, meaning that the formula it precedes
will be true in the next state. The U operator is read “until”,
meaning that its second argument will eventually become
true in some state, and the first argument will be continuously
true until that state is reached. We write � ⊩ ' to denote
that � satisfies '.

Other useful LTL operators can be derived: (i) the “even-
tually” operator F', which requires that' is satisfied in some
future state: F' ≡ true U'; (ii) the “always” operator G',
which requires that ' is satisfied in all states: G' ≡ ¬ F¬';
and (iii) the “weak until” operator ' W which relaxes the un-
til operator to include !-strings for which is never satisfied
but ' is always satisfied: ' W ≡ (' U) ∨ (G').
Example 3. For the PN model depicted in Figs. 2 and 3, one
might want to specify that if the number of working robots is
greater or equal than the current number of jobs in the system,
then we should not require dead robot replacement, as this
requires human intervention and should only be done when
the resources start becoming low. This can be written as the
following LTL specification:

'1 = G((nR −M(broken_robots) −M(dead_robots)
≥ (

∑

ji∈J
M(ji_in_system)))⇒ (X(¬replace_robot))) (6)

Note that nR−M(broken_robots)−M(dead_robots) ≥
(
∑

ji∈J M(ji_in_system)) is a linear constraint on the system.

Lacerda and Lima: Preprint submitted to Elsevier Page 5 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

We write it using this form for readability. The formal specifi-
cation is (v,≤, nR), where v(p) = 1 if
p ∈ {broken_robots, dead_robots, ji_in_system | ji ∈ J},and v(p) = 0 otherwise.
3.5. Safe LTL and Deterministic Automata

In SC theory, we are generally interested in restricting the
behaviour of a system so that it satisfies a given specification,
i.e., we are interested in avoiding sequences of execution that
are considered “bad”. The class of LTL that specifies prop-
erties that state that something “bad” will never happen is a
well-defined class, called safe LTL [28, 49]. These are for-
mulas for which the non-satisfying infinite sequences always
have a finite bad prefix.
Definition 17 (Bad Prefix). Let ' be an LTL formula and
� = �0�1... ∈ (G) such that � ⊮ '. We say � has a bad
prefix if there exists n ∈ ℕ for which the truncated finite
sequence �|n = �0�1...�n is such that �|n⋅�′ ⊮ ' for all
infinite sequences �′ ∈ (2Π)!.
Definition 18 (Safe LTL). We say that the LTL formula '
is safe if all the infinite sequences � such that � ⊮ ' have a
bad prefix.

Intuitively, a safe LTL formula is a formula that can al-
ways be falsified in a finite horizon. It is known that formulas
in the positive normal form (i.e., where negation is only ap-
plied directly to atomic propositions) which only use the
temporal operators X, G and W are safe. We will keep our
specifications within this syntactic restriction.

Safe LTL formulas ' can be translated into deterministic
finite automata (DFA)1.
Proposition 1 ([28]). Let ' be a safe LTL formula. There
exists a DFA A' =

⟨

Q, 2Π, �, q0, Qf
⟩

where (i) Q is a set
of states; (ii) � ∶ Q × 2Π → Q is a (partial) deterministic
transition function; (iii) q0 is an initial state; and (iv) Qf is
a set of accepting states; that accepts exactly the sequences
that are not a bad prefix for '.

The fact that ' is safe also allows us to assume, without
loss of generality, that (i) A' is pruned, i.e., there are no
sink states from which all accepting states are unreachable;
and (ii) Qf = Q. Furthermore, in order to describe the
transition labels (elements of 2Π) in a more compact way,
we use DNF transition labels, i.e., we label the transitions
with propositional formulas over Π, in the disjunctive normal
form (DNF). A propositional formula is said to be in the DNF
if it is a disjunction of conjunctive clauses. A conjunctive
clause is the conjunction of positive and negative literals. The
labels of the transition are then the pairs (e,M) ∈ 2Π that
satisfy the DNF formula. We write (e,M) ⊩ when is
a DNF formula satisfied by (e,M). Also, the satisfaction of
conjunctive clauses E written only over E only depends on
e. Thus, we write e ⊩ E if e satisfies E .

1Note that, given the semantics over infinite sequences, in general one
needs automata that accept infinite strings (such as Büchi automata) to
represent LTL formulas. However, for the safety fragment of LTL DFA
suffice, and make the presentation clearer.

Figure 4: DFA for formula '1. States are labelled q1 and q2.

Example 4. The LTL formula in Ex. 3 is syntactically safe.
The DFA A'1 that only accepts the sequences which are not
a bad prefix for '1 is depicted in Figure 4.

All atomic propositions (e,M) such that
nR − M(broken_robots) − M(dead_robots) ≥
(
∑

ji∈J M(ji_in_system)) are transition labels of the tran-
sition from q1 to q2, while only atomic propositions that
satisfy the same condition over M and are such that e ≠
replace_robot are transition labels of the self-loop from q2to q2.

4. Composition of PN System Model with DFA
In this section, we present the composition algorithm

between a PN system model G and the DFA obtained from a
safe LTL specification '. The result of this composition is a
PN G' whose generated language is the generated language
of G restricted to the !-strings that satisfy '. Formally, we
will tackle the following problem:
Problem 1. Let G = ⟨Pb ∪ P!, T ,W −,W +,M0, E,l⟩ bea PN and ' be a safe state/event LTL formula written over
Π = E ∪ (ℤPb × Λ × ℕ). Build a PN G' such that:

� ∈ (G') if and only if � ∈ (G) and � ⊩ ' (7)
4.1. From General Linear Constraints to

SP-GEQ-Cs
We start by showing how one can translate arbitrary lit-

erals of the form (v,⋈, b) to single place greater-or-equal
constraints (SP-GEQ-Cs). An SP-GEQ-C is of the form
(vs,≥, b), where vs is a vector with exactly one entry equal to
1, and all other entries equal to 0. We will represent all DNF
labels in the DFA obtained for the safe LTL formulas using
SP-GEQ-Cs, as this representation is required to define the
notion of minimal satisfying transition, which will be central
to the composition algorithm. We split the translation into 4
steps. These steps are more or less straightforward and use
known properties of bounded PNs and of complement places
so, for the sake of brevity, we omit the details. We refer the
reader to [29] for a thorough description of the translation.
4.1.1. From Negative Literals to Positive Literals

Firstly, we convert any negative literal into a positive lit-
eral over (ℤ|PB | × Λ × ℕ), by noting that the negation of a
linear constraint can always be transformed in an equivalent
“positive” linear constraint by changing the relation accord-
ingly. For example, ¬(v,≥, b) can be re-written as (v, <, b).

Lacerda and Lima: Preprint submitted to Elsevier Page 6 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

4.1.2. From General Constraints to GEQ and LEQ
Constraints

One can now convert any positive literal (v,⋈, b) into
greater-or-equal (GEQ) or less-or-equal (LEQ) constraints,
by taking into account that these are constraints over integers.
For example, one can write∑p∈Pb v(p)M(p) ≥ b+ 1 instead
of∑p∈Pb v(p)M(p) > b.
4.1.3. From GEQ and LEQ Constraints to Positive

GEQ Constraints
After preforming the two conversion steps described above,

all the literals in the DFA transition labels are of the form
(v,⋈, b) ∈ ℤ|PB | × {≤,≥} × ℕ. We can now convert each
constraint to a positive GEQ constraint, i.e., a constraint
(v′,≥, b′) ∈ ℕ|PB | × {≥} × ℕ equivalent to (v,⋈, b). This
can be done by re-writing the LEQ constraints and the neg-
ative weights in v, using the relations between places and
their complement places, and using the corresponding place
bounds. For example, if �(p) = 3 a constraint that imposes
M(p) ≤ 2 can be re-written asM(p) ≥ 1.
4.1.4. From Positive GEQ Constraints to SP-GEQ-Cs

We can now assume that we are dealing with constraints
(v,≥, b) ∈ ℕ|PB | × {≥} × ℕ. In order to re-write these con-
straints as SP-GEQ-Cs, we add, for each (v,≥, b), an extra
place pv in the PN. We call this place counter place, as it is
used to “count” the sum of tokens inM weighted by v, i.e.,
for allM ∈ R(G):

M(pv) =
∑

p∈Pb

v(p)M(p). (8)

Definition 19 (Counter Place). Let
G = ⟨Pb ∪ P!, T ,W −,W +,M0, E,l⟩ be a PN and (v,≥
, b) ∈ ℕ|PB |×{≥}×ℕ a constraint. The addition of a counter
place for v to G, yields the PN
Gv = ⟨P ∪ {pv}, T ,Mv

0 ,W
v−,W v+, E,l⟩, where, for pv:

• Mv
0 (pv) = v

TM0 =
∑

p∈Pb

v(p)M0(p);

• For t ∈ T , W v−(pv, t) = max{−W v(pv, t), 0} and
W v+(pv, t) = max{W v(pv, t), 0}, where:

W v(pv, t) =
∑

p∈Pb

v(p)(W +(p, t) −W −(p, t)) (9)

FurthermoreW v−(p, t) = W −(p, t) andW v+(p, t) =
W +(p, t) for all p ∈ P , t ∈ T .

Note that the addition of the counter place does not change
the behaviour of the PN, and one can see Gv as an extension
of G that keeps track of the sum of the number of tokens in
certain places.

Thus, after the counter place pv is built, (v,≥, b) can bere-written as an SP-GEQ-C (vpv ,≥, b), where vpv (pv) = 1
and vpv (p) = 0 for all other p ∈ P . For simplicity we will
denote SP-GEQ-Cs as (pv,≥, b) in the remainder of the paper.

Figure 5: Illustration of the counter place construction.

Example 5. Consider the linear constraint¬(v1,≤, nR), where
v1 is defined in Ex. 3, and the PN models of Ex. 1. We illus-
trate the full conversion procedure:

1. Convert the constraint into a positive literal (v1, >, nR);
2. Convert the constraint into a GEQ constraint
(v1,≥, nR − 1);

3. Since v1 is already inℕ|PB | and the constraint is already
a GEQ constraint, we do not need to modify it;

4. Build the counter place pv1 for v1. The constructionis depicted in blue in Figure 5, where we assume two
types of jobs, and only depict the relevant places and
transitions of the model. The final SP-GEQ-C, equiva-
lent to the initial constraint, is (pv1 ,≥, nR − 1).

4.2. Adding Minimal Satisfying Transitions
We now describe the construction of minimal satisfying

transitions for conjunctive clauses of the form = E ∧ P ,where E = l1 ∧ ... ∧ lkE is a conjunctive clause over E, and
 P = (p1,≥, b1) ∧ ... ∧ (pkP ,≥, bkP) is a conjunctive clause,where all the literals are SP-GEQ-Cs.
Definition 20 (Minimal Satisfying Transition). Let =
 E ∧ P , where E = l1 ∧ ... ∧ lkE . We define the set
of places associated with as P = ⋃kP

i=1 pi and the func-
tion b ∶ P → ℕ that maps each pi to the corresponding bi,i.e., b(pi) = bi, i = 1, ..., kP . If �(p) − ∙t(p) + t∙(p) ≥ b(p) for
all p ∈ P and l(t) ⊩ E , the minimal satisfying transition
tt, obtained from t and is defined as:

∙tt, (p) =
{ ∙t(p) if p ∉ P or b(p) ≤ t∙(p)

b(p) + ∙t(p) − t∙(p) otherwise
(10)

t∙t, (p) =
{

t∙(p) if p ∉ P or b(p) ≤ t∙(p)
b(p) otherwise (11)

Lacerda and Lima: Preprint submitted to Elsevier Page 7 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

In the cases where l(t) ⊮ E , or exists p ∈ P such that
�(p)− ∙t(p)+ t∙(p) < b(p), we say that the minimal satisfying
transition is undefined.

The minimal satisfying transition for t and is enabled
if and only if (i) t is enabled; (ii) l(t) satisfies the conjunctive
clause E ; and (iii) the firing of t drives the PN to a marking
that satisfies all the SP-GEQ-Cs in P . Furthermore, when
the minimal satisfying transition is not defined, then either
(i) l(t) does not satisfy the conjunctive clause E ; or (ii) allthe firings of twill drive the PN to amarkingM where at least
one SP-GEQ-C (pi,≥, bi) is not satisfied, i.e.,M(pi) < bi.
Proposition 2. Let G be a PN, t ∈ T , and = E ∧ P ,
where E is a conjunctive clause written over E and P is
a conjunctive clause of SP-GEQ-Cs. The minimal satisfying
transition tt, has the following properties:

1. For allM ∈ R(G),M
tt,
→ M ′ if and only ifM

t
→M ′,

l(t) ⊩ E and M ′(p) ≥ b(p) for all p ∈ P , i.e.,
(M,l(t)) ⊩ ;

2. If tt, is undefined, then either l(t) ⊮ E , or for
all M ′ ∈ R(G) for which there exists M ∈ R(G)
such that M

t
→ M ′, there exists p ∈ P such that

M ′(p) < b(p), i.e., (M,l(t))⊮ .

Proof. We note that the part of the result concerning l(t) and
 E follows directly from the definition. Thus, we just need to
analyse P and the possible markings obtained immediately
after the firing of t.

1. We start by noting that the input and output weights
of t and tt, coincide for all places p such that p ∉
P or b(p) ≤ t∙(p). Hence, we only need to analyse
places p such that p ∈ P and b(p) > t∙(p).
⇒ For allM ∈ R(G), ifM tt,

→ M ′ thenM t
→ M ′

andM ′(p) ≥ b(p) for all p ∈ P .
To prove thatM t

→M ′, we need to prove that:
(i) t is enabled inM , i.e.,M ≥ ∙t.

For all p ∈ P such that b(p) > t∙(p), we have:
M(p) ≥ ∙tt, (p) = b(p) + ∙t(p) − t∙(p) > ∙t(p)

(12)
(ii) M − ∙t + t∙ =M − ∙tt, + t∙t, .

For all p ∈ P such that b(p) > t∙(p), we have:
M(p) − ∙tt, (p) + t∙t, (p) =

M(p) − b(p) − ∙t(p) + t∙(p) + b(p) =
M(p) − ∙t(p) + t∙(p)

(13)

To prove thatM ′(p) ≥ b(p) for all p ∈ P , we start by
noting that, according to the PN firing rule, ifM tt,

→
M ′, thenM ′(p) ≥ t∙t, (p) for all p ∈ P . Furthermore,
by construction of tt, , t∙t, (p) ≥ b(p) for all p ∈ P .
Hence, it is clear thatM ′(p) ≥ b(p) for all p ∈ P .

⇐ For all M ∈ R(G), if M t
→ M ′ and M ′(p) ≥

b(p) for all p ∈ P , thenM
tt,
→ M ′. We need to prove

that:
(i) tt, is enabled inM , i.e.,M ≥ ∙tt, .

For all p ∈ P such that b(p) > t∙(p), we have:

M ′(p) =
M(p) − ∙t(p) + t∙(p) =
M(p) − ∙tt, (p) + b(p) − t∙(p) + t∙(p) =
M(p) − ∙tt, (p) + b(p)

(14)

Given that, by hypothesis,M ′(p) ≥ b(p), we can
conclude thatM(p) − ∙tt, (p) + b(p) ≥ b(p), thus
M(p) ≥ ∙tt, (p).

(ii) M − ∙tt, + t∙t, =M − ∙t + t∙.
This was already proven in point (ii) above.

2. Since tt, is undefined, let p ∈ P such that �(p) −
∙t(p) + t∙(p) < b(p), i.e., −∙t(p) + t∙(p) < b(p) − �(p).
Let M, M ′ ∈ R(G) such that M t

→ M ′. We have
that:

M ′(p) =M(p) − ∙t(p) + t∙(p) <
M(p) + b(p) − �(p) ≤ b(p)

(15)

Hence the proof is completed.
Example 6. Let
 = ¬replace_robot ∧ (pv1 ,≥, nR − 1),where pv1 is the counter place defined in Ex. 5. We assume
nR > 1, otherwise the SP-GEQ-C is trivially satisfied in
all markings. We will analyse transitions replace_robot and
ℎelp_robot. For transition replace_robot, replace_robot ⊮
¬replace_robot, thus treplace_robot,
 is not defined. For tran-sition ℎelp_robot, ℎelp_robot ⊩ ¬replace_robot. Further-
more, we have ℎelp_robot∙(pv1) = 0 ≱ b(pv1) = nR − 1,so we change the arc weights to ∙tℎelp_robot,
 (pv1) = b(pv1) +∙ℎelp_robot(pv1)−ℎelp_robot∙(pv1) = (nR−1)+1−0 = nRand t∙ℎelp_robot,
 (pv1) = b(pv1) = nR − 1. Figure 6 depicts the
result of the minimal satisfying transition tℎelp_robot,
 , as justdescribed. We only depict the relevant places and transitions
for its construction. The transitions with arc changes are
depicted in blue. For this example, the places and arcs de-
picted in green are to be ignored, as they are related to the
composition algorithm that will be described next.
4.3. Composition Algorithm

To solve Problem 1, we define a composition function
that, given the PN G and the DFA A', builds a PN G' that
simulates the run of the PN and the DFA in parallel, such
that G only fires a transition t if the firing of t satisfies one
of the enabled DNF transition labels in the current state of
A'. The construction of this PN follows Algorithm 1. The
algorithm is based on the notion of minimal satisfying transi-
tion, so we assume that all the DNF formulas labelling the
DFA transitions have either literals over E or SP-GEQ-Cs,

Lacerda and Lima: Preprint submitted to Elsevier Page 8 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

Figure 6: Synchronising transition ℎelp_robot with the self-
loop of state q2 of the DFA depicted in Figure 4.

Algorithm 1 DFA/PN Composition
Input: PN G = ⟨P , T ,W +,W −,M0, E,l⟩, and syntactically safe LTL

formula ', written over Π
Output: PN G' = ⟨P', T',W +

' ,W
−
' ,M',0, E,l'⟩

1: A' =
⟨

Q, 2Π, �, q0, Qf
⟩

2: P' ← P ; M',0 ←M03: queue.pusℎ(q0)4: add place p with label q0 to P'; M',0(p)← 1
5: while queue ≠ ∅ do
6: q ← queue.pop()
7: for all t ∈ T do
8: for all (, q′) such that �(q,) = q′ do
9: for all conjunctive clauses
 in do
10: if tt,
 is defined then11: if ∄p ∈ P' with label q′ then
12: queue.pusℎ(q′)
13: add place p′ with label q′ to P';M',0(p′)← 0
14: end if
15: add transition tt,
 to T'; l'(tt,
)← l(t)
16: ∙tt,
 (p)← 1, where p ∈ P' is labelled q
17: t∙t,
 (p

′)← 1, where p′ ∈ P' is labelled q′
18: end if
19: end for
20: end for
21: end for
22: end while

and that the corresponding counter places have already been
added to G.

We start by analysing the initial state q0 of the DFA, andonly analyse states that are attained during the execution of
the algorithm, i.e., states added to queue (lines 11–14). These
states are added as places to G'. At each marking of G', the“DFA place” representing the current state of the DFA has
one token and all other “DFA places” have zero tokens. This
can be seen as representing the DFA as a PN structure, and
allows us to represent the result of the composition as a PN.

When analysing a state q, taken from queue, we iterate
over all DNF formulas labelling transitions from q and, for
each transition of the input PN, build the minimal satisfying
transition for each conjunctive clause
 in . For each of
these conjunctive clauses, if the minimal satisfying transition
tt,
 is defined, we add it to G'. Furthermore, to ensure that
we keep the DFA evolution encoded in G', we add the place
representing q as an input place, and the place representing
�(q,) as an output place to tt,
 (lines 7–21). Note that if theminimal satisfying transition is not defined, it means that the
original transition cannot be executed without falsifying ',
hence we do not add anything to G'.

To summarise, for each transition tt,
 added to the outputPN, there are 3 types of arcs:
1. System arcs, i.e., the same arcs as in t. These arcs take

into account the evolution of the system after t is fired;
2. DFA arcs, i.e., arcs that consume a token from the

place representing the current state of the DFA and put
one token in the place representing the next state of
the DFA. These arcs take into account the evolution of
the DFA;

3. Constraint arcs, obtained from the minimal satisfying
transition construction. These arcs do not change the
token flow (with respect to the original PN) in the
places they are related to. Furthermore, they guarantee
that any marking obtained immediately after the firing
of tt,
 satisfies
 (according to the properties of minimal
satisfying transitions proved in Proposition 3).

Hence, the result of the composition simulates the run-
ning in parallel of the PN and the DFA, where we add transi-
tions that represent all the possible firings of transitions in
the PN that can satisfy a DNF label in the DFA, evolving
both structures accordingly. Given that we synchronise all
transitions in both models (as in the parallel composition
of PNs where transition synchronisation is done using the
events of each model, see for example [11]), and the notion of
minimal satisfying transition is ocrrect as proved in Prop. 3,
we can ensure the correctness of the composition algorithm.
Proposition 3. Algorithm 1 solves Problem 1.

Proof. The counter place represents a linear constraint (v,⋈
, b) while maintaining the language of the PN. Thus, after
building counter places for all linear constraints in ', one
just needs to ensure that the corresponding SP-GEQ-Cs over
the counter places are kept valid according to the transitions
of A', while not restricting the firing of transitions more
than needed to guarantee that validity. The minimal satis-
fying transitions exactly represent the minimal restriction
over a transition such that its firing is guaranteed to evolve
the PN to a marking such that the SP-GEQ-C is satisfied,
as proved in Proposition 2. Algorithm 1 generalises the no-
tion of event-based parallel composition of PNs as described
in [11], synchronising all transitions between the PN and
the DFA, using the minimal satisfying transition notion, and
keeping track of the marking evolution of G and the state
evolution of A'. Thus, the result follows.
Example 7. Algorithm 1 needs to synchronise all transitions
of G with all transitions from DFA states that are queued
(lines 6 and 12). Consider the PN model G in Figs. 2 and
3, and the DFA A' in Figure 4. Assume that all transitions
from state q1 ofA' have been processed, and we are currently
processing transition ℎelp_robot of G, and the transition in
A' from q2 to q1, labelled by ¬replace_robot∧ ¬(v1,≤, nR).As seen in Ex. 5, this label is equivalent to ¬replace_robot∧
(pv1 ,≥, nR − 1), where pv1 is the associated counter place.
The construction of the minimal satisfying transition for

Lacerda and Lima: Preprint submitted to Elsevier Page 9 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

ℎelp_robot and ¬replace_robot ∧ (pv1 ,≥, nR − 1) was illus-trated in Ex. 6. Thus, we just need to add arcs representing
the evolution of the DFA from q2 to q1, as depicted in green
in Figure 6.
4.4. Additional Remarks
4.4.1. Complexity of the Composition

It is known that for an LTL formula ', the number of
states of the deterministic automaton A' is, in the worst-
case, doubly exponential on the size of ', i.e., |Q| = 22|'|
[28]. Furthermore, the number of transitions is at most
|Q|2|Π'|, where Π' ⊆ Π is the set of atomic proposition
that occur in '. This is because the maximum number of
transitions from a state is the size of the DFA’s alphabet.
Thus, in the worst-case, |P'| = |P | + 22|'| and |T'| =
|T ||Q|2|Π'| = |T |2(2

|'|+|Π'|). Thus, the composition has
complexity O(|P | + |T |2(2

|'|+|Π'|)). We note that the expo-
nential blow-up on the size of the formula is unavoidable
as it stems from the translation of the formula to the DFA.
However, in general the size of the LTL specifications can
be kept small, with our semantics based on linear constraints
being an extra factor for such an argument, as we discuss
next. Furthermore, the worst-case scenario for the automaton
size is rarely attained, with state-of-the-art LTL to automaton
translators generating automata that are much smaller than
the worst-case for most LTL formulas.
4.4.2. Dead Transitions

The use of a structural approach allows us to avoid the
state space explosion. However, our composition requires
synchronising all transitions in the PN with all transitions in
the DFA, to ensure that the DFA component of the composi-
tion evolves according to all the events fired in the original
PN. Several of these transitions might not be enabled by any
of the reachable markings in the PN. However, this cannot
be analysed at composition time because it would require
building the state space. In general, the computational sav-
ings of not generating the state space of the PN outweigh
the impact of the generation of these dead transitions. Their
presence does not affect the overall qualitative behaviour of
the system, i.e., the generated controlled language is still the
same. Hence, their main impact is on execution and analy-
sis terms, as there is a large subset of transitions which, if
not pruned, impact the process of finding the enabled transi-
tions in a certain marking. In order to perform the pruning
of dead transitions, one can use several techniques. Exam-
ples are building the coverability graph of the composition,
and remove transitions that do not appear there, or using an
incomplete structural approach, based on the notion of fir-
ing count vector, as described in [32]. In future work, we
will investigate more involved approaches for removing dead
transition, e.g., [1].
4.4.3. Complexity Benefit of Linear Constraints

In other works relating LTL and PNs, the proposed se-
mantics of LTL is more restrictive than the one we present
here. In general, LTL formulas are evaluated over PN models

by associating a set of atomic propositions D to a subset of
1-bounded places (i.e., places p such that �(p) = 1). Then, d
is satisfied in a markingM iffM(pd) = 1, where pd is the 1-
bounded place associated to d. Our approach is not only more
general but also can yield smaller supervisors, by allowing
the representation of some propositional connectives by lin-
ear constraints. For example, let D′ = {d1, ..., dn} ⊆ D and
vD′ a vector such that vD′ (p) = 1 if p = pdi for some di ∈ D′
and 0 otherwise. A formula ⋁di∈D′ di, can be represented
by (vD′ ,≥, 1); a formula ⋀di∈D′ di, can be represented by
(vD′ ,≥, n); more generally, consider the so-called cardinality
constraints, i.e., constraints of the form “at least m of the n
atomic propositions in D′ need to be satisfied” or “at most
m of the n atomic proposition in D′ can be satisfied”. To the
best of our knowledge, the best lower-bound for the length
of a propositional logic formula encoding such a constraint
is in O(n log2 m) [2]. We can represent “at least” constraints
by (vD′ ,≥, m) and “at most” constraints by (vD′ ,≤, m) , i.e.,by a single atomic proposition.
4.4.4. Generalised Mutual Exclusion Constraints

The inspiration to use linear constraints came from the
so called generalised mutual exclusion constraints (GMEC)
approach [16, 21, 40, 22]. The GMEC approach is a form
of state-based supervision, based on the addition of places
– called monitors – that create place invariants in the PN.
These monitors allow the designer to write specifications
similar to ours. In fact, the construction of the counter place
we presented here has similarities with the basic construc-
tion of monitors. Loosely speaking, a “GMEC specification”
(v,⋈, b) is equivalent to the safe LTL specificationG(v,⋈, b).
Thus, our approach can be seen as an alternative to GMECs,
that deals with specifications of the same flavour but, instead
of only allowing for “static” linear restrictions that must al-
ways hold, allows for the specification of “dynamic” safe
LTL relations between GMECs that can change due to the
sequence of markings and/or events already executed. The
GMEC approach has the advantage of being able to deal with
unbounded places. This is because GMEC always keeps the
number of tokens in the places above or below a given con-
stant, being only applicable when the initial marking already
satisfies the linear constraint. In our case, we must check the
number of tokens in certain places, because we always need
to know what is the marking after the firing of a transition
in order to make the DFA evolve to the correct state. Since
being able to check whether an unbounded place has 0 tokens
increases the modelling power of the PN to the equivalent
of a Turing machines (which is not desirable as most prob-
lems become undecidable), we cannot hope to reason directly
about unbounded places.
4.4.5. Event Based DFA and PN Language

Specifications
Our approach builds over the more traditional event based

language specification approaches, by allowing for state/event
specifications, where the state specifications are “GMEC-
like”. Hence, our composition algorithm can be seen as

Lacerda and Lima: Preprint submitted to Elsevier Page 10 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

bringing together ideas from two well established techniques
for SC of PNs: GMECs and language specifications. We
also note that, while our algorithm receives a safe state/event
LTL specifications as input, it can be easily generalised to
specifications given directly as a DFA or a PN, as it follows
the idea of concurrent composition for PNs, as presented for
example in [11].

5. Supervisor Admissibility
5.1. Checking Admissibility

In this subsection we provide a general procedure to check
admissibility of the composition G' obtained from Algo-
rithm 1. This procedure is based on the notion of partially
covering markings [11, 33].
Definition 21 (Partially Covering Marking). Given a set of
places P , a marking M ∈ ℕ|P |, and P= ⊆ P , the set of
partially covering markings is defined as:

(M,P=) =

{M ′ ∈ ℕ|P |
|M ′(p) =M(p) for all p ∈ P= and

M ′(p) ≥M(p) for all p ∈ P ⧵ P=}
(16)

Partially covering markings represent the set of markings
which are equal toM for places in P= and greater or equal
thanM for all other places. In spite of being a set of infinite
cardinality, it is shown in [33] that checking the reachability
of an element in this set is decidable.
Definition 22 (Modified Input Places). Given t ∈ Tuc , let
T t' = {t1, ..., tr} be the set of transitions of the form tt, created by Algorithm 1 for t ∈ T . We define the set of
combinations (Cartesian product) of input places that were
modified for T t' as:

P t' =
r

∏

i=1
{p' ∈ P' |

∙ti(p') − ∙t(p') > 0} (17)

For places pQ ∈ P' ⧵ P , i.e., places representing DFA states,
we consider ∙t(pQ) = 0.

We can now define the set of tokens for input places
of t for which t would be enabled in G but none of the its
corresponding transitions created in G' would be enabled.
Definition 23 (Inadmissible Token Distribution). Let p =
(p1, ..., pr) ∈ P t'. We define the set of inadmissible k’s for
t ∈ Tuc as:

K t,p = {(k1, ..., kr) ∈ ℕr | for all i, j = 1, ..., r,
∙t(pi) ≤ ki <

∙ti(pi) and if pi = pj then ki = kj} (18)

Example 8. Figure 7 depicts (a) a system model G; and
(b) a composition G' for a safe LTL formula '. Note that
places q0 and q1 represent DFA places. We exemplify how
to construct some instances of the sets defined above: T t1' =

Figure 7: (a) A PN system model G. (b) A PN/DFA composi-
tion G'.

{tt1, 1 , tt1, 2}; P t1' = {p1, q1} × {p2, q0} =
{(p1, p2), (p1, q0), (q1, p2), (q1, q0)}; and K t1,(p1,p2) =
{(1, 0), (2, 0), (1, 1), (2, 1)}.

Note that, for the job allocation model in Figs. 2 and
3, and the self-loop of q2 of the DFA A'1 in Figure 4, we
have calculated one element of T ℎelp_robot'1 . However, this set
has 4 elements, one for each transition of the DFA. Thus,
exemplifying this construction for T ℎelp_robot'1 is not possible,
due to spacing constraints. This illustrates the first problem
with this approach: one needs to take into account all possible
combinations of k-tuples over a Cartesian product, which can
become unmanageable very quickly.

The proposition below is a straightforward adaptation of
the result in [33] to our composition algorithm.
Proposition 4. Checking if G' is admissible for G can be
reduced to checking reachability of a finite union of partially
covering markings in G'.

Proof. Let t ∈ Tuc , p = (p1, ..., pr) ∈ P t', Pp = {p1} ∪ ... ∪
{pr} and k = (k1, ..., kr) ∈ K t,p, and consider the marking
following markings, defined over P':

Mt,p,k(p) =

⎧

⎪

⎨

⎪

⎩

ki if p = pi ∈ Pp
∙t(p) if p ∈ P and p ∉ Pp
0 otherwise

(19)

Mt(p) =
{ ∙t(p) if p ∈ P

0 otherwise (20)

All possible uncontrollable markings for G' can be rep-
resented by the following:

⋃

t∈Tuc

⋃

p∈P t'

⋃

k∈K t,k


(

Mt,p,k, Pp
)

∪
⋃

t∈Tuc | T t'=∅

(Mt, ∅) (21)

This result has the importance of showing that admissi-
bility checking is decidable for G'. However, in practical
terms, applying it is not efficient, as checking for reachability

Lacerda and Lima: Preprint submitted to Elsevier Page 11 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

of a partially covering marking relies on building a PN G′'.The state space growth associated with the construction of
G′' makes the procedure infeasible for PNs with state spaces
larger than a few hundred states. In our experiences, we could
only check a PN with less that 50 reachable markings, and
G′' had more than 100,000 reachable markings.
5.2. Specification Language Restriction

Given the inefficiency of checking for admissibility, we
present an extra syntactic restriction to safe LTL that guaran-
tees supervisor admissibility a priori.
Definition 24 (Controllable SP-GEQ-Cs). The set of con-
trollable SP-GEQ-Cs for G is defined as:

spgecqc = {(p,≥, b) | for all t ∈ Tuc ,
if t∙(p) − ∙t(p) < 0 then t∙(p) ≥ b}

(22)

Maintaining (p,≥, b) ∈ spgecqc true between consecu-
tive markings does not entail disabling uncontrollable tran-
sitions. Note that, given that our marking constraints are of
the same form as GMECs, one can use known approaches
for transforming uncontrollable SP-GEQ-Cs into controllable
SP-GEQ-Cs, such as the approach in [41].
Example 9. In the PN of Figs. 2 and 3, (idle_robots,≥, b) is
controllable for all b ∈ {0, ..., kR}, because
∙t(idle_robots) = 0 for all t ∈ Tuc . Conversely,
(ji_in_system,≥, b) is uncontrollable for all b ∈ ℕ,
because ∙ finished _ji(idle_robots) = 1, and
∙ finished _ji(idle_robots) − finished _ji∙(idle_robots) =
−1 < 0, and finished _ji is an uncontrollable transition.
Definition 25 (Syntactic Restriction). We define the class of
guaranteed admissible safe LTL formulas as a conjunction of
formulas of the following types:

1. G , where is a propositional formula in the DNF
where only SP-GEQ-Cs in spgecqc that are satisfied inthe initial state, or literals ¬e with e ∈ Ec can occur.

2. G(
 ⇒ X), where
 is any propositional formula in
the DNF and is a propositional formula in the DNF
where only SP-GEQ-Cs in spgecqc that also appear in

 , or literals ¬e with e ∈ Ec can occur.

3. G(
 ⇒ X(W
 ′)), where
 and
 ′ are any proposi-
tional formulas in the DNF and is a propositional
formula in the DNFwhere only SP-GEQ-Cs in spgecqcthat also appear in
 , or literals ¬e with e ∈ Ec canoccur.

Formulas of type 1 specify propositional logic relations
between state descriptions and controllable events that should
always be satisfied in all markings of the supervised PN.

Formulas of type 2 specify that must be satisfied im-
mediately after condition
 is met. Since
 is a condition, it
can have occurrences of all atomic propositions. To ensure
admissibility, only SP-GEQ-Cs in spgecqc that occur in
 , orthe negation of controllable events can occur in .

Formulas of type 3 specify that immediately after condi-
tion
 is satisfied, must keep being satisfied until condition

 ′ is met. The restrictions for the SP-GEQ-Cs in are the
same as for formulas of type 2. Note that we can use formulas
of type 3 to encode that an event e ∈ Ec must occur as soon
as possible:

G(
 ⇒ X((
⋀

e′∈Ec⧵{e}
¬e′)W e)) (23)

The restriction to formulas of the types above ensures
admissibility of the supervisor because:

• We never enforce the occurrence of an event or set of
events, we only enforce that a given subset of Ec must
not happen at a given moment.

• We do not enforce that a certain place must remain with
b or more tokens when the firing of an uncontrollable
transition removes tokens from that place and does not
put at least b tokens back on it.

Finally it is clear that if ' and yields admissible super-
visors, then ' ∧ must also yield an admissible supervisor.

6. Application to Multi-Robot Coordination
In this section, we illustrate and evaluate our approach

on the running example scenario. We will use the PN repre-
sented in Figs. 2 and 3, and write a specifications according
to Subsection 5.2 to control it.

First, formula '1, introduced in Ex. 3.
Second, if the number of broken and dead robots gets

above a threshold kbroken, then we should prioritise the useof the available robots for repair jobs.

'2 = G((M(broken_robots)+
M(dead_robots) ≥ kbroken)⇒

(X(
⋀

ji∈J
(¬assign_new_ji ∧ ¬assign_failed_ji))))

(24)

Third, jobs that have failed should be given priority over
new jobs, as they have been in the system for more time.

'3 = G((
∑

ji∈J
M(failed_ji_queue) ≥ 1)⇒

(X(
⋀

ji∈J
¬assign_new_ji)))

(25)

The above rules are general, regardless of the number |J |
of types of job. One can also define prioritisation between
different jobs. For example, between jobs 1 and 2, we might
want to provide higher priority for job 1, such that we do not
allow for allocation of jobs of type 2 if either there are less
jobs of type 2 in the queue, or there are at least three jobs of
type 1 queueing.

'4 = G(((M(new_j1_queue) ≥M(new_j2_queue))
∨ (M(new_j1_queue) ≥ 3)) ⇒ (X(¬assign_new_j2)))

Lacerda and Lima: Preprint submitted to Elsevier Page 12 of 15

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

(26)
However, in the cases where there are more jobs of type

2 queueing, and there is at most one job of type 1 queueing,
we do not allow for allocation of jobs of type 1. This allows
the system to balance the distribution of jobs, and ensuring
that when the load for jobs of type 1 is low, jobs of type 2
will be processed.

'5 = G(((M(new_j1_queue) < M(new_j2_queue))∧
(M(new_j1_queue) ≤ 1))⇒ (X(¬assign_new_j1)))

(27)

We note that the above rules involve both linear con-
straints and events, and are intuitively written from their nat-
ural language specification. This means that they cannot be
directly stated as GMECs (which is based on place invariants
that need to hold in all markings of the system, and here we
are defining “conditional” rules that have to be enforced only
in a subset of the markings of the system), nor as language
specifications only using the set of events.

The overall specification is ' = '1 ∧ ... ∧ '5. In or-
der to translate the LTL formulas into a DFA, we use the
Spot !-automaton library2, which implements state-of-the-
art translation methods. Given that the overall specification
is a conjunction of five rules, one has two different options
of building the supervisor PN:

1. Build A' for the conjunction of all the rules, and apply
Algorithm 1 to the PN model and A', building G'; or

2. For each rule 'i, build A'i , and incrementally apply
Algorithm 1 to compose each A'i with the PN model,
building G'1,...,'5 .

Given that our composition represents the largest restric-
tion of the PN behaviour that satisfies the specification, op-
tions 1) and 2) are equivalent in terms of the language of the
resulting supervisor. We will investigate the pros and cons
of these 2 approaches throughout this section. The imple-
mentation of our approach is available online3. To generate
the reachability graph, we used the Tina toolbox4, which
provides tools for efficient generation of large state spaces.

The DFA for each 'i has 2 states and 4 DNF transition
labels, while the DFA for the conjunction ' has 10 states and
1000 DNF transition labels.

In Table 1, we report on the number of places and transi-
tions of the PNs, along with the number of reachable mark-
ings, for the original model, and both the PN G' built using
a conjunction of the specifications and the PN G'1,...,'5 buildincrementally. In the cases where the reachability graph
could not be generated within 15 minutes5 we write timeout
in the corresponding table entry. These results show that we
can compactly represent large state spaces using PNs. Fur-
thermore, as the number of jobs increases, the size of the

2https://spot.lrde.epita.fr/
3https://github.com/bfalacerda/ltl_sup_con
4http://projects.laas.fr/tina/
5The experiments were performed on a laptop computer equipped with

an Intel® CoreTM i7 CPU @ 2.70GHz x 8, and 16GB of RAM.

PN model increases linearly, and if the number of robots or
number of specific jobs allowed in the system increase, the
size of the PN remains constant. We now analyse the size
of the supervisors. One can see that we are able to control
systems with very large state spaces, and generate compact
PN representations of their supervisors. This would not be
possible using approaches based on state space enumeration.

For the models where we could generate the reachability
graph, we can observe that a large percentage of the transi-
tions generated by Algorithm 1 is dead, a discussed in 4.4.2.
By removing these transitions identified as dead, we finish
with a compact model representing the controlled system.

We also note the difference in terms of number of tran-
sitions in the final supervisor, for the 2 different supervisor
construction approaches. The construction of the supervi-
sors for the conjunction of the specifications mitigates the
exponential growth of the transitions. Thus, when there are
many specifications, the best approach is doing the conjunc-
tion of subsets of specifications such that each conjunction
does not have more than 20 atomic propositions and can be
translated in feasible time. Then, for those conjunctions, use
the incremental approach to generate the final supervisor.

Finally, we note that for a fixed number of job types,
increasing the number of robots or of allowed job of a given
type does not increase the size of the supervisor structure, as
it simply corresponds to adding more tokens to the model.
Furthermore, note that we manage to scale up to a team of
32 robots, with a maximum of |J | × nji = 6 × 16 = 96 tasksin the system. This is a substantially sized model: a state-
based approach already has an order of one million states
for 8 robots and 16 tasks, as shown in Table 1. For the 32
robot case, we could not generate the state space. However,
note that 32 robots with 2 possible states already generates
232 > 109 states. Our system is much more complex than
that, including more possible states for robots and also task
states. We also note that the computation of the supervisor
is done only once before deployment, and it can then be run
online very efficiently following the feedback loop described
in Subsection 3.3.

7. Conclusions and Further Work
Wedescribed amethod formulti-robot coordination based

on the construction of PN supervisors that are guaranteed to
fulfil state/event safe LTL specifications. We provided a novel
semantics for LTL in PNs, where atomic propositions can be
linear constraints on the markings of the system; showed how
we can compose the PN with the DFA obtained from the safe
LTL formula, obtaining a PN representation of a supervisor
candidate; and discussed how admissibility can be checked,
or guaranteed a priori by using a restriction to the specifica-
tion language. This work develops a framework where both
the multi-robot system and the specifications are represented
in suitable and well-accepted formalisms, which allow for
the automatic synthesis of supervisors from the specification
of complex coordination rules, along with formal guarantees
on the overall behaviour of the team.

Further work includes dealing with other relevant issues
Lacerda and Lima: Preprint submitted to Elsevier Page 13 of 15

https://spot.lrde.epita.fr/
https://github.com/bfalacerda/ltl_sup_con
http://projects.laas.fr/tina/

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

nr |J | nji |P | |T | |R(G)| |P'| |T'| |T live' | |P'1 ,...,'5 | |T'1 ,...,'5 | |T live'1 ,...,'5
| |R(G')|

4 2 4 35 17 11,316 45 2,540 414 45 24,192 978 10,998
6 2 4 35 17 31,162 45 2,540 475 45 24,192 1,162 45,010
8 2 4 35 17 66,932 45 2,540 475 45 24,192 1,162 111,160
8 2 6 35 17 295,536 45 2,540 475 45 24,192 1,162 441,512
8 2 8 35 17 886,664 45 2,540 475 45 24,192 timeout 1.05 × 106
8 3 8 43 22 timeout 53 3,872 timeout 53 30,848 timeout timeout
8 6 8 67 37 timeout 77 6,536 timeout 77 50,816 timeout timeout

32 6 16 67 37 timeout 77 6,536 timeout 77 50,816 timeout timeout

Table 1
Model and supervisor sizes for different values of nr (number of robots), |J | (number of
job classes), and nji (maximum number of jobs of each class that can be in the system).
kbroken = nr∕2.

in the the theory of SC, such as liveness or observability,
and investigating more efficient approaches for admissibil-
ity checking such as [37]. Furthermore, we just described
techniques for checking admissibility. We did not tackle the
problem of finding least restrictive supervisors from the PN
resulting of our composition. This is because in general PNs
are not closed under this operation [4]. An interesting and
relevant line of research is investigating subclasses of PNs
for which one can verify admissibility more efficiently and
build least restrictive supervisors for our composition. Fur-
thermore, it is worth investigating how one can extend the
language restriction to ensure admissibility, both looking at
a less restrictive definition of controllable SP-GEQ-C, and to
other types of safe LTL specifications where a priori admis-
sibility can be guaranteed. Finally, we intend to implement
our approach on real robots in order to further illustrate its
suitability for multi-robot coordination, and extend it to also
include optimisation of quantitative metrics of performance,
along with the qualitative behaviour specification presented
in this work.

Acknowledgements
This work was supported in part by the FCT ISR/LARSyS

strategic funding UID/EEA/5009/2013, FCT grant
FRH/BD/45046/2008, and by UK Research and Innovation
and EPSRC through the Robotics and Artificial Intelligence
for Nuclear (RAIN) research hub [EP/R026084/1].

References
[1] Abdulla, P.A., Iyer, S., Nylén, A., 2004. SAT-solving the coverability

problem for Petri nets. Formal Methods in System Design 24.
[2] Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.,

2011. Cardinality networks: a theoretical and empirical study. Con-
straints 16.

[3] Basile, F., Chiacchio, P., Giua, A., 2006. Suboptimal supervisory con-
trol of petri nets in presence of uncontrollable transitions via monitor
places. Automatica 42.

[4] Cassandras, C.G., Lafortune, S., 2006. Introduction to Discrete Event
Systems. Springer-Verlag New York, Inc.

[5] Chao, C., Thomaz, A., 2016. Timed Petri nets for fluent turn-taking
over multimodal interaction resources in human-robot collaboration.
The International Journal of Robotics Research 35, 1330–1353.

[6] Costelha, H., Lima, P., 2012. Robot task plan representation by
Petri nets; Modelling, identification, analysis and execution. Au-
tonomous Robots 33, 337–360. URL: https://doi.org/10.1007/

s10514-012-9288-x, doi:10.1007/s10514-012-9288-x.
[7] Dias, M.B., Zlot, R., Kalra, N., Stentz, A., 2006. Market-based multi-

robot coordination: A survey and analysis. Proceedings of the IEEE
94, 1257–1270.

[8] Ding, X.C., Smith, S.L., Belta, C., Rus, D., 2014. Optimal control
of Markov decision processes with linear temporal logic constraints.
IEEE Trans. on Automatic Control 59.

[9] Fainekos, G.E., Girard, A., Kress-Gazit, H., Pappas, G.J., 2009. Tem-
poral logic motion planning for dynamic robots. Automatica 45, 343–
352.

[10] Faruq, F., Lacerda, B., Hawes, N., Parker, D., 2018. Simultane-
ous task allocation and planning under uncertainty, in: Proc. of the
2018 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),
Madrid, Spain.

[11] Giua, A., 2013. Supervisory control of Petri nets with language speci-
fications, in: Seatzu, C., Silva, M., van Schuppen, J.H. (Eds.), Control
of Discrete-Event Systems – Lecture Notes in Control and Information
Sciences. Springer. volume 433. chapter 12.

[12] Giua, A., DiCesare, F., 1991. Supervisory design using Petri nets, in:
30th IEEE Conf. on Decision and Control.

[13] Giua, A., DiCesare, F., 1994a. Blocking and controllability of Petri
nets in supervisory control. IEEE Trans. on Automatic Control 39.

[14] Giua, A., DiCesare, F., 1994b. Petri net structural analysis for supervi-
sory control. IEEE Trans. on Robotics and Automation 10.

[15] Giua, A., DiCesare, F., 1995. Decidability and closure properties
of weak Petri net languages in supervisory control. IEEE Trans. on
Automatic Control 40.

[16] Giua, A., DiCesare, F., Silva, M., 1992. Generalized mutual exclusion
contraints on nets with uncontrollable transitions, in: IEEE Int. Conf.
on Systems, Man and Cybernetics.

[17] Glocker, M., Reinl, C., Von Stryk, O., 2006. Optimal task alloca-
tion and dynamic trajectory planning for multi-vehicle systems using
nonlinear hybrid optimal control. IFAC Proceedings Volumes 39,
38–43.

[18] Gromyko, A., Pistore, M., Traverso, P., 2006. A tool for controller
synthesis via symbolic model checking, in: 8th Int. Workshop on
Discrete Event Systems.

[19] Guo, M., Dimarogonas, D.V., 2015. Multi-agent plan reconfiguration
under local ltl specifications. The International Journal of Robotics
Research 34, 218–235.

[20] Iordache, M., Antsaklis, P., 2003. Design of T-liveness enforcing
supervisors in Petri nets. IEEE Trans. on Automatic Control 48.

[21] Iordache, M., Antsaklis, P., 2006a. Supervision based on place invari-
ants: A survey. Discrete Event Dynamic Systems 16.

[22] Iordache, M., Antsaklis, P., 2006b. Supervisory Control of Concurrent
Systems: A Petri Net Structural Approach. Birkhäuser Boston.

[23] Iordache, M., Moody, J., Antsaklis, P., 2002. Synthesis of deadlock

Lacerda and Lima: Preprint submitted to Elsevier Page 14 of 15

https://doi.org/10.1007/s10514-012-9288-x
https://doi.org/10.1007/s10514-012-9288-x
http://dx.doi.org/10.1007/s10514-012-9288-x

Petri Net Based Multi-Robot Task Coordination from Temporal Logic Specifications

prevention supervisors using Petri nets. IEEE Trans. on Robotics and
Automation 18.

[24] Jiang, S., Kumar, R., 2006a. Diagnosis of repeated failures for discrete
event systems with linear-time temporal-logic specifications. IEEE
Trans. on Automation Science and Engineering 3.

[25] Jiang, S., Kumar, R., 2006b. Supervisory control of discrete event
systems with CTL* temporal logic specifications. SIAM Journal on
Control and Optimization 44.

[26] Kloetzer, M., Mahulea, C., 2014. A petri net based approach for multi-
robot path planning. Discrete Event Dynamic Systems 24, 417–445.

[27] Kress-Gazit, H., Fainekos, G.E., Pappas, G.J., 2009. Temporal logic-
based reactive mission and motion planning. IEEE Trans. on Robotics
25.

[28] Kupferman, O., Vardi, M., 2001. Model checking of safety properties.
Formal Methods in System Design 19.

[29] Lacerda, B., 2013. Supervision of Discrete Event Systems Based
on Temporal Logic Specifications. Ph.D. thesis. Instituto Superior
Técnico.

[30] Lacerda, B., Faruq, F., Parker, D., Hawes, N., 2019. Probabilistic
planning with formal performance guarantees for mobile service robots.
International Journal of Robotics Research .

[31] Lacerda, B., Lima, P.U., 2009. LTL plan specification for robotic tasks
modelled as finite state automata, in: Workshop ADAPT at AAMAS
’09 - Agent Design: Advancing from Practice to Theory.

[32] Lacerda, B., Lima, P.U., 2011. Designing Petri net supervisors from
LTL specifications, in: Robotics: Science and Systems VII.

[33] Lacerda, B., Lima, P.U., 2014. On the notion of uncontrollable marking
in supervisory control of Petri nets. IEEE Trans. on Automatic Control
59.

[34] Lacerda, B., Parker, D., Hawes, N., 2017. Multi-objective policy gen-
eration for mobile robots under probabilistic time-bounded guarantees,
in: Proc. of the 27th Int. Conf on Automated Planning and Scheduling
(ICAPS), Pittsburgh, PA, USA.

[35] Lahijanian, M., Maly, M.R., Fried, D., Kavraki, L.E., Kress-Gazit,
H., Vardi, M.Y., 2016. Iterative temporal planning in uncertain envi-
ronments with partial satisfaction guarantees. IEEE Transactions on
Robotics 32, 583–599.

[36] Lahijanian, M., Svorenová, M., Morye, A.A., Yeomans, B., Rao, D.,
Posner, I., Newman, P., Kress-Gazit, H., Kwiatkowska, M., 2018.
Resource-performance tradeoff analysis for mobile robots. IEEE
Robotics and Automation Letters 3, 1840–1847.

[37] Ma, Z., Li, Z., Giua, A., 2015. A method to verify the controllability of
language specifications in Petri nets based on basis marking analysis,
in: 54th IEEE Conf. on Decision and Control.

[38] Mahulea, C., Kloetzer, M., 2018. Robot planning based on boolean
specifications using Petri net models. IEEE Transactions on Automatic
Control 63, 2218–2225. doi:10.1109/TAC.2017.2760249.

[39] Mansouri, M., Lacerda, B., Hawes, N., Pecora, F., 2019. Multi-robot
planning under uncertain travel times and safety constraints, in: Proc.
of the 28th Int. Joint Conf. on Artificial Intelligence (IJCAI).

[40] Moody, J., Antsaklis, P., 1998. Supervisory control of discrete event
systems using Petri nets. Springer.

[41] Moody, J., Antsaklis, P., 2000. Petri net supervisors for DES with un-
controllable and unobservable transitions. IEEE Trans. on Automatic
Control 45.

[42] Nikou, A., Boskos, D., Tumova, J., Dimarogonas, D.V., 2018. On
the timed temporal logic planning of coupled multi-agent systems.
Automatica 97, 339–345.

[43] Nunes, E., Gini, M., 2015. Multi-robot auctions for allocation of
tasks with temporal constraints, in: Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI).

[44] Pnueli, A., 1981. The temporal semantics of concurrent programs.
Theoretical Computer Science 13.

[45] Ramadge, P., Wonham,W., 1989. The control of discrete event systems.
Proc. of the IEEE 77. doi:10.1109/5.21072.

[46] Reisig, W., Rozenberg, G., 1998. Lectures on Petri Nets Part I: Basic
Models: Advances in Petri Nets. Springer.

[47] Schillinger, P., Bürger, M., Dimarogonas, D.V., 2018. Simultaneous

task allocation and planning for temporal logic goals in heterogeneous
multi-robot systems. The international journal of robotics research 37,
818–838.

[48] Seow, K.T., 2007. Integrating temporal logic as a state-based speci-
fication language for discrete-event control design in finite automata.
IEEE Trans. on Automation Science and Engineering 4.

[49] Sistla, A., 1994. Safety, liveness and fairness in temporal logic. Formal
Aspects of Computing 6.

[50] Tsalatsanis, A., Yalcin, A., Valavanis, K.P., 2012. Dynamic task
allocation in cooperative robot teams. Robotica 30, 721–730.

[51] Ulusoy, A., Smith, S.L., Ding, X.C., Belta, C., Rus, D., 2013. Op-
timality and robustness in multi-robot path planning with temporal
logic constraints. The International Journal of Robotics Research 32,
889–911.

[52] Zavlanos, M.M., Pappas, G.J., 2008. Dynamic assignment in dis-
tributed motion planning with local coordination. IEEE Transactions
on Robotics 24, 232–242.

[53] Ziparo, V.A., Iocchi, L., Lima, P.U., Nardi, D., Palamara, P.F., 2011.
Petri net plans: A framework for collaboration and coordination in
multi-robot systems. Journal of Autonomous Agents and Multi-Agent
Systems 23.

Bruno Lacerda received his Ph.D. in Electrical and
Computing Engineering from the Instituto Superior
Técnico, University of Lisbon, Portugal, in 2013.
Between 2013 and 2017, he was a Research Fel-
low at the School of Computer Science, University
of Birmingham, UK. Currently, he is a Senior Re-
searcher at the Oxford Robotics Institute, Univer-
sity of Oxford, UK. His research interests lie in the
use of formal approaches to specify and synthesise
high-level robot controllers. To achieve this goal, he
his particularly interested in using temporal logics,
Petri nets, supervisory control theory and planning
under uncertainty.

Pedro U. Lima received his Ph.D. in Electrical En-
gineering from the Rensselaer Polytechnic Institute,
Troy, NY, USA, in 1994. Currently, he is a Full
Professor at Instituto Superior Técnico, Universi-
dade de Lisboa, Portugal. He is also a researcher
at the Institute for Systems and Robotics, where
he is coordinator of the Intelligent Robots and Sys-
tems group. His research interests lie in the areas
of discrete event systems and decision-making un-
der uncertainty, namely their applications to multi-
robot systems. Pedro Lima was a Trustee of the
RoboCup Federation (2003-2011), and was the Gen-
eral Chair of RoboCup2004, held in Lisbon. He was
the President of the Portuguese Robotics Society
(2009-2011), and is a senior member of the IEEE.
He is the co-author of two books. Pedro Lima was
awarded a 6-month Chair of Excellence at the Uni-
versidad Carlos III de Madrid, Spain, by its Board
of Governors. He has also been very active in the
promotion of Science and Technology to the soci-
ety, through the organization of Robotics events in
Portugal, including the Portuguese Robotics Open
since 2001.

Lacerda and Lima: Preprint submitted to Elsevier Page 15 of 15

http://dx.doi.org/10.1109/TAC.2017.2760249
http://dx.doi.org/10.1109/5.21072

