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Abstract
In this paper we propose an architecture to integrate classical
planning and real autonomous mobile robots. We start by pro-
viding with a high level description of all necessary compo-
nents to set the goals, generate plans and execute them on real
robots and monitor the outcome of their actions. At the core
of our method and to deal with execution issues we code the
agent actions with automatas. We prove the flexibility of the
system by testing on two different domains: industrial (Basic
Transportation Test) and domestic (General Purpose Service
Robot) in the context of the international RoboCup competi-
tion. Additionally we benchmark the scalability of the plan-
ning system in two domains on a set of planning problems
with increasing complexity. The proposed framework is open
source1 and can be easily extended.

1 Introduction
Bridging robotics and classical AI planning poses several
challenges to both areas. In robotics one faces continu-
ous time, temporal actions, concurrency, in the presence of
partial observability, time constraints, stochastic events, to
name a few. Classical planning is often formulated as dis-
crete time with instantaneous actions, plans are sequential,
and the world is assumed to be both fully observable and
deterministic. However, classical planning research is now
a mature field, providing a broad range planning methods
that the community can benefit from. This paper addresses
the problem of integrating such planners into real robots, in
particular when such domains are highly unstructured and
stochastic. In this paper we present an approach to use a clas-
sical planner by integrating it with an execution layer based
on finite automata. We have tested the approach in two ex-
ample realistic scenarios: industrial and service robotics do-
mains.

1.1 Motivation
Artificial intelligence and robotics are two research areas
that have benefited significantly from cross-fertilization,
however, each of them tend to have their own research
agenda with few researchers working on the intersection be-
tween them2. The International Planning Competition (IPC)

1www.github.com/oscar-lima/isr_planning
2AI summer school 2017 www.lucia.isr.tecnico.

ulisboa.pt

and RoboCup are major tournaments for AI planning and
robotics both of them which offer a common ground for
benchmarking and valuable knowledge sharing. In RoboCup
most teams in industrial and domestic domains use finite
automata to coordinate the execution of particular skills,
such as navigation and manipulation. However, big state ma-
chines are hard to maintain, unintuitive for humans to pro-
gram and hard to reuse. The use of classical planners allows
the specification of a goal and domain in an high-level plan-
ning domain. However, classical planning algorithms tend
to not scale well with the complexity of the domain: it is not
reasonable for a robotics domain for a planner to take more
than a few seconds to obtain a feasible plan.

1.2 Problem Description
The problem is described as the integration of classical plan-
ning and real robots and how to overcome the limitations of
classical planning when dealing with unstructured, stochas-
tic, real world domains. We assume the availability of a
set of robot skills, namely autonomous navigation, mobile
manipulation, perception, and natural language interaction.
Given a task, requiring a subset of these skills, we aim at
integrating a classical planning into an execution layer of a
robot. We focus particularly on the problem of near real-time
planning time and robustness to unexpected action effects.

1.3 Structure of this work
In section 2 we start highlighting some of the features that
are needed in robotics from the planning community, then
we present existing approaches that have merged classical
planning and robotics, then we talk about ROSPlan (Cash-
more et al. 2015) as one of our dependencies and a close re-
lated work, then we briefly describe our selected solver Mer-
cury (Katz and Hoffmann 2014) a well-known planner from
IPC 2014, that scored in second place in the deterministic
track. In section 4 we briefly describe each of the required
components for planning in robotics and how they interact
with each other by using a planning coordinator automata.
In section 5 we talk about the robots used, their hardware, a
description of the industrial and domestic domains that were
modeled and the experiments that we designed to investigate
some of the Mercury (Katz and Hoffmann 2014) features.
Section 6 comments on the scalability and cost assignment



T
his

docum
entis

a
D

R
A

FT
version

results and sections 7 and 8 talk about the conclusions of this
work.

2 Related Work
2.1 Planning under time constraints
In the international planning competition typically planners
are provided with a 30 min timeout, however in service
robotics (or @Home) for instance you can’t afford having
a robot thinking for more than e.g. 10 seconds, otherwise
you deeply affect the human robot interaction process.

Fast approaches like real time (Korf 1990), deadline
aware (Burns, Ruml, and Do 2013) or anytime search
(Richter and Westphal 2010) are critical for service robotics.

2.2 Classical Planning in Robotics
One of the oldest examples of integration between AI and
robotics is the Stanford Research Institute Problem Solver
(STRIPS) (Fikes and Nilsson 1971). The famous automated
planner was implemented on a real robot ”Shakey” (Nils-
son 1984). Without a doubt, a milestone in AI planning and
robotics.

2.3 RoboCup Logistics League
In RoboCup (Kitano et al. 1997) Logistics league, the sys-
tem used by the Carologistics (Niemueller et al. 2015) team
(winner of 2014-2016) is based on the Fawkes Robot Soft-
ware Framework (Niemueller, Reuter, and Ferrein 2015).
The software stack contains components for localization,
navigation, perception and basic behaviors using a Lua-base
behavior engine and complete task-level executive based
on the C Language Integrated Production System (CLIPS)
(Wygant 1989). CLIPS is public domain software built
for expert systems. It was initially developed in 1985 at
the NASA Jhonson Space Center and presents an object-
oriented language for writing expert systems. Like other lan-
guages CLIPS deals with rules and fact to operate. One of
the main problems with ruled based systems is the amount
of rules they require to work efficiently, making them hard
to extend and maintain.

2.4 RoboCup at Work League
While most teams in the league use automatas for decision
making, the team LUHbots @Work3 from Hannover, uses a
graph-based search algorithm (greedy) and a minimization
cost function.

2.5 ROSPlan
Developed at King’s College London University KCL ROS-
Plan (Cashmore et al. 2015) introduces a framework with a
generic method for the integration of PDDL planning and
the famous Robot Operating System (ROS) which is the
standard middleware in robotics. It exposes a Knowledge
base (KB), an automatic PDDL problem generator and plan
dispatcher to interact with the dispatcher.

Re-planning in ROSPlan is done based upon 3 different
criteria: because the dispatcher reports failure on an action,

3http://luhbots.de/wordpress/

Figure 1: KUKATMYouBot industrial robot
at RoboCup world championship 2015 Hefei, China.

the KB changed in such a way that invalidates the current
plan, the action has consumed to much resources (e.g. time
or energy).

2.6 Mercury Planner
Mercury (Katz and Hoffmann 2014) is a sequential, clas-
sical, satisficing planner (no optimal solution is guaranteed)
which won 2nd place at IPC 2014. The planner starts with an
initial greedy best first search and once a solution has being
found it performs multiple iterations of heuristic search with
a weighted A* algorithm. Mercury uses a partial relaxation
delete list heuristic called Red-Black. Red variables take the
relaxed semantics (ignore the delete list) while black vari-
ables take the regular semantics (will not ignore the delete
list) (Katz and Hoffmann 2014). The method used to find
black variables is called the paint strategy and is domain de-
pendent. The rationale behind having selected this planner
was because it outperformed all other planners in the trans-
port domain (in IPC 2014), which is similar to our industrial
domain : basic robot transportation tasks.

3 Background
The domains were modeled based on the tasks proposed
by the international RoboCup competition @Work and
@Home leagues and in particular, the Basic Transportation
Test (BTT) and General Purpose Service Robot (GPSR).

3.1 Industrial Domain
In the BTT domain, the industrial KUKA YouBot robot
(Bischoff, Huggenberger, and Prassler 2011) (see Figure 1),
the standard platform of the league needs to transport ob-
jects between locations. The robot has a rear metal plat-
form where a maximum of three objects can be stored and a
robotic manipulator with a gripper that can fetch small ob-
jects. Additionally a RGBD camera was placed near the end
effector to perceive the objects in the environment.
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Figure 2: Basic transportation test domain
simplified diagram.

A diagram of the simplified environment is depicted in
Figure 2.

From the planning perspective the domain is composed
of the following actions: move to location, perceive, pick,
place, stage and unstage object. The full domain PDDL def-
inition can be consulted online4.

3.2 Domestic Domain
The General Purpose Service Robot (GPSR) domain tests
the ability of the robots to respond to various commands
given from human beings. The robot is provided with a list
of locations, items, persons and objects and is expected to
execute flexible commands such as: guiding people from
source to destination, answer questions, introduce himself,
grasp and place objects (transportation) or telling something
to someone.

The robot that we use for this purpose is the MOnarCH
robot (see Figure 3) which is equipped with various sensors
and actuators that allow him to interact in the home scenario.

4 System Architecture
Our integration strategy is to use commercial off-the-shelf
software while developing custom components we are inter-
ested from a research perspective. We briefly describe them
in section 4.1.

4.1 Component Description
Speech recognition, natural language understanding and
intention to knowledge - In the domestic domain a hu-
man needs to interact with the robot, we do this via a 3
step pipeline (see Figure 4). The speech recognition mod-
ule inputs audio stream from the robot’s microphone into
the computer and converts it into a sentence. The sentence is
input to the natural language understanding component that

4www.github.com/oscar-lima/mercury_
planner_experiments

Figure 3: MOnarCH service robot.

first divides the sentence into multiple phrases and recog-
nizes the intention and arguments, e.g. sentence: “go to the
kitchen and pick the water bottle”, would get divided into
2 phrases: “go to the kitchen” and “pick the water bottle”,
from each phrase we extract the intentions: “go, grasp” with
the arguments: “kitchen, water bottle”. Finally we map the
intention to knowledge, e.g. (at robot destination), (holding
object robot), where destination is kitchen and object is wa-
ter bottle.

Knowledge Base (KB) - We reuse this components from
ROSPlan (Cashmore et al. 2015) to store the instances, facts
and goals that are required for the planning process. We de-
fine three possible ways to interact with the knowledge base.

1. At startup fixed initial conditions can be uploaded to KB,
e.g. A robot is at the entrance and its gripper is empty.

2. A human can provide facts or goals through voice.

3. The dispatcher (based upon success or action failure) can
update the KB with the world state.

PDDL problem generator - We partially reuse this com-
ponents from ROSPlan (Cashmore et al. 2015), fetch in-
stances, facts and goals from KB to construct a PDDL prob-
lem definition. Only one thing is missing: cost. We have
extended ROSPlan to accept and produce PDDL problems
with cost information. We compute the cost by calling a
motion planning algorithm based upon a particular environ-
ment, calculating distance between locations and generating
a distance matrix that increases the cost function as en effect
of the navigation operator.

Knowledge base analyzer - This component answers the
following questions: 1. are there unfinished goals in the KB?
2. Is there new knowledge in the KB? (w.r.t. the last query).

Planner - This component currently calls Mercury (Katz
and Hoffmann 2014), however other PDDL planners could
be used due to the flexible architecture that we developed.

Plan Validation (VAL) - The plan validation tool (Howey,
Long, and Fox 2004) inputs the generated plan, the domain
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Figure 4: Human voice to knowledge pipeline.

Figure 5: System architecture showing the specifics of the
planning framework.

model and the problem definition and outputs a boolean re-
sponse with information whether if the plan solves the im-
posed goals.

Plan parser - Currently structured to parse IPC formated
plans, can be easily modified to adapt to other planners out-
put. However most recent planners available in the commu-
nity will produce the plan in the correct format.

Scheduler and execution layer - Receives the plan as
a sequence of actions to be executed, iterates over each
of them and updates the world state based on the action
outcome (success or failure). The execution layer is based
on high level actions logically structured by the domain
model but on the inside each action is coded as an automata.
This approach keeps each state machine well factored while
maintaining the planner search space in control of the user
(depends on how the domain is modeled).

4.2 Planning coordinator
In Figure 5 we present the planning architecture, it shows the
interaction between components described in section 4.1.

The planning coordinator implementation itself is also an
automata, depicted in Figure 6, notice that the framework
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Figure 6: Planning coordinator automata.

allows you to implement your own re-planning strategy by
creating your own automata.

The planning coordinator loop starts by uploading intrin-
sic or basic facts to the KB, then waits until unfinished goals
are available in the KB, afterwards it checks if new knowl-
edge is available. This step avoids loops when the planner
fails to make a solution, preventing it from continuous fail-
ure and waiting until new knowledge arrives, before attempt-
ing to solve the problem again.

Next step is to automatically generate a PDDL problem
instance from the Knowledge stored in the KB, then the pro-
duced plan is validated with the plan validation tool (VAL)
(Howey, Long, and Fox 2004) to ensure that the solution
solves the goal. Then we parse the planner output and con-
vert it into a vector of actions that is sent for execution to
individual action based automatas. Every time an actions is
completed the dispatcher updates the KB. If one of the ac-
tions reports failure then we trigger re-planning.

4.3 Execution layer : State Machines
Planners are well known to suffer from curse of dimension-
ality, this usually leads to the advice: keep the domain as
simple as possible. In our approach the domain expert has
to balance this situation. There is always a trade off between
flexibility and planning time.

Behind each high level planning operator there is an
automata that deals partially with the complexity of the
stochastic domain. In this approach there is a mutual benefit:
the planning domain helps to refactor and logically organize
each individual automata and they in return help the planner
to keep its actions simple enough to be able to find a plan in
real time.

The state machine refactoring was guided by the opera-
tors within the planning domain. This is one more exam-
ple of how planning theory can help guide roboticists. What
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existed before the integration of planning technology were
monolithic state machines that would carry out the tasks
seen in the domains. The burden of providing a state ma-
chine responsible for the whole plan fell to the developers.
The use of automated planning technology enabled us to
simply model the domains and create a state machine for
each operator leaving the planner to decide which sequence
of actions would constitute the plan. This refactoring was
thoroughly explained in previous work (Lima 2016).

5 Experiment Setup
We performed three different experiments, in the first one
we have participated in two RoboCup international scientific
competition (China 2015, Leipzig 2016) to evaluate against
other teams which are mostly using automatas (only two
@Work teams used planning). Since this work presents re-
sults in planning, execution and monitoring on real robots
we benchmark our robot with this real life experiment.

In the second and third experiment we focused on the
planner. The first experiment aims to examine the scalability
of the planner. We start giving a small problem to solve and
we increase the amount of goals gradually. The experiments
were performed on computers with 5 cores and 2-8 GB of
RAM (2GB for @Work scenario and 8GB for @Home).

5.1 Mercury planner parameters
The planner has mainly the following search parameters to
configure: timeout, cost type, Landmark (lm) cost type and
heuristic weight. Since the planner is not anytime the time-
out in this case will just basically interrupt the planning pro-
cess without a solution. The cost type can be NORMAL,
ONE and PLUSONE and it refers to the operator cost ad-
justment type. The lm cost type can be NORMAL, ONE,
PLUSONE and it refers to the landmark action cost adjust-
ment. 10 different parameter sets were selected for our ex-
periments based on what the original authors have used in
their planning scripts. Table 1 shows the selected parame-
ters that from now on will be refereed as parameter set n.

cost type lm cost type w
parameter set 1 1 1 1
parameter set 2 1 1 2
parameter set 3 1 1 3
parameter set 4 1 1 4
parameter set 5 1 1 5
parameter set 6 2 2 1
parameter set 7 2 2 2
parameter set 8 2 2 3
parameter set 9 2 2 4
parameter set 10 2 2 5

Table 1: 10 different search parameters were used for the
experiments.

5.2 Scalability experiment
The problem instance for the @Work scenario requires the
robot to transport objects between locations (see Figure 2).

We start with one object to be transported and we gradually
increase the amount of objects one at a time until 25. A time-
out of 1 minute was given to the planner to produce solution
for all experiments.

For the @Home scenario we have generated an exam-
ple problem instance where the robot has to guide a cer-
tain amount of people (1-25). Notice that the domain can
do many other things (including the transportation of ob-
jects) and only one particular operator is being tested in this
experiment (guide).

The idea behind the scalability experiments is to investi-
gate how the planning time and plan quality (cost) behave
when the problem size grows.

The navigation cost information for the @Work domain
obeys a distance matrix generated from an example scenario
(see Figure 2) and was calculated by using a motion plan-
ning algorithm between all locations. All other actions (per-
ceive, pick, place, stage, unstage) are having unit cost.

The cost information used for the @Home experiment is
as follows: navigation action (2), guide action (500), all oth-
ers (1).

6 Experiment Results
Automated scripts were used to create different solutions to
the proposed PDDL problems in a 26 hour experiment run.
The planner was asked to create over 40,000 plans.

6.1 Scalability Tests
In Figure 7 we present the results for the scalability experi-
ment, we can see that while planning time grows exponen-
tially the plan length grows linearly. Additionally each plan-
ner parameters produces different plan quality and time, e.g.
parameter set 1 ”saturates” fast and is unable to handle prob-
lems which are bigger than 5 objects to transport for 1 min
timeout.

In Figure 8 we present the results from the scalability test
in the @Home scenario. We can observe a similar behav-
ior compared to @Work, but this particular domain is more
complex, therefore “saturates” earlier.

7 Discussion
We have seen that one possibility to reduce the search space
of the planner is to interleave high level actions with the
use of automatas. The domain model provides with a logical
structure on how such automatas should be factored. Model-
ing real robot domains can be quite challenging as it requires
experience on the domain. Typically roboticists are focused
on specific areas, e.g. navigation, manipulation, perception,
human-robot interaction, but rarely on all of them.

Modeling such domains is usually an iterating process,
you start with a subset of actions and you try to scale up the
domain by adding more actions on each iteration. It is impor-
tant to notice that task planning software is not mature and
is quite experimental, usually you don’t get much feedback
about syntax mistakes as you would get in programming lan-
guages such as c++ or python.

Without the first extension to the problem generator, we
would not have been able to use the Mercury planner. The
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Figure 7: As problem increases in complexity, so does the
planning time, 10 different parameters have been used.

automata-based execution layer allows for complex execu-
tion of a plan that was generated with various assumptions
to simplify the planning part. The use of refactored action-
based automatas in the execution layer helps to balance the
various robot skills by offloading the complexity either to
the planner or to the automata (design choice).

Although any PDDL planner can be easily integrated in
our architecture, we provide with an interface for the IPC
2014 Mercury planner (Katz and Hoffmann 2014). The rea-
son behind it, being it’s top performance in the IPC 2014
transport domain which was similar to our industrial @Work
domain.

8 Conclusions
In this work which we consider a success story in planning
we have shown the modularity advantage of the individual
contributions that were published in the ICAPS domain, that
can be used to build the overall system out of diverse but
compatible components.

The system has proven to be a working solution and led
the team to win 3rd place in 2015 and 2nd place in 2016
in the RoboCup @Work international scientific competition
(Kitano et al. 1997). With regard to @Home the system is
still in experimental phase and has only being tested in local
demonstrations in our lab. A video showing the global robot
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Figure 8: As problem increases in complexity, so does the
planning time, 10 different parameters have been used.

performance can be seen here5.
The complexity analysis that we have done is helpful to

know the scalability of the planner and to balance the com-
plexity between domain operators and the automata. Addi-
tionally our benchmark experiments provide an intuition of
the problem size that a classical planner can handle.

Both competitions domains include non-deterministic
outcomes and incomplete information. The execution layer
performed as expected and yielded impressive results6 for
the overall systems performance.

The representation of the execution layer as a state ma-
chine is an improvement over other implementations, e.g.
ROSPlan7, where it is difficult to analyze or change the re-
planning behavior. It is important to highlight that while this
work uses some tools from ROSPlan (Knowledge Base and
part of the PDDL problem generator) the framework is en-
tirely our own work. The changes we have made to the ROS-
Plan problem generator were necessary to enable it to cope
with cost information however the system we have created
can handle any PDDL planner with or without cost informa-

5www.youtube.com/watch?v=7fvAQVNoKjo
6Our team obtained 3rd place in 2015 and 2nd place in 2016 in

the RoboCup @Work international scientific competition.
7www.github.com/KCL-Planning/ROSPlan
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tion.
One of the central execution issues is dealt with by coding

actions as automatas.
Our experience shows that SMACH state machines meet

our requirements and allows us to represent what is neces-
sary to achieve the robustness that we have during the acting
phase. This includes the action execution monitoring, han-
dling failures that do not require replanning, updating the
Knowledge Base (based on whether actions were perceived
by the robots sensors to have succeeded or failed during the
monitoring phase) thereby providing up-to-date information
for the replanning process when it is needed.

Contributions of this work are: The integration of various
different planning components into real robot systems with
two use cases: Industrial and Domestic service robots. Do-
main models that work in real scenarios. Experiments on a
state of the art planner on scalability and cost assignment
that provide with valuable guidelines on what problem size
can the planner solve (and in which time), and cost assign-
ment strategy, regarding the numerical values that can be set.

This work is relevant for roboticists that want to add plan-
ning capabilities to their robot systems.
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