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Abstract. Object segmentation is still an active topic that is highly
visited in image processing and computer vision communities. This task
is challenging due not only to difficult image conditions (e.g., poor res-
olution or contrast), but also to objects whose appearance vary signifi-
cantly. This paper visits the Active Shape Model (ASM) that has become
a widely used deformable model for object segmentation in images. Since
the success of this model depends on its ability to locate the object, many
detectors have been proposed. Here, we propose a new methodology in
which the ASM search takes the form of local rectangular regions sam-
pled around each landmark point. These regions are then correlated to
variable or fixed texture templates learned over a training set. We com-
pare the performance of the proposed approach against other detectors
based on: (i) the classical ASM edge detection; (ii) the Histogram of Ori-
ented Gradients (HOG); and (iii) the Scale-Invariant Feature Transform
(SIFT). The evaluation is performed in two different applications: facial
fitting and segmentation of the left ventricle (LV) in cardiac magnetic
resonance (CMR) images, showing that the proposed method leads to a
significant increase in accuracy and outperforms the other approaches.

Keywords: Active Shape Models, Image segmentation, Texture regions, His-
togram of Oriented Gradients, Scale-Invariant Feature Transform

1 Introduction

Segmenting images containing objects whose appearance vary significantly is a
challenging task. Statistical models have become a widely used approach in this
context. These models are able to represent large shape and appearance vari-
ations of the object of interest. A popular method is the Active Shape Model
(ASM). Since its early introduction by Cootes et al. [1], ASM has become a well-
recognized powerful tool due to its ability to segment objects with significant
shape variability. This method characterizes an object shape by a set of specific
points, denoted as landmark points, and models it by a mean shape and its most
significant modes of variation learned from a training set. To fit the model to an
object, the ASM searches within the image for candidate positions of the object
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landmarks, which we call observations. Traditionally, this search consists of find-
ing the strongest edge along a profile line for each model point. Although this
approach may work in some simple applications, in most real world problems it
is a naive approach that might fail to cover all the object features, generating
noisy observations (outliers). If some of the observations are outliers, the accu-
racy of the ASM is severely compromised, resulting in a decreased segmentation
performance. Therefore, a crucial component for the success of these models lies
in their ability to find the correct position of the object landmarks.

Alternative approaches have since been proposed to overcome this ASM
drawback. The Active Appearance Model (AAM), also proposed by Cootes et al.
[2], is not only able to provide shape information about an object, but also takes
into account its variation in appearance, i.e., its textural information. Contrary
to ASM, the AAM search method consists of using the texture residual between
the learned model and the test image in order to find the best model parameters
to match the image. In later work, Cristinacce and Cootes [3] presented the Con-
strained Local Model (CLM). This method is very similar to AAM, but instead
of modelling the whole object texture, it models local templates surrounding
each landmark point. It uses Principal Component Analysis (PCA) to learn sta-
tistical templates of the appearance from a training set, which are adjustable for
each test image.

Powerful feature descriptors have also been combined with these deformable
models, in order to improve the observation detection, namely, Histograms of
Oriented Gradients (HOG) [4] and Scale-Invariant Feature Transform (SIFT)
[5, 6]. These models have shown an increased performance in comparison to the
standard model approach. Nevertheless, these have an increased complexity and
appear to be slower and computational demanding.

This paper proposes two different and efficient observation detection methods
that are used within the ASM framework. Both approaches are similar in the
sense that they search for observations within a rectangular region around each
landmark point and both find the point that maximizes the correlation with a
texture template learned from a training data. They differ on how the templates
are obtained. In the first method, each template, associated to a landmark point,
is computed as the mean texture in the training data, obtaining a fixed template
that will be the same for the testing stage. The second method uses not only the
mean texture, but also the variation modes obtained through PCA. This allows
fitting the templates for each test image, i.e, the method uses variable templates.
This approach resembles the CLM algorithm but uses a different fitting strategy.
More specifically, the CLM uses a whole response surface to update the model,
whilst we determine the templates around each landmark point and extract the
location of best observation point, which is then used to estimate the ASM
parameters.

Despite of been easily used for different image interpretations, to show the
advantage of the proposed methods we compare them to three other detection
approaches in the problem of facial fitting and the segmentation of the left ven-
tricle in cardiac magnetic resonance images: (i) the classical ASM edge detection;



(ii) a detector based on HOG features; and (iii) a detector based on SIFT fea-
tures.

The remaining of this paper is organized as follows: Sect. 2 describes the
ASM framework and each observation detection method used in this work. The
datasets and evaluation results are shown in Sect. 3. Finally, in Sect. 4 the overall
conclusions are presented.

2 Methodology

This section starts by briefly revising the ASM framework used in this work. In
Sect. 2.2, we detail all the different detection methods analysed and how they
are combined with the ASM methodology.

2.1 Active Shape Model

The ASM algorithm [1] describes the shape of an object by learning its statistics
from annotated images in a training set. More specifically, this model uses the
mean shape and its main modes of deformation computed using PCA. Formally,
any shape x in the ASM framework can be analytically described as

x ' x̄ + Db , (1)

where, x̄ ∈ R2N×1 is a vector representing the mean shape computed from a
training set, D ∈ R2N×K is a matrix containing the firstK modes of deformation,
and b ∈ RK×1 contains the deformation coefficients that weight each of the
deformation modes. Then, the position of the shape in an image is governed by
a similarity transformation, which accounts for the scale, rotation and translation
of the shape x.

To fit the model to the object in a new image, the ASM searches for obser-
vation points and estimates the parameters that minimize the distance between
the model points and the corresponding observations. In the next section, we
describe five ASM search methods: the classical ASM edge detection, the ASM-
HOG, the ASM-SIFT and the proposed fixed and variable texture template
methods, denoted as ASM-FTT and ASM-VTT, respectively (see Fig. 1).

2.2 ASM Search Methods

Traditionally, in the ASM framework the observations correspond to the strongest
edge along profile lines orthogonal to the contour at each model point (see Fig. 1
a)). In most real world problems, this approach generates outliers that misguide
the estimation of the ASM parameters. Thus, alternative observation detectors
have the potential to improve the ASM performance.

All the four search methods described next share a common framework as
they are region-based and use a template descriptor to search for observation
points. The first stage of the detectors is to obtain a set of template descriptors
and regions in which features are detected. To accomplish this, each training
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Fig. 1: Representation of the different search methods for one landmark point (red) of
the model (blue), where the search region is represented in yellow: a) the original ASM
edge detection; b) the HOG-based detection with the descriptor of the landmark in
green; c) the SIFT-based detection with the descriptor of the landmark in green; and
d) the proposed search methods based on texture (FTT and VTT).

patch is sampled around each landmark point over the training set. A feature
extraction function F is applied to each patch, resulting in a feature vector
for each pixel location. Thus, an average descriptor-based template for each
landmark can then be built and normalized (e.g. zero mean and unit variance).

Formally, let the training set of images be defined as D = {Ij}|D|j=1. Assuming

the contour is defined as x = [x>i ]i=1,...,N with N landmark points, i.e., x ∈
R2N×1, we extract N patches for each j-th image Ij , building the following set
of patches

Pj =
{
P1

j , ...,P
N
j

}|D|

j=1
, (2)

where Pi
j stands for the i-th patch extracted from the j-th image and is given by

Pi
j = [Ij ]

i
T×T . The operator [.]iT×T crops the image Ij , centered at the landmark

point xi, with size of T × T pixels. Now, for each pixel location in each patch
Pi

j , we apply a feature extraction function F , obtaining a descriptor-based image

F(Pi
j).

For each i-th landmark point, the feature based template T i of size T × T
can be computed as follows

T i =
1

|D|

|D|∑
j=1

F(Pi
j), i = 1, ..., N . (3)

When searching in a test image Ij , a larger search region, with R×R dimen-
sion (with R > T ), is created around each i-th model point, i.e. Ri

j = [Ij ]
i
R×R.

As previously, we extract features from this search region, which we denote as
Ri

j = F(Ri
j). By defining a sliding window within the region Ri

j , it is possible

to compute the similarity between T i and each sub-region of Ri
j (with T × T

dimension). In the following sections we describe the different methodologies
under the above framework.

ASM-HOG Histogram of oriented gradients [7] is a feature descriptor that
characterizes the local appearance of the object based on the gradient orienta-
tions in different bins of small portions of an input image (see Fig. 1 b)).



To combine this feature descriptor with an ASM search, we define F in
(3) as a HOG feature extractor applied to each landmark point and use the
following approach. Given a training set, we can compute a HOG feature vector
for each landmark point and an average template T i as given in (3). When
searching for observation points in the test image, we define the search region
Ri

j , sampled around the i-th landmark point, and determine the HOG feature
vector for each pixel within this region, through the sliding window. Finally,
the resulting HOG features for each pixel in the search region are compared
with the corresponding template, T i. The most similar region will correspond to
the new likely location of the object landmarks, i.e., the detected observation.
Since HOG feature vectors are histograms, several similarity measures can be
applied. Histogram Intersection is one of those metrics that has shown a better
performance than the standard Euclidean distance in image applications [8]. For
grey images it can be defined as follows [9]

ϑ(h1, h2) =

n∑
l=1

min(h1(l), h2(l)) , (4)

where h1 and h2 are the histograms to be compared of the template T i and of
each sub-region of Ri

j , respectively, with n bins each.

ASM-SIFT Scale-invariant feature transform [10] is also able to extract dis-
tinctive features from images based on the local gradients histograms around
each landmark and are invariant to scale, illumination and pose. Contrary to
HOGs, these histograms are computed with respect to the dominant orientation
of the landmark. It starts by scanning an image to identify potential interest
points, known as keypoints. Next, the dominant orientation of the keypoint is
determined, based on local image gradient direction, and the local descriptor is
built.

In order to combine the SIFT descriptor with the ASM algorithm (see Fig. 1
c)), we propose a different strategy for its implementation. For a given training
image, we compute a SIFT descriptor by applying a SIFT extraction function
F to each patch (see (3)), forcing the keypoints to be the landmark points,
with a gradient orientation relative to the normal vector of the contour at each
model point. This allows the corresponding feature vector to be used in the ASM
search for observations. Thus, an average template patch can also be built and
normalized for each landmark point, consisting on SIFT descriptors (see (3)).

Similarly to the ASM-HOG, when analysing a new image, the search process
starts by defining a search region Ri

j around each current landmark point xi

and determine the SIFT descriptors for each pixel in this region, with a sliding
window. Since the SIFT descriptor is also based on histograms, we use the same
comparison metric as before, which is defined in (4).

Proposed Search Using Fixed Texture Templates (ASM-FTT) In this
method we also follow the procedure addressed in Sect. 2.2. First, for each j-th



image in the training set, we extract the set of patches Pj (see (2)). Then for
each landmark point xi, i = 1, . . . , N , we compute the corresponding T ×T fixed
template T i following (3), where the feature extraction function F concerns to
the image texture itself (see Fig. 1 d)). Finally, for a given test image, we set the
R×R region Ri

j in which we compute a (normalized) cross-correlation between

the template T i and the search region Ri
j as follows1 [11]

γ(u, v) =

∑
x,y[R(x, y)−Ru,v][T (x− u, y − v)− T ]

{
∑

x,y[R(x, y)−Ru,v]2
∑

x,y[T (x− u, y − v)− T ]2}0.5
, (5)

where the notation R(x, y) stands for the region pixels (x, y) in the region Ri
j ;

T is the mean of the template T and Ru,v is the mean of the region R(x, y)
under the template.

Therefore, by performing a normalized cross-correlation between the individ-
ual training patch T i and the search region Ri

j for each current i-th landmark
point, it is possible to determine the new likely location of the object landmarks.
This can be determined by analysing the resulting image response, in order to
find the strongest match.

Proposed Search Using Variable Texture Templates (ASM-VTT) The
search method proposed in this section is similar to the previous one. However,
instead of using fixed feature templates, which remain unchangeable during the
search process, we describe a method that adapts the texture templates to the
test image. More specifically, we apply PCA to the training patches Pi

j , for j =
1, ..., |D|. Similarly to the shape analysis described in Sect. 2.1, we approximate
each patch Pi

j of size T ×T by a vectorized linear combination of K main modes
of variation as follows

g ' g + Dgbg , (6)

where g ∈ RT 2×1 is the mean normalized texture vector, Dg ∈ RT 2×K contains
the main modes of variation of the patch, and bg ∈ RK×1 is a vector containing
the deformation coefficients that weight each variation mode in Dg.

Given a test image, It, and an initial guess of the model position, a set
of image-specific texture templates can be generated by computing the b̂gt as
follows

b̂gt = D−1g (gt − g) , (7)

where gt is the vectorized texture patch around a specific landmark point of It.
The vector bgt contains the parameters that best match the statistical model
to the test image. Without additional constraints, bgt may correspond to an
unrealistic patch. Therefore, an additional step is required to constraint the
solution in (7). To achieve this, the Mahalanobis distance dM is used to measure
the acceptability of the generated patches. More concisely, dM has to be lower

1 In this equation we suppressed the subscripts i and j for the simplicity of the nota-
tion.



than a specific predefined threshold dmax

d2M =

L∑
l=1

b̂2l
λl
≤ d2max , (8)

where b̂l denotes the l-th component of b̂gt and λl is the eigenvalue associated

to the l-th deformation mode. If b̂gt does not satisfy (8) the variation mode is
rescaled as follows

b̂gt = b̂gt

dmax

d
. (9)

Finally, the normalized cross-correlation can then be applied, as described
in (5), between the template and the predefined search region, sampled around
each model point. By finding the strongest match, the new likely location of the
object landmarks can thus be determined.

3 Experimental Setup

This section presents the experimental setup used to evaluate the proposed
framework. Two different applications were used to test each feature detection
method: facial fitting and segmentation of the left ventricle (LV) in cardiac mag-
netic resonance (CMR) images.

3.1 Dataset

In the first application, we addressed the problem of fitting an ASM to facial
image sequences. For that, we used the publicly available Cohn-Kanade (CK+)
database [12, 13] of emotion sequences taken from frontal view, where the man-
ual face annotation are available, i.e., the ground truth (GT). Among several
emotion sequences, we took the “surprise” sequences, since they contain more
challenging lip boundary deformations and large eyebrow displacements. The
dataset comprises 56 different sequences, each with 10-20 frames, with a total
of 912 images (each with 490× 640 size). The leave-one-sequence-out cross val-
idation was used for performance evaluation. For initialization purposes and in
order to have an initial guess of the model position, we used the Viola-Jones
detector [14], for finding the faces in each image, which results in a rectangle
containing the face. The learned mean shape is then aligned to the centre of the
rectangle, resulting in a rough initialization of the model points.

The second application is the segmentation of the LV in CMR images. For
that purpose, we use the publicly available dataset [15], which contains data
from 33 different patients. For each patient, the CMR data is a sequence of 20
volumes with 8 to 15 slices, in a total of 7980 images, coupled with the manual LV
border annotations, which is used as the ground truth. Each slice is a 256× 256
image with an average resolution of 1.4± 0.2 mm/pixel, nevertheless, the LV is
only present in 4 to 10 of the them (the remaining slices are disregarded). Each
volume is segmented independently, whereby, as for the previous application,



the leave-one-sequence-out cross validation is also used for each patient volume,
i.e., for each one of the 20 volumes of the 33 patients, the statistics are learned
from that same volume of the remaining 32 patients. The initialization is only
performed for the first slice of each volume of the test sequence and, for that,
we use the ground truth. The remaining slices are initialized by successively
propagating the previous slice segmentation.

3.2 Error Metric

Segmentations are evaluated by comparing the estimated contour with the true
object boundary (the ground truth). Their performance is quantitatively mea-
sured using two different metrics: the average distance error [16] for the facial
segmentation and the Dice coefficient [17] for the LV segmentation, as detailed
next.

Average Distance (dAV) Let us assume x = [x>i ]i=1,...,N and y = [y>i ]i=1,...,N ,
with xi, yi ∈ R2 being two point vectors representing the estimated and the
ground truth of the face, respectively. The AV between x and y is defined as the
average Euclidean distance, as follows

dAV(x,y) =
1

N

N∑
i=1

‖yi − xi‖ . (10)

Dice Coefficient (dDice) Assuming now S1 and S2 as two binary images
associated with the estimated contour s1 and the ground truth s2, respectively,
such that the pixels inside the LV segmentation have value one and the pixels
outside have the value zero. We can compute the Dice coefficient as follows

dDice(S1,S2) =
2 C(S1 ∧ S2)

C(S1) + C(S2)
, (11)

where C(.) is a function that counts the number of pixels within the region and
the operator ∧ denotes a pixel-wise AND. Note that dDice is always between 0
and 1, where a value of 1 reflects a perfect match between the two segmentations.

3.3 Results

Facial Segmentation The performance of the different feature detectors was
evaluated and compared first for facial fitting. The same initial guess was used
in all the tested methods with N = 44 as the number of model landmark points.
Figure 2 shows three examples of the segmentation obtained by each method.
These images show the improved accuracy of the proposed methods with fixed
(ASM-FTT) and variable (ASM-VTT) templates.

To ascertain the robustness of the proposed approach, in the experimental
setup, several patch dimensions were tested, both for the search region and the
feature templates. From the extensive experimental evaluation, we found the re-
gions which achieved the best results were in the interval of {11 × 11, 23 × 23,
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Fig. 2: Examples of the facial segmentation. Each column shows the result of a different
method: ASM, ASM-HOG, ASM-SIFT, ASM-FTT and ASM-VTT, respectively The
green dashed line shows the ground truth, whereas the blue line shows the estimated
segmentation and the red dots represent the observation points in the last iteration.

35 × 35} and {33 × 33, 55 × 55, 67 × 67} pixels, both for the template and the
search region, respectively. It is important to remark that for the ASM imple-
mentation the patch size only determines the length of the profile lines, and for
larger regions ASM quickly starts to degrade its performance. Figure 3 presents
a statistical evaluation of the segmentation accuracy for each of the studied
methods. Note that the results shown only concern the statistical performance
for a search region of 55 × 55 pixels and a template of 23 × 23 pixels, as the
results obtained sre similar for the different tested values. The results show that
the proposed methods performed better than both the standard ASM approach
and the alternative ones, namely the ASM-HOG and the ASM-SIFT, which is
possible to verify through the decrease of the average distance with the use of
the proposed models. Furthermore, both ASM-FTT and ASM-VTT have a sim-
ilar performance and both lead to a significant improvement over the remaining
tested methods.

Left Ventricle Segmentation The final application herein presented is the
segmentation of the LV. Figure 4 shows three examples of the segmentation
obtained with the different methods. These images clearly show the improved
accuracy of the proposed methods both with fixed (ASM-FTT) and variable
(ASM-VTT) templates.

Once more, the parameters were chosen after an extensive evaluation. Note
that the images tested here have a reduced size, thus, in accordance to the first
application, we find the region of 33×33 pixels as the most suitable for the search
region, 15× 15 pixels for the template size and N = 40 for the model landmark



Fig. 3: Comparison of the statistical results of each method for the facial segmentation,
using the average distance in pixels, dAV.

ASM-FTTASM-HOG ASM-VTTASM ASM-SIFT

Fig. 4: Examples of LV segmentation with the different methods in three CMR images
from different patients. Each column shows the result of a different method: ASM,
ASM-HOG, ASM-SIFT, ASM-FTT and ASM-VTT, respectively. The green dashed line
shows the ground truth, whereas the blue line represents the estimated segmentation.



points number. The statistical evaluation of the segmentation accuracy for each
of the methods are represented in Fig. 5. The results show that ASM-FTT and
ASM-VTT methods have a similar performance and both lead to a significant
improvement in accuracy, outperforming the other tested approaches.

Fig. 5: Comparison of the statistical results of each method for the LV segmentation,
using the Dice coefficient, dDice.

4 Conclusion

This paper proposes two novel ASM-based search methods to detect reliable
observation points. The first one is based on a fixed texture template which re-
mains unchangeable during the test phase, the ASM-FTT. The second method
is based on statistical texture templates whose variation coefficients change with
each test, the ASM-VTT. The two proposed methodologies are compared with:
(i) the classical ASM edge detector, (ii) the ASM combined with a HOG detec-
tor, and (iii) the ASM combined with a SIFT detector. From the experimental
evaluation, we applied these methodologies in two datasets, for the segmenta-
tion of faces in image sequences and for the segmentation of the left ventricle
in CMR images. The obtained results are relevant and promising, as we have
shown that the proposed methodologies lead to a better performance compared
to the other three approaches. Further improvements can still be achieved by
considering multiple observations points for each model point, instead of just
one per patch. If the strongest feature in the patch is invalid (i.e., not belong-
ing to the contour), this can jeopardize the segmentation accuracy. This means
that more features should be extracted from each patch in the attempt to get
the reliable one. Further work will extend the proposed approach to deal with
multiple features for each patch.
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