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ABSTRACT

Achieving robust object segmentations requires the ability
to discard outliers (invalid observations) in the segmentation
process. When considering an object model, such as an active
shape model (ASM), described by a set of points, a one-to-
one mapping from one model point to one valid observation
would be ideal. However, in general, a one-fo-many mapping
is necessary to ensure the valid observation is detected and,
thus, to have a reliable and robust fitting process. In this
work, we compare three observation detectors: two of them
based on handcrafted texture features and another based on
a deep CNN classifier. Furthermore, to reduce from many
detections to just one valid observation, we incorporate the
Generalized Expectation-Maximization (GEM) algorithm in
the ASM framework. This algorithm is able to neglect outliers
by assigning them low weights. The proposed methodology
exhibits remarkable accuracy with all the detectors in the con-
text of the segmentation of the left ventricle in two publicly
available MRI datasets, for which the proposed approach is
competitive with other state-of-the-art methods.

1. INTRODUCTION

Cardiac magnetic resonance (CMR) is part of the gold stan-
dard procedure to assess cardiac function and morphology,
namely by computing the ejection fraction [1]. This assess-
ment requires cardiologists to manually delineate the left ven-
tricle (LV) border, which is a slow and prone to poor repeata-
bility procedure. Therefore, significant research has been fo-
cus on automatizing the segmentation process.

Shape models have become a widely used approach in this
context [2]. The Active Shape Model (ASM), introduced by
Cootes et al. [3], became a popular method for the segmenta-
tion of medical images due to its ability to model the organs
contours through their mean shape and deformations patterns.
This is particularly advantageous in the LV segmentation be-
cause of its roughly circular shape. The segmentation with
an ASM framework has two main phases. In the first phase
(training), the statistical information about the expected shape
of the LV and its main modes of deformation is learned from
the training set, creating a shape model. In the second phase
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(testing), the segmentation in a new (test) image takes place
by iteratively fitting the learned model to observation points
extracted from the test image.

Traditionally, the observations in the ASM framework are
extracted by finding the strongest edge along profile lines for
each model point. Although this approach may work in sim-
ple cases, it fails in more complex scenarios such as the seg-
mentation of the LV. In this case, the strongest edge is not
located along the LV border, which leads to the detection of
noisy observations (outliers) [4]. Since the model is not able
to distinguish between valid observations and outliers, the es-
timation of the model parameters is hampered, leading to poor
segmentations.

In this paper, we solve this problem by: 1) considering
two-dimensional search regions (instead of profile lines),
which capture more information from the neighborhood of
the model points; and 2) incorporating a robust statistical
method for the estimation of the ASM parameters. For the
former, we propose three new region-based detectors using
either handcrafted texture features or using a deep CNN. Re-
garding the latter, the Generalized Expectation Maximization
(GEM) [5] is used to reduce the effect of outliers that may
still persist.

2. ACTIVE SHAPE MODEL

The ASM algorithm [3] represents the shape of an object by a
setof N landmark points, x = [x; |;=1,.. n, where x; € R?*!
represents the coordinates of the i-th point. In order to charac-
terize the shape of an object, ASM uses prior information of
the shape statistics that comes from a the set of annotated im-
ages in the training set. Formally, a shape x can be represented
in the shape space by a learned mean shape x € R?V*1, de-
formed by a linear combination of the K main modes of de-
formation D € R?V XK associated to each landmark point,

X; = X; +D;b | (D

where b € RE*! contains the deformation coefficients.
The position of this shape x in the image is then given
by a similarity transformation, Ty, with parameters ¢ =
{a,t}. This transformation accounts for the translation
t = (t1,t2)7, and scale s and rotation 6 in a = (a;,a2)” =
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Let us assume we have an initial guess of the contour posi-
tion, X. To fit the model to a new image, the ASM iteratively
searches for new observation points in the vicinity of each
model point, X;, and estimates the set of parameters (b, a, t)
that minimize the distance between the model points and the
new observations.

3. PROPOSED APPROACH

In this paper we propose a better ASM-based framework that
provides more reliable observations, while also giving robust
estimates of the model parameters that disregard the remain-
ing outliers when fitting the model to a new image.

The proposed search method is a region-based (2D
patches) approach whose goal is to provide reliable confi-
dence maps of the correct location of each model point. Ob-
servations (candidate positions) are then extracted from these
confidence maps by applying a threshold and non-maximum
suppression. Section 3.1 describes three approaches on how
these confidence maps are obtained. The probabilistic frame-
work used to estimate the ASM parameters is described in
Section 3.2.

3.1. Novel ASM Search Method

The proposed search method is based on the computation of
confidence maps of the correct location of each model point.
To obtain these maps, three different approaches are com-
pared using: (i) fixed texture templates (FIT), (ii) variable
texture templates (VTT) and (iii) convolutional neural net-
works (CNN) (see Fig.1). In (i) and (ii) the detection relies
on handcrafted texture features, while in the CNN approach
automatically learns the best features to locate the best obser-
vations. The following sections describe these three method-
ologies.

3.1.1. ASM Using Fixed Texture Templates

The first method consists of learning a texture template for
each model point, which we denoted as ASM-FTT. This tem-
plate should be able to capture the expected texture of the im-
age around each model point. Formally, given a dataset D of
annotated images, the template for the ¢-th model point, T,
of size T x T is given by

|D|

P, i=1,..,.N
|D| Z ds 0 7 5 ) (3)

-
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Fig. 1. Representation of the different confidence maps extraction
from the test image. For each search region R/, (yellow rectangle)
sampled around each current model point (blue) we compute confi-
dence maps of the correct location by three different methods.

where |D| denotes the number of images in the dataset, and
P, is a patch (image crop) of the d-th image centered at X;
(see (2)).

The learned templates are then used to compute confi-
dence maps by comparing them with a search region R}, of
the test image, of size R x R, with R > T'. The comparison is
performed by applying the normalized cross-correlation (see
[6] for details) between the template 7 and each possible po-
sition in the search region R, (see Fig. 1a).

3.1.2. ASM Using Variable Texture Templates

The second approach, denoted by ASM-VTT, uses a statis-
tical template methodology instead of just using the average
patch as described in Sec. 3.1.1. Formally, besides learn-
ing the template for each model point, 7, computed by (3),
we also learn the main modes of variation of this template,
D, € RT**K  This matrix of variation in obtained through
PCA and allows the template to adjust to each new image.

The templates are now given (in vectorized form) by the
average texture plus a linear combination of its & main modes
of variation as follows

vec [7’1] ~g +D.b}, i=1,..,N, (C))

where g € RT°*! ig the vectorized average texture, com-
puted as in (3), and b}, € R**! is the vector containing the
variation coefficients.

Given a test image, we first need to compute the corre-
sponding coefficients, Bf], for i = 1,..., N, by fitting the
template to the patch, P?, centered at the current model point
position, leading to

LB
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Fig. 2. CNN architecture used to compute the confidence maps of
each patch Py.

where 31 denotes the [-th component of b, ); is the eigenvalue
associated to the [-th variation mode, and dy,,x a pre-defined
threshold. After updating the templates, the confidence maps
are computed as previously, through the normalization cross-
correlation (see Fig. 1b).

This method resembles the Constrained Local Model
(CLC) [7] algorithm. However, here we use these templates
to compute the confidence maps, instead of using them di-
rectly in the fitting strategy.

3.1.3. ASM Using Convolutional Neural Networks

The methods described previously are based on handcrafted
texture features, which may not be the best approach. With
the recent development of deep learning methods [8, 9], a
greater interest has been given to algorithms capable of au-
tomatically learning the features that optimally represent the
data, leading to more efficient feature extraction models than
the traditional handcrafted approaches. Therefore, as the fi-
nal method, we propose a different approach to compute the
confidence maps: a simple fully convolutional network ar-
chitecture that detects the location of each model point in an
image.

Figure 2 illustrates the overall architecture of the network
used to compute the confidence maps from each patch. This
system takes as input a 7' x T patch and produces 7' x T' X
(N + 1) confidence map as output, representing the proba-
bility each pixel being the correct position of the model point
corresponding to class ¢, where ¢ = 0, ..., N. Note that each
class here represents each one of the model points, and class
c = 0 represents the background.

We train this network to output the set of N +1 confidence
maps. Applying softmax to these maps should classify each
pixel with ¢ = 0, except for a small region around each model
point, which are assigned the corresponding class. The maps
with the pixel classes, denoted by Lfi, are fed to the network
together with the corresponding input patches, P, for d =
1,...,|D| and the network weights are optimized using the
cross-entropy loss.

During the test phase, given a new image, we feed each
sub-region of size T' x T, P%, within the search region to
the network and extract the corresponding confidence maps
(after the softmax) for each model point, ¢ = 1,..., N (see
Fig. 1lc). These maps will have local maxima in the most
probable locations of the corresponding model points. This
proposed method is denoted as ASM-CNN.

3.2. Model parameters estimation

Now the goal is to fit the learned model to the object. This is
done by iteratively update the shape model parameters © =
(a, t,b), given the new set of observations.

Classical ASM based approaches rely on a one-to-one
mapping X' — y?, i.e., each model point X" is assigned to only
one observation yi. However, the presence of outliers makes
that a one-to-many mapping, i.e., X' — Y’ = {y% }9/[:11 is
obtained, where Y! stands for the set of M* observations
in the i-th search region R’. The estimation of the model
parameters should not be affected by the presence of outliers.
In order to do so, the estimation of the model parameters are
accomplished by using an extension of the GEM-RASM (see
[10]). The objective Q) function is given as follows:

N M?

Q(0; 5) = Z Zwéj log £ + wi log £4 (6)

i=1 j=1

where £, = p(y“|k¥ = q,0) is the log-likelihood, with
g € {0,1}. In the E-step the weights of the observations
are computed depending on the value of the binary label that
is assigned. Thus, if the observation y* is valid (i.e. label
k¥ = 1), the likelihood ¢; is modeled as a normal distribu-
tion, as well as the corresponding weights, i.e.

wY o< N(y7; %;, £9) (7

Otherwise, if y*/ is invalid (i.e. label k7 = 0), the likeli-
hood ¢ and its corresponding weights w}’ are modeled as a
uniform distribution, i.e. U(X;) (see [10]). The effect of the
strategy is to decrease the influence (weights) of the invalid
observations simplifying the above mapping from the model
to the observation space.

Now, given the most recent estimates of the unknown pa-
rameters O, at iteration ¢, the model parameters can then be
updated in the M-step. This can be achieved by minimizing
a weighted least square between both the current model point
and the corresponding observation, as

ét+1:
N M? ®)
. . _ ii\T ig\—1 g i
g%nzzw (& —y™)" (59)7 (R — "),

where X% is a covariance matrix of the point X;.

4. EXPERIMENTAL SETUP

The proposed framework was validated using two different
publicly available datasets concerning cardiac MRI short axis
volumes. The first dataset [11], contains data from 33 differ-
ent patients. For each patient, the CMR data is a sequence
of 20 volumes, with the corresponding manual LV segmenta-
tions, which is used as the ground truth. Among the different
patients, only two are healthy, whereas the remaining ones
display a variety of heart abnormalities. The second dataset



used was the MICCAI 2009 LV segmentation challenge [12]
which comprises data from 45 patients also with a variety of
different heart conditions, all coupled with expert segmenta-
tions.

For both datasets, each volume is segmented indepen-
dently and the leave-one-sequence-out cross validation is
used for each volume of each patient. The initialization of the
first slice of each volume of the test sequence is performed
using the ground truth. The remaining slices are initialized
by successively propagating the previous slice segmentation.

The segmentation is quantitatively evaluated by compar-
ing the estimated contour with the ground truth using two
metrics: the Dice coefficient, dp;.. [13] and the average per-
pendicular distance, d4y. The percentage of the good con-
tours (GC'), corresponding to the percentage of segmentations
for which day < 5mm, is also used for the performance
evaluation.

5. RESULTS

Several search region sizes were tested, where the best overall
results were obtained for R = 15 and T = 7 pixels. Figure
3 shows several examples of the segmentation obtained with
these settings using with the different methods. Table 1 shows
the average performance results obtained for both datasets.
Comparison with other recent state of the art approaches is
also presented. From the results it can be concluded that the
proposed framework reaches the top performance using the
CNN descriptors (see dpjce and d 4 metrics). For the sec-
ond dataset, we also see the superiority of the CNN detector.
In this dataset, the methods [14, 15] also have a similar dp;..
metric. The results also show that the proposed methodology
significantly outperforms the standard ASM [3] as well as the
EM-ASM [10] that relies on the edge detection to find the
observations. Overall, the proposed method achieves com-
petitive results compared to the other state of the art methods.

6. CONCLUSION

In this paper we have proposed a new ASM framework that
uses a more reliable observation detector, combined with a
GEM statistical framework as a way to perform robust seg-
mentations in the presence of outliers. The rationale behind
this approach is to reduce the detection of outliers, and en-
suring that the remaining outliers do not compromise the seg-
mentation. This is accomplished by appropriately assigning
a weight to each observation by switching the corresponding
statistical model (normal vs. uniform distribution), which de-
creases the weights of the outliers. This framework was vali-
dated using three different detectors, namely: FTT, VIT and
CNN. The results show that all the above detectors achieve
competitive segmentation results, with the CNN achieving the
best segmentation accuracy.

EM-FTT EM-CNN

EM-VTT

Fig. 3. Examples of LV segmentation with the different methods
in four CMR images from different patients. The two first patients
corresponds to dataset 1 [11], whereas the last two columns corre-
spond to dataset 2 [12]. Each row shows the result of each method.
The white dashed line shows the ground truth, whereas the red line
represents the estimated segmentation.

Table 1. Comparison of the overall segmentation performance
using the proposed algorithms with other approaches using both
datasets (average value and standard deviation). Dashed entries in
GC means all the contours were considered.

METHOD dpice day (mm) GC (%)
DATASET 1 [11]

EM-CNN 0.90 (0.02) 1.6 (0.2) 99.1
EM-FTT 0.89 (0.03) 1.7 (0.3) 95.8
EM-VIT 0.88 (0.03) 1.9 (0.3) 95.3
Huang et al. [16] 0.89 (0.04) 2.2(0.5) 825
Gopal et al. [17] 0.84 (0.04) 3.7 (0.6) -
AAM [18] 0.84 (0.09) 2.6 (1.7) -
EM-ASM [10] 0.82 (0.04) 2.9(0.8) -
ASM [3] 0.73 (0.10) 4.72.1) -
DATASET 2 [12]

EM-CNN 0.90 (0.04) 2.0 (0.5) 87.3
EM-FTT 0.89 (0.04) 2.1(0.5) 89.2
EM-VTT 0.89 (0.05) 2.1(0.4) 87.7
Queiros et al. [14] 0.90 (0.02) 1.8 (0.5) 92.7
Ngo et al.[15] 0.90 (0.03) 2.1(0.4) 93.2
Hu et al. [19] 0.89 (0.03) 2.2(0.4) 91.1
Huang et al. [16] 0.89 (0.04) 2.2(0.5) 79.2
Liu et al. [20] 0.88 (0.03) 2.4(0.4) 91.2
Schaerer et al. [21] 0.87 (0.04) 3.0(0.4) -
AAM [22] 0.80 (0.05) 4.1(1.1) -
EM-ASM [10] 0.77 (0.11) 3.6 (0.5) -
ASM [3] 0.65 (0.13) 3.7(0.5) -
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