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Abstract—In this paper, we perform social influence analysis
using a massive mobile phone dataset with two applications
that are salient to the success of Mobile Network Operators
(MNO). More specifically, we identify the role of social influence
in subscriber churn and smartphone adoption, by applying
robust identification strategies to separate social influence
from confounding factors such as homophily. We also leverage
network structures and position of each individual to account
for heterogeneous social influence.
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I. INTRODUCTION

Mobile phones nowadays are ubiquitous and widely

diffused. The rapid growth of mobile industry produces

enormous amount of digital traces that record the human

communications at an unprecedented level and resolution.

In essence, these data reveal relational dynamics between

millions of individuals with fine granularity [1]. Therefore,

using mobile phone datasets to analyze the structure of

mobile social networks (MSNs) has drawn great interest

from diverse research areas ranging from statistical physics,

computer science to public health and urban planning [2].

However, mobile phone datasets, as observational data

by its nature, still have limitations when one needs to

empirically estimate the degree to which social influence

affects human behavior. In particular, the correlated behavior

between connected individuals can be explained by both so-

cial influence and their inherent similarities - homophily, due

to the endogenous formation of social ties [3]. Misattribution

of homophily to social influence may lead to significant

overestimation of the latter [4].

Moreover, as some individuals may exert disproportional

influence to others and vice versa, individual heterogeneity

should also be taken into account [5]. This requires detailed

information about network structure as well as the deep

understandings on how individuals’ positions embedded

within the network structure moderate the contagion process.

Thus design and implementation of intervention strategies

to either magnify or inhibit a social epidemic (e.g. viral

marketing) still remain challenging.

MNOs typically archive transactional records about each

subscriber’s service usage for operational and billing pur-

poses. These records include several categories of rich data

that are useful for social influence analysis: i) tariff plans,

the types of subscribed services, such as prepaid or postpaid

plans, value-added services (e.g. mobile internet); ii) Call

Detail Records (CDR), the call initiator and recipient, the

timestamp and duration of the call, the device identifier

and identifier for cell tower through which the call is

connected (geolocation information); iii) demographic infor-

mation: gender, age, etc. but it is mostly missing for prepaid

subscribers. By aggregating individual’s geolocation infor-

mation over time, we can infer the subscribers’ work and

home locations as where they spend the most of days and

nights, respectively. Further, we can infer socio-economic

information (e.g. wage) by cross-referencing the census data.

II. CONSTRUCTION OF MOBILE SOCIAL NETWORK

We obtain a large-scale mobile phone dataset from a

leading European MNO, which includes anonymized CDR

for over 5 million subscribers between August 2008 and

June 2009 in one European country (hereafter referred as

EURMO for the sake of brevity). As previous studies show

that phone contact represent social relationship (e.g. [6],

the MSN is constructed as an undirected call graph, where

nodes are subscribers and links are between two nodes who

exchange calls. Specifically, two subscribers are denoted

socially connected if they exchange at least one call in

the same calendar month. The resulting network consists

of 5.5 million nodes and 66 million edges. Figure 1 shows

that empirical degree distribution of our MSN is highly

skewed and heavy tailed. This implies that individuals have

heterogenous degree of social connections and also reflects

their dynamic calling behavior [7].

Figure 1. Empirical degree distribution for EURMO network
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III. SOCIAL INFLUENCE IN SUBSCRIBER CHURN

A. Background and Data Description

Churn measures the subscriber loss and is considered as

the topmost challenge for MNOs [8]. In today’s compet-

itive wireless industry, subscribers can choose from many

providers and easily transfer from one provider to another.

Thus MNOs need to invest heavily in acquiring spectrums

and upgrading their networks to provide quality communica-

tions and novel services to win customers from competitors.

As a result, churn may cost the wireless industry billions of

dollars every year and effective subscriber churn manage-

ment becomes a priority for telecom managers as to ensure

the sustainable growth of their companies.

As MNOs aim at controlling churn through proactive

retention campaigns. they identify subscribers with high

propensity to churn, evaluate the underlying reasons for

churn and devise strategies to prevent it. The perplexing

nature of churn, however, makes it very difficult to explain

and address churn in an efficient and comprehensive man-

ner. Subscribers may churn for many different reasons. [9]

generally categorized these reasons into three streams. First,

they may opt out due to the unsatisfication with the service

quality. Second, they may get induced by competing carriers

that provide more attractive service offerings or decide to

acquire a new handset or service that is either not compatible

with or not provided by their carrier. Third, changes in

subscribers’ personal communication needs may lead their

valuation of existing service to become not attractive any-

more. For example, they may be persuaded by close friends

to switch to another carrier, simply because they need to

maintain the communications with the friends, while also

ensure their current arrangement meet their needs. Thus,

wireless carriers can hardly provide one single solution to

prevent all potential churners from leaving.

Churn management using mobile data analytics has long

been studied (e.g. through data mining techniques to predict

potential churners [10]). In particular, advances in studying

the effect of social influence on subscriber churn have

received considerable attention recently. [11] showed that

propensity of a subscriber to churn depends on the number

of friends that have already churned. [12] demonstrated

that by integrating social factors such as influence from

churners into machine learning models can greatly enhance

the prediction performance. However, disentangling the role

of social influence in subscriber churn from other reasons

is still under-explored. As such, without fully understanding

the true determinants of subscriber churn would preclude

MNOs to design sound retention strategies.

We randomly sampled 10 thousand subscribers with pre-

paid plans for our analysis, because prepaid users have less

contractual obligations and thus are more likely to churn

without notice. Following industry standards, the subscriber

is assumed to churn if she places no calls for 3 consecutive

months. For each subscriber and in each calendar month, we

extract usage patterns such as number of calls, number of

airtime, expense and structural properties such as number of

friends. More importantly, we account for social influence as

number of churned friends. Over the period of analysis, the

subscribers in our sample placed 3.75 million calls and 1,191

of them churned, which amounts to an average monthly

churn rate of 2.04%.

B. Matching Model

Propensity score matching (PSM) is widely used to con-

trol for selection bias when estimating treatment effects in

observational data [13]. In our setting, social influence is

associated with the presence of churned friends in sub-

scriber’s local social network (the treatment). With matching

models, we can compare subscribers that are similar in

relevant characteristics and differ only in the treatment

levels. For example, [4] use dynamic matching to rule out

homophily from social influence in an online social network

setting. They dichotomize the treatment level (number of

adopter friends) to explore the heterogeneity in treatment

effects, e.g. they compared the users having more than three

adopter friends with those otherwise. However, the results

obtained at one treatment level may “absorb” the effect at

the next treatment level, and thus complicates the evaluation

of cumulative and marginal peer influence.

As in our case that friends’ churn is not binary treatment

but rather an integer, egos can be subject to cumulative

amounts of treatment as they see more friends churn. Dif-

ferent treatment intensities can have different effects on the

ego’s churn (the outcome). Thus we apply the Generalized

propensity score (GPS) to allow for matching on continuous

levels of treatment [14]. Essentially, GPS provides a dose-

response function (DRF) that measures the relationship be-

tween the outcome of interest and the intensity of treatment.

1) Description of Matching Panels: The panel structure

of our data poses several extra challenges when applying

matching techniques that have been developed for cross-

sectional data. First, although our data is a random sample,

standard matching routines on panel data typically ignore

the time dimension in the panel and pair observations of the

same unit in different time-periods (i.e. subscriber-month).

Thus the systematic within-panel dependence may violate

the independence assumption between matched observations

(a.k.a stable unit treatment value assumption (SUTVA) in

PSM setting). Second, standard matching routines would

discard unmatched observations from the middle of some

panels that may cause missing data problems. Third, com-

pressing the data to one observation per panel (e.g. averaging

covariates across time) may help alleviate the concerns of

matching the same unit at different periods, however, impor-

tant information regarding the dynamic subscriber behavior

is inevitably eliminated. In our case, a downward trend

in usage may be a signal of eventual churn. Mismatch of
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subscribers with similar average usage but divergent trend

may lead to the biased conclusion. Therefore, analogous

to [15], we choose to estimate the panel-level GPS as

the unit of analysis that accounts for both the systematic

dependence between observations of single subscriber and

dynamic behavioral trend across time periods. Specifically,

we include the lagged values of covariates prior to treatment

in the GPS model, such that treatment assignment is applied

to the panel that include all observations having the same

subscriber identifier, rather than the individual observation.

We split the period of analysis into three intervals: i)

the Pre-Treatment Period (PTP), during which we observe

the important subscriber characteristics; ii) the Treatment

Exposure Period (TEP), during which egos observe, and

count, their friends churning, represented by frd churn;

iii) the Churn Observation Period (COP), during which we

observe whether the ego churns. This definition of intervals

can ensure the best possible match between treated and

control panels because the matched pairs correspond to the

same duration of intervals rather than the same calendar

month. For example, a treated panel spanning the first three

months may have a control panel spanning the last three

months as its best match, such that the selection bias on

observables is reduced to the most extent.

2) Description of GPS Analysis: Because we have

10 months of data and we need to observe subscribers

for 3 months to determine whether they churn, we

are limited to 7 months of data only. Thus we in-

clude all available yet well-balanced time periods as:{
PTP:{1, 2, 3},TEP:{4, 5},COP:{6, 7}

}
. Then we com-

pute GPS by controlling the same characteristics specified

above for each subscriber and for each of the 3 levels of

n−callfrd churn, i.e. those who exchange at least 1 call,

3 calls, and 5 calls in the same calendar months. By testing

whether the conditional means of subscriber’s characteristics

given propensity score are different across treatment inten-

sities, we find that most characteristics become statistically

similar after adjustment on propensity score, indicating that

GPS significantly reduce the bias.

3) Effects of Friends Churn: Figure 2 shows the results

obtained for n = 1, 3, 5. We observe that having more

friends churn increases the likelihood of churn for any

n considered in our analysis. Also, we see that when

considering the churn from the marginal effect of treatment,

that is the effect of having one more of these friends churn,

remains nearly positive with the number of friends that

churn. This provides evidence of social influence in churn

in wireless networks. Furthermore, the churn likelihood for

5-call increases well beyond the 1-call and 3-call, which

provides some evidence that churn from stronger friends

might be more important. This is a sensible result showing

that enough strong friends churning makes a significant

difference on the ego’s probability to churn when enough

friends churn.

Figure 2. Estimated dose response function with PTP:{1,2, 3}, TEP:{4,5},
COP:{6,7} relative to having no friends churning. Ribbons represent the
95% confidence intervals. Standard errors are obtained via bootstrapping
(100 repetitions)

IV. SOCIAL INFLUENCE IN SMARTPHONE ADOPTION

A. Background

MNOs nowadays are challenged by the continued decline

in voice and SMS usage and heavy investment in network

resources to handle capacity issues, due to the explosion of

mobile data traffic. To ensure the profitability and sustainable

growth, MNOs have to devise effective strategies to keep

inducing subscribers to upgrade to newer generation of

smartphones, in that smartphone users have higher willing-

ness to choose more expensive tariff plans with mobile data

service.

Although traditional technology diffusion and acceptance

studies acknowledge that social factors are strongly related

to consumer’s decision to adopt high-technology products,

only until recently [16] and [17] evaluate the role of so-

cial influence in smartphone adoption using mobile phone

datasets. However, both of the studies fail to account for

individual heterogeneity in the tendency to influence (or

be influenced by) peers, as this requires extra knowledge

of network structure. [18] broadly described a taxonomy

of ”macro”-level and ”micro”-level characteristics emerged

from social network that can affect product diffusion. On

one hand, the macro-level patterns relate to the global

properties of the network, such as network densities, degree

distributions, path lengths, and so on. These summary statis-

tics capture the essential graph topologies of the network.

However, such overall characterizations of network overlook

the richness of dyadic social interaction information between

pairs of individuals. On the other hand, the micro-level pat-

terns refer to the local network structure among individual’s

connections. Moreover, when it comes to learning about how

individual’s position matters, we may need information that

extends beyond individual’s own local network structure.

Therefore, [18] pointed out the “blur” between macro and
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micro measures of network structure and individual position

that needs further exploration.

We choose Apple’s iPhone 3G as the exemplary model

in our analysis because its release time coincides with the

timespan of CDR data and EURMO is the sole partner with

Apple with exclusive arrangement, such that we are able

to capture the full cycle of the adoption. In our period of

analysis, there are 20,570 iPhone adopters with complete

profiles.

B. Discovering Social Circles in Adopter Network

Recent empirical analyses on statistical properties of

real world MSN provide evidence of community struc-

ture embedded within the network, as individuals tend

to form closely connected social circles because of their

homophlious characteristics [19]. Moreover, individuals may

belong to multiple overlapping social circles [20]. As [3]

suggest that uncovering social circles may help control for

group-level unobserved homophily, we resort to state-of-the-

art method CESNA to discover overlapping community from

the MSN [21] as follows: i) for each iPhone adopter, we

construct the ego-network that contains adopter and their

direct neighbors; ii) for each subscriber in the ego-network,

we extract a list of binary valued covariates to represent

pluralistic homophily, including gender and wage (socio-

demographic homophily); tariff plan, phone technology and

mobile broadband (contextual homophily); and home lo-

cation (spatial homophily); iii) we then apply CESNA on

each ego-network using both node and edge information

with the optimal number of communities identified through

cross-validation; iv) we remove duplicated and nested com-

munities and only retain those having iPhone adopters.

As a result, we obtain 11,454 communities with 202,743

subscribers, 14,685 (71%) of which are iPhone adopters.

C. Core-Periphery Structure

As Figure 3a shows, over 70% of subscribers belong to

only one community and nearly 90% of those belong to

two, while only about 5% of subscribers belong to more

than 5 communities. However, we find clearly different pat-

terns of community memberships for iPhone adopters alone

(Figure 3b), that they are more likely to belong to multiple

communities. This provides us with extra implications that

iPhone adopters tend to link with others with the shared

properties through overlapping social circles. Moreover, we

believe that the intersection of overlapping communities may

reveal another type of ”meso”-level organizing principle

of network: core-periphery structure [22]. In general, core
nodes refer to set of central nodes that are connected to

other core nodes as well as peripheral nodes, while periphery
nodes, by contrast, are only loosely connected to the core

nodes but not to each other.

Core-periphery structure captures individuals’ network

positions that current centrality measures do not account for.

(a)

(b)

Figure 3. Histogram of overlapping community affinities for all subscribers
(upper) and iPhone adopters (lower).

For example, if individuals with high degrees (hubs) exist at

the periphery of a network distant from densely connected

core, they will still have insignificant impact in the spreading

process as adoptions are likely to be confined to their affil-

iated communities, whereas less connected individuals who

are strategically positioned at the overlaps of communities

and thus become more central, then adoptions may percolate

across communities and to other central individuals who

are also placed at the overlaps of communities and so on.

Therefore, we argue that individuals who are placed at

the core of the network are more likely to be influential

compared to those at rather isolated peripheral parts, such

that peer influence between core and periphery members of

the network may appear to be asymmetric.

D. Instrumental Variable Probit Model

We organize the subpopulation data into a panel where

each individual is a subscriber and each period is a calendar

month and observations after the first adoption are removed

from the sample. In this way, we can estimate the discrete-

time hazard model using standard binary choice specifica-

tion. The dependent variable is an indicator for when a

subscriber first starts to use iPhone. Our model specification

includes subscriber-specific characteristics such as social-

demographic indicators, wireless technological aptitude, ser-

vice usage and cumulative adoptions from friends that are

deemed as either core or periphery.

We stratify subscribers based on core/peripheral network

positions and separately measure how subscribers respond to

adoption by their core and peripheral friends in the previous

month, given their own network positions. More specifically,
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we denote a subscriber as core if she belongs to at least 5

communities and as periphery if otherwise. Among 9,194

core nodes, 5,548 (60%) are iPhone adopters, whereas only

5% of peripheral nodes are adopters. With panel data, we

are also concerned about controlling for the unobserved

heterogeneity as much as we can, so we introduce dummy

variables to control for fixed effects across home region,

time and community memberships. These variables can

help reduce systematic differences across locations where

subscribers may have different experience of smartphones

for using mobile broadband because urban areas normally

support better network coverage, across time of periods due

to the seasonal effects (e.g., campaigns during Christmas),

and across communities for common traits at group level

that we explained in the preceding section.

1) Identification Strategy: Still, unobserved heterogeneity

such as latent homophily might bias our estimation. We

introduce instrumental variable (IV) approach derived from

network structure to alleviate endogeneity concerns [23]:

for a pair of connected subscribers, one has a third friend

who is not a friend with the other, then this third friend’s

decision to adopt iPhone is correlated to the pair only

through the one she is connected with. In particular, we use

“cumulative adoptions by friend of friend not friend of the

focal subscriber” as the IV and estimate the model using

2-stage residual inclusion (2SRI), together with the pooled

Probit model as the comparison.

2) Empirical Results: We present the estimated results

in Table I about the effects of social influence using both

pooled Probit (column [1] and [3]) and 2SRI models (col-

umn [2] and [4]), respectively. We find that the likelihood

of subscriber to adopt iPhone is positively associated with

the cumulative friends’ adoption. More importantly, we

clearly see asymmetric peer influence between the focal

subscribers and their core/periphery friends. Specifically, all

subscribers are more likely to get influenced by their core

friends, regardless of their own network positions. More

interestingly, periphery subscribers are more likely to get

influenced by core friends than vice versa. This suggests

that subscribers who occupy the central positions are likely

to be more influential, while those who are located at the

peripheral parts of the network are more susceptible to

influence from the core friends.

V. CONCLUSION

This paper explores the role of social influence in sub-

scriber’s churn and smartphone adoption behavior by lever-

aging a large scale mobile phone dataset. Our results show

that social influence may have strong impact on subscriber

behavior even given the presence of confounding factors.

This suggest that MNOs could benefit from more intelligent

business analytics efforts to improve customer experience

and carve out new revenue streams from their valuable

dataset.
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