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Abstract

The use of mobile sensor networks for multi-target tracking is an active research field. This thesis describes

the application of a novel two-layer relaxation for high-level control and coordination of UAVs to optimally

track a set of moving targets considering a limited resources scenario. Using a single-best tracking

criterion, the scheme deploys distributed algorithms constrained to ensure full target coverage at all times.

Quadrotor and fixed-wing UAV dynamics are considered, using respectively a point-mass and a Dubins

car dynamical model. Our novel two-layer relaxation divides the problem into a distributed assignment

problem and many local single-agent tracking problems. The proposed distributed algorithm requires low

bandwidth messages and solves the assignment problem with an asynchronous-unreliable communication

protocol between only neighbour agents. The tracking problems are formulated as a SDP problem for a

quadrotor, while for a non-holonomic fixed-wing dynamics, a sequential convex programming algorithm

is added to solve the linearised SDP problem iteratively. The proposed two-layer algorithms allow the

use of heterogeneous teams and emergency manoeuvres to deal with collision avoidance and agents’

refuelling are implemented. Analysis proves that our relaxation optimises the same functional as the

initial centralised formulation at steady-state, thus they have the same global optimum in a static targets

scenario. The proposed distributed algorithms have linear time complexity with the number of targets

and their complexity does not depend on the number of agents. Results show that our algorithms perform

reasonable well in a wide range of scenarios.

Keywords

Multi-target tracking, distributed robotics, multi-robot collaboration, semi-definite programming.
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Resumo

O uso de redes de sensores móveis para seguimento de múltiplos alvos é uma área de investigação actual.

Esta tese introduz um novo método para o controlo e coordenação de UAVs, baseado na divisão do

problema original em duas partes distintas. O objectivo é optimizar o seguimento de um conjunto de

alvos móveis considerando um cenário de recursos limitados. Para cada alvo, este método optimiza o

seu seguimento considerando apenas o agente mais próximo. Algoritmos distribúıdos são implementados,

assegurando que todos os alvos estão a ser seguidos durante toda a simulação. Quadrotores e UAV

de asa-fixa são considerados usando, respectivamente, dinâmicas de massa-pontual e o modelo de carro

Dubins. Este método divide o problema original num problema distribúıdo de atribuição alvos-agentes

e em vários problemas locais de seguimento de alvos usando um só agente. O algoritmo distribúıdo

proposto requer pouca largura de banda e resolve o problema de atribuição mesmo com um protocolo de

comunicação asśıncrono e não-fiável entre agentes vizinhos. Os problemas de seguimento locais para os

quadrotores são formulados como SDP. Enquanto que para a dinâmica não-holonómica dos agentes de

asa-fixa, um algoritmo de programação sequencial convexa é introduzido para resolver linearizações do

problema original sob a forma de SDP. Os algoritmos propostos permitem o uso de equipas heterogéneas

e manobras de emergência que evitam colisões e permitem o reabastecimento dos agentes. O método

proposto optimiza a mesma função de custo que o problema original em regime estacionário, assim a

aproximação deste método tem o mesmo mı́nimo global que o problema original se considerarmos alvos

estáticos. Os algoritmos distribúıdos propostos têm linear complexidade temporal com o número de

alvos, e a sua complexidade não depende do número de agentes. Resultados mostram que os algoritmos

introduzidos comportam-se relativamente bem em cenários distintos.

Palavras-chave

Seguimento de múltiplos alvos, robótica distribúıda, colaboração entre robôs, programação semi-definida

(SDP).
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Chapter 1

Introduction

Target tracking is an active research field with growing interest in the recent years. With a variety range

of military and civil applications such as surveillance, defence, security, reconnaissance, computer vision

systems, monitoring, among others, performing target tracking with mobile sensor networks has been

increasing significantly.

Contrary to the use of static sensors, the use of mobile sensors has superior coverage and mobil-

ity. They can cover larger areas without increasing their number. Also, their spatial distribution can

change dynamically and adapt to changes in the environment or the targets’ movement. While manned

vehicles are large and expensive, the use of multiple small inexpensive robots is ideal for target tracking

applications. Suitable also for hazardous environments, the use of robotic networks provides successful

autonomous surveillance systems.

Unmanned Aerial Vehicles (UAVs) play an increasingly prominent role in these applications. Mo-

tivated by their manoeuvrability, the problem of UAVs cooperative path planning for target tracking is

largely mentioned in the literature.

These mobile sensor networks are highly scalable, and they have redundancy to vehicle failures. Due

to the short endurance of most of these UAVs, refuelling strategies are also implemented. However, these

robotic networks have limitations on the on-board processing and communication resources. Therefore, a

penalty in terms of CPU time and communication bandwidth has to be taken into account. Also, efficient

communication protocols have to be implemented to ensure a common network goal.

1.1 Motivation and relevance

Tracking multiple dynamic targets with a limited mobile sensors network, carried by a group of UAVs, rises

the tracking problem where the resources are limited. In a limited resources scenario, the number of agents

can be significantly lower than the number of targets. Also, non-holonomic vehicle dynamics are often

needed to model fixed-wings. Introducing non-holonomic constraints, they bring another challenge to the

picture. On-board processing and communication protocols constrain the problem to be implemented in

a simple and distributed way among the UAVs.

Facing these difficulties was attempted by the research community, due to the wide range of target-

tracking scenarios where such an algorithm could be applied. Originally motivated by a proposal for the

International Micro Air Vehicle Conference and Flight Competition (IMAV) 2014, we propose to steer a

group of UAVs to optimally track a larger set of dynamic targets.

1



Figure 1.1: Multi-UAV Multi-Target Tracking (from Tang and Ozguner [51]).

1.2 Research goal and main contributions

Our goal is to develop target-tracking algorithms using a mobile sensors network composed by a group

of UAVs. The proposed problem is to determine the control input for each UAV that optimise tracking

multiple dynamic targets travelling inside a fixed area of interest in a complete autonomous way. The

implementation should be distributed assuming no central control unit and allowing being scalable for

large mobile sensor networks. The UAVs are able to communicate through a wireless protocol, allowing

only local communication between sensors.

This problem can be split into different sub-goals that we seek to achieve:

• define an appropriate performance criteria and define the set of constraints that the algorithm needs

to fulfil;

• implement a centralised algorithm and analyse its behaviour;

• distribute the problem among the agents, and convexify it in order to be implementable in real-time;

• discuss communication schemes between neighbour agents and design distributed algorithms based

on local communication-only to solve the distributed problem;

• analyse the distributed solutions and compare with the original centralised one;

• deal with collision avoidance and slow changing number of UAVs.

A single-best estimation performance criterion is introduced, and a novel two-layer approach is pro-

posed to solve the tracking problem. Two tracking problems are considered to allow collaboration between

heterogeneous teams, i.e., the use of quadrotors and fixed-wings. Two distributed algorithms are designed

based on local communication between neighbour vehicles.

The main contributions of this work are the following.

1. Problem Formulation: given a limited resources scenario, where we have fewer agents than targets,

we assume that there is no need of sensing a target with more than one agent. This assumption

motivates our single best-estimation criterion. Another contribution is the use of two different agent

dynamics in the problem formulation: a quadrotor and a fixed-wing model.

2. Novel two-layer approach: with an initial centralised non-convex formulation that does not fulfil

our goals, we propose a novel two-layer relaxation to solve the problem. This approach implements

a first layer with a distributed Assignment Problem among the agents and a second local layer

with single-agent Tracking Problems. Distribution and convexification is achieved with our novel

formulation. A theoretical comparison between the two approaches is made, and by the means of

a theorem, the optimal steady-state solution for static targets is proved to be the same.
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3. Final distributed algorithms: we achieved a fully distributed implementation based on asynchronous-

unreliable communication between neighbour agents. The tracking problems are formulated as

Semi-Definite Positive programs achieving real-time for both agent models. The time complexity of

our distributed algorithms does not depend on the number of agents and is linear with the number

of targets.

1.3 Outline

This Master’s Thesis consists of ten chapters organised as follows.

• Chapter 1 introduces and motivates the topic, proposes the research goals that we seek to achieve

and states the main contributions of this project.

• Chapter 2 formulates our optimisation problem, discusses possible implementations and formally

states our problem.

• Chapter 3 provides a brief survey on target-tracking, analyses the most important literature on the

topic and other related work, and compares our formulation with others.

• Chapter 4 formalises two optimisation-based problems, for quadrotor and fixed-wing agents, and

solves these problems using a naive centralised approach. Simulation results are a proof-of-concept

of our formulation, but the current approach does not fully meet our goals: it is non-convex problem

with a centralised implementation.

• Chapter 5 deals with the limitations of the naive centralised solution and proposes a novel two-layer

approach. This approach relaxes and distributes our problem formulation to face the computational

time and time complexity goals. This approach is divided into a Assignment Problem (AP) and

local Tracking Problems (TPs).

• Chapter 6 formulates the assignment problem has a Voronoi partition problem. The problem

is distributed and solved using two algorithms: a synchronous-distributed and an asynchronous-

distributed algorithm. Convergence properties, simulation results and the communication protocol

needed for each algorithm is discussed.

• Chapter 7 formulates the local tracking problems using a quadrotor or a fixed-wing agent model.

The quadrotor’s problem is formulated in a Semi-Definite Positive program (SDP) form, while

the fixed-wing’s, due to its non-holonomic dynamics, is implemented with a Sequential Convex

Programming (SCP) algorithm which solves linearised SDPs iteratively.

• Chapter 8 introduces the pseudo-code to implement on each UAV the synchronous- and asynchronous-

distributed solutions of our two-layer algorithms. The naive centralised and the two-layer ap-

proaches are compared, and the steady-state solution is proved to be the same. The use of hetero-

geneous teams is discussed and two emergency manoeuvres are introduced (collision avoidance and

agents refuelling).

• Chapter 9 presents the simulation results and compares the different algorithms on the agents

performance. Sensing and actuators noise is also introduced and their effects studied.

• Chapter 10 concludes the thesis and mentions future research topics.
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Chapter 2

Problem formulation

Our multi-UAV multi-target tracking problem can be seen as an active sensing problem (Mihaylova et al.

[36]). Let the set of coordinates (E,N, h) ∈ R3, define a 3D convex space S := [E,N, h]> ⊂ R3. We

define (E,N) ∈ R2 as the East and North plane coordinates respectively, and h ∈ R as the altitude

coordinate with respect to a fixed ground-level (Figure 2.1).

 

Figure 2.1: Multi-UAV Multi-Target Tracking.

Let a group of n UAVs represent our set of autonomous interacting entities called agents. The entire

set of agents constitutes our global system. These agents are modelled as discrete time dynamical systems

xik+1 = f i(xik,u
i
k,η

i
k), i ∈ {1, ..., n}, (2.1)

where f i is the non-linear model of the agent i; xik is the state, uik the control input, and ηik the system

noise of the agent i at the time-step k. The position of the agent i, xik,pos = [Eik, N
i
k, h

i
k]> ∈ S, is included

in the state xik which depends on the model of the agent i.

Let a group of m ground vehicles represent our set of moving targets of interest called targets. The

set of targets moves according to the following dynamics

tqk+1,pos = tqk,pos + tqk,vel∆t, q ∈ {1, ...,m}, (2.2)

where tqk,pos = [Eqk, N
q
k , h

q
k]> ∈ S is the position, tqk,vel is the velocity of the target q at the time-step k,

and ∆t is the discrete time-step. Let the set of agents have sensors capable of sensing the targets. These
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sensors are modelled by

zi,qk = hi(xik, t
q
k,pos, ζ

i,q
k ), i ∈ {1, ..., n}, (2.3)

where hi is the sensing model of the agent i; xik the state of the agent i and tqk,pos is the position of the

target q; zi,qk is the measurement vector, and ζi,qk the sensing noise of the agent i towards the target q

at the time-step k. Depending on h,x, t, and the noise level/model, the agents are able to estimate the

target position more or less accurately.

Our goal is to determine the control input ui for each agent i so that we optimise a certain metric

based on the target estimation quality.

Defining a sensing criterion, we introduce a performance criterion that measures how optimal is a

certain state and control law. Typically in active sensing problems, the performance criterion is composed

by two components: minimising the target estimation uncertainty and minimising the control effort. By

minimising the uncertainty, we maximise the information gathered about the targets. The second term

represents the utility, i.e., the cost or energy spent to steer the agents. Therefore, the quality criterion

can be described by the minimisation of the cost function

Jk(xk,uk) :=
∑

j

βjU j(xk) +
∑

l

ρlCl(uk), (2.4)

where U represents the j terms that measure the expected target uncertainty, and C represents the l terms

that measure the expected utility-cost spent in tracking; the coefficients βj and ρl weight the different

impacts to achieve a scalar criterion Jk. The terms U and C are, respectively, functions of the systems’

states xk and inputs uk. The states are defined by the vector of all the agents’ states xk = [x1
k, ...,x

n
k ]>,

and the inputs given by all the agents’ inputs uk = [u1
k, ...,u

n
k ]>. The cost-function (2.4) is also called

the single-step performance criterion.

The performance criterion can be also defined using a Receding Horizon Controller (RHC) which

seeks to minimise the single-step ahead performance over a fixed finite-horizon N < ∞ (Borrelli et al.

[8]). The resulting controller applies only the first optimal control-input, and at the next time-step, the

same finite-horizon problem is solved over a shifted horizon. Using a prediction of the future states

x̂ik+t|k = f i(x̂ik+t−1|k,u
i
k+t−1), i ∈ {1, ..., n}, t ∈ {1, ..., N},

where x̂ik+t|k is the prediction t time-steps ahead of the state of the agent i, and we assume to know the

current agents’ positions x̂ik|k = xik, we can define a finite-horizon performance criterion

J̄k(xk,uk, ...,uk+N−1) :=

t=N−1∑

t=0

[
Jk(x̂k+t+1|k,uk+t)

]
+ ϕ(x̂k+N |k), (2.5)

where x̂k+t+1|k is the prediction t + 1 time-steps ahead of the system states, uk+t is the control input

given to the system at time k + t, Jk is the single-step performance criterion given by Equation (2.4),

and ϕ(x̂k+N |k) represents an “extra” contribution of the terminal state xk+N to the cost function, also

known as terminal cost. When chosen properly, the terminal cost is highly effective providing stronger

guarantees to the predictive control law (Murray [37]).

The minimisation of the performance criterion is typically constrained, i.e., both the system and the

inputs are usually bounded. These bounds can be generally described under a set of constraints

cmin ≤ c(xk,uk, ...,uk+N−1) ≤ cmax (2.6)
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where c represents the physical variables constrained by the bounds cmin, cmax.

2.1 Problem definition

We are interested in a multi-UAV multi-target tracking problem where the resources are limited, i.e., the

number of agents at our disposal is lower than the number of targets to be sensed n � m, and where

sensing a target with one agent only is enough to estimate its position. Considering a sensing region S,

a set of n agents that seek to sense m targets, we define our problem as follows.

2.1.1 Performance criterion

In general, the tracking of a certain target q by an agent i depends on many factors, such as distance,

weather conditions, sensors, shape of the target, etc. However, assuming that the target estimation

quality is inversely proportional to the distance agent-target, we define the tracking quality as follows.

Definition 1 (Tracking Quality). The tracking quality of the agent i towards the target q is given by the

inverse of distance between them

Qi,q :=

(
||xipos − tqpos||2

)−1

=

(
(xipos − tqpos)

>(xipos − tqpos)

)−1

.

Our performance criterion is derived here step-by-step. First we note that to maximise the tracking

quality (Definition 1), we seek to minimise the distance agent-target ||xipos − tqpos||2. Starting with the

performance criterion

J :=

m∑

q=1

( n∑

i=1

||xipos − tqpos||2
)
,

we define the optimal tracking quality of all agents over all targets. This formulation will obviously bring

all agents towards the same position. The agents will tend to move where the distance towards all the

targets is lower, i.e., the “set of targets’ centroid”.

In our formulation we consider a limited-resources scenario where we have fewer agents than targets

n � m. This assumption is motivated by realistic scenarios where we cannot afford to have more than

one flying UAV to sense only one target of interest. Thus, we would like to have a problem formulated

in such a way that the UAVs naturally split themselves to cover different groups of targets. Instead of

having the agents trying to gather information about all the targets. We want to divide the targets in

groups where each group is tracked by a single agent.

As said, we are assuming that one agent is capable of gathering enough information about a target.

Otherwise we would need more than one agent for tracking each target which may not be feasible in a

limited-resources scenario. Note that this assumption is not too restrictive with the current technology

(Parker [44] and Parker and Emmons [46]), one UAV with a on-board camera and a ground-map is able

to roughly estimate the position of a moving target. Therefore, we want each target to be sensed only

by one agent, as close as possible, to obtain the single best sensing quality. Formulating the performance

criterion

J ′ :=

m∑

q=1

(
min

i∈{1,...,n}
{||xipos − tqpos||2}

)
,

we represent the goal of obtaining the single best tracking of each target from the closer agent, regardless

the sensing obtained from other further agents.
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Then, adding a balanced input effort weight, we propose

J ′′ :=

m∑

q=1

(
min

i∈{1,...,n}
{||xipos − tqpos||2}

)
+ ρ

n∑

i=1

||ui||2,

where the factor ρ represent the effort of the utility-cost with respect to the target uncertainty. This

control-effort factor helps stabilizing the optimisation-based algorithm. Thus, with a target uncertainty

term U given by the distance towards the closer agent with unit-weights βj = 1, j = {1, ...,m}, and with

a utility cost term C given by the 2-norm of the input vector with constant-weights ρl = ρ, l = {1, ..., n}
(Equation (2.4)); we are able to formulate our single-step performance criterion.

Definition 2 (Single-step Performance Criterion). Giving a set of agents with positions xik,pos, i =

1, ..., n, and a set of targets with positions tqk,pos, q = 1, ...,m, at the current time-step k, we formulate

the following performance criterion

Jk(xk,uk) :=

m∑

q=1

(
min

i∈{1,...,n}
{||xik,pos − tqk,pos||2}

)
+ ρ

n∑

i=1

||uik||2, (2.7)

where the first term seeks to obtain the single best tracking from the closer agent, and the second term ρ

adds a balanced input control effort.

Note that, with a single step ahead controller, if the inputs at time k do not make changes in the

agents’ positions at time k+1, a trivial local minimum is obtained with null inputs. Therefore, we need to

formulate the performance criterion with a predictive control horizon. Using the single-step performance

criterion of Definition 2 over a finite predictive horizon of N steps, and adding a terminal horizon cost,

we can define the N -steps performance criterion (Equation (2.5))

Definition 3 (N -steps Performance Criterion). Giving a set of agents with positions xik,pos, i = 1, ..., n,

and a set of targets with positions tqk,pos, q = 1, ...,m, at the current time-step k, a prediction model

given by the agents’ dynamics, and a finite predictive horizon of N steps, we formulate the following

performance criterion

J̄k(xk,uk, ...,uk+N−1) :=

N−1∑

t=0

[ m∑

q=1

(
min

i∈{1,...,n}
{||x̂ik+t+1,pos − tqk,pos||2}

)
+ ρ

n∑

i=1

||uik+t||2
]
+

+ ϕ

m∑

q=1

(
min

i∈{1,...,n}
{||x̂ik+N,pos − tqk,pos||2}

)
,

(2.8)

where the first term seeks to obtain the single best tracking from the closer agent, the second term ρ adds

a balanced input control effort into the cost function, and the third term ϕ adds a terminal horizon cost.

Note that, as the targets movement is random, we guide the agents along the time horizon N with respect

to the current position of the targets tqk,pos, q = 1, ...,m,.

The N -steps Performance Criterion (2.8) will be our performance criterion.

2.1.2 Agents

A set of UAVs, here called agents, are considered.

Definition 4 (Agents). Giving a space S, the agents are the set of n UAVs carrying out sensors capable of

tracking targets. Each agent is defined by its state xi, which includes its position xipos = [Ei, N i, hi]> ∈ S,

and i is its unique number i = 1, ..., n.
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Our focus is on the high-level control and coordination of UAVs. Therefore, we will consider basic

agent models in order to have simple path planning problems to solve, and leave inner loop controllers

deal with the full vehicle dynamics. Two agent models (Equation (2.1)) will be used:

1. Quadrotor model : defined with a discrete double integrator unit point-mass dynamics

xik+1 ≡
[
xik+1,pos

xik+1,vel

]
= f iquad(xik,u

i
k) ≡ A

[
xik,pos

xik,vel

]
+ Buik, i ∈ {1, ..., n},

A =

[
I3 I3∆t

03×3 I3

]
, B =

[
03×3

I3∆t

]
,

(2.9)

where xi is the state of the agent i given by its position xipos and its velocity xivel = [viE , v
i
N , v

i
h]>,

and the input ui = [f iE , f
i
N , f

i
h]> of the agent i corresponds to the force applied along the three

axis. We consider the following limitations (2.10) on the quadrotor’s dynamics, meaning that the

quadrotors have a minimum flying altitude, bounded velocity and force (Figure 2.2).





hi ≥ hmin

−vmax ≤ viE , viN , vih ≤ vmax

−fmax ≤ f iE , f iN , f ih ≤ fmax

, i = {1, ..., n}. (2.10)

Figure 2.2: Quadrotor model.

2. Fixed-wing model : defined with fixed-altitude discrete Dubins car model (Dubins [20]):

xik+1 ≡



Eik+1

N i
k+1

θik+1


 = f iwing(xik, u

i
k) ≡



Eik
N i
k

θik


+



VM cos θik
VM sin θik

uik


∆t, i ∈ {1, ..., n}, (2.11)

where xi is the state of the agent i given by its 2D position [Ei, N i]> and orientation θi, and the

scalar input ui of the agent i corresponds to the change of heading command. These agents fly with

constant velocity VM and with a fixed-altitude xipos = [Ei, N i, h̄]>, i ∈ {1, ..., n}. We also consider

constraints (2.12) on the turning rate, meaning that the fixed-wings have a maximum turning rate

(Figure 2.3).

−umax ≤ ui ≤ umax, i = {1, ..., n}. (2.12)

We assume to have perfect observation on the agents’ state.
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Figure 2.3: Fixed-wing model.

Assumption 1 (Perfect agent state knowledge).

We assume that on-board sensors are able to estimate the agents’ states perfectly. Currently,

coupling the General Positioning System (GPS) with the Inertial Navigation System (INS), consti-

tutes a GPS/INS sensor which is able to provide accurately the state of UAV systems. Therefore,

we consider to have the current agent state included in the system’s output.

2.1.3 Targets

A set of moving ground vehicles, here called targets, are considered

Definition 5 (Targets). Giving a space S, the targets are the set of m moving ground vehicles which we

seek to track. Each target is defined by its ground position tqpos = [Eq, Nq, hq = 0]> ∈ S, and q is its

unique number q = 1, ...,m.

Two types of targets (Equation (2.2)) will be considered:

1. Static targets: targets that do not move with time

tqk+1,pos = tqk,pos, q ∈ {1, ...,m}, (2.13)

where tqpos is the position of the target q with no altitude hq = 0.

2. Random-walk targets: targets moving with a random-walk model

tqk+1,pos = tqk,pos + tqk,vel∆t, q ∈ {1, ...,m}, (2.14)

where tqpos is the position of the target q with no altitude hq = 0, and the velocity is given by

tqvel = [wqE , w
q
N , 0]>, where wqE , w

q
N are zero mean bounded Gaussian noises, bounded as

||tqvel||2 = (wqE)2 + (wqN )2 ≤ (Wmax)2, q ∈ {1, ...,m}.

Regarding the targets’ observation, we consider the noisy sensing model (2.3):

zi,qk = tqk,pos + ζi,qk ||xik,pos − tqk,pos||, ∀i∈{1,...,n} : ||xik,pos − tqk,pos|| ≤ Ri, (2.15)

where ζi,qk = [ζi,qk,E , ζ
i,q
k,N , 0]>, and ζi,qk,E , ζ

i,q
k,N are zero mean bounded Gaussian noises.
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Therefore, by minimising the distance agent-target ||xik,pos − tqk,pos|| with our performance criterion

(2.8), we optimise the tracking quality of our sensing. However, we assume the targets’ positions to be

roughly given by the set of measurements within the limited sensing range Ri

zi,qk ≈ tqk,pos, ∀i∈{1,...,n} : ||xik,pos − tqk,pos|| ≤ Ri, (2.16)

such that our formulation optimises with respect to the measured targets’ positions. In Chapter 9, we

show the results of this assumption by considering different boundaries in the noisy sensing model (2.15).

2.1.4 Full target coverage

The minimisation of the performance criterion is constrained (Equation (2.6)) to ensure full target cov-

erage. We want to guarantee that each target q has at least one agent capable of tracking it, i.e., each

target q is at least within the sensing range of one agent. 1 Considering sensors with a maximum range,

an agent i is only capable of sensing a target q within a certain range ||xipos − tqpos|| ≤ Ri. Therefore we

can define the full target coverage constraint as

∀q∈{1,...,m}∃i∈{1,...,n} : ||xipos − tqpos||2 ≤ (Ri)2. (2.17)

Using the Schur complement of a matrix block, the full target coverage constraint can be written as

a positive semi-definite matrix constraint, which will be useful in Chapter 7. First we define the Schur

complement

Definition 6 (Schur Complement). Let the real square matrix M be of the form

M =

[
A B

B> C

]
, (2.18)

with A,C real square matrices, and A invertible. We define S as

S = C−B>A−1B, (2.19)

and we call S the Schur complement of A in M.

And we recall the proposition using this complement

Proposition 1 (Schur Complement). Considering a matrix M of the form (2.18) and its Schur comple-

ment (2.19) S, if A is a invertible positive definite matrix A � 0, then M � 0⇔ S � 0.

Then, defining the matrix block

M =

[
I3 (xipos − tqpos)

(xipos − tqpos)
> (Ri)2

]
,

and having I−1
3 = I3 � 0, from the Proposition 1 we conclude

M � 0⇔ S = (Ri)2 − (xipos − tqpos)
>(xipos − tqpos) ≥ 0⇔ ||xipos − tqpos||2 ≤ (Ri)2,

allowing us to rewrite the full target constraint (2.17), as a semi-definite positive matrix constraint.

1We implicitly assume that at t = 0 we have full target coverage. Otherwise, the agents should be initially spread around
the plane coordinates (E,N) ∈ Q until the full target coverage constraint is satisfied.
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Definition 7 (Full target coverage constraint). Giving a set of agents with positions xik,pos, i = 1, ..., n

and a set of targets with positions tqk,pos, q = 1, ...,m, we formulate the full target constraint as

∀q∈{1,...,m}∃i∈{1,...,n} : M =

[
I3 (xipos − tqpos)

(xipos − tqpos)
> (Ri)2

]
� 0. (2.20)

2.2 Optimisation problem

We can finally state our target-tracking optimisation problem embodying our goals.

Problem 1 (Target tracking optimisation problem).

Given the performance criterion J̄k (2.8), either the quadrotors dynamics and limitations (2.9)-

(2.10), or the fixed-wings dynamics and limitations (2.11)-(2.12), and the full target coverage con-

straint (2.20); we define the problem of computing the control input u := {uk, ...,uk+N−1} of n

agents to track m targets inside the sensing region S as

min
u

J̄k(xk,uk, ...,uk+N−1) s.t.




agent dynamics and limitations (quadrotors or fixed-wings),

full target coverage constraint.

2.3 Distributed implementation

Typically, optimisation problems can be implemented in different ways as (see Figure 2.4 from Yang and

Johansson [53])

• Centralized optimisation: the problem is posed in a centralised way, where a vector of global

variables is chosen by a centralised entity to minimise a global performance criterion. In this case,

the agents will be fully steered from a fixed-ground base at each time step.

• Decomposed optimisation: the problem is divided into sub-problems but a centralised unit is still

needed. In this case, the agents can be steered locally however part of the optimisation problem

has to be solved centrally. This central unit needs to communicate with all the agents at each time

step.

• Distributed optimisation: the problem is divided into n sub-problems to be solved by n decision-

making agents. In this case, the optimisation problem is completely solved locally, i.e., there is no

need for a central unit. Communication schemes are defined to share information among the agents

(cooperation).

• Non-cooperative optimisation: the problem is divided into n sub-problems to be solved totally

independently by n decision-making agents. Each agent optimises its own criterion regardless the

others. No communication strategies are used, i.e., there is no cooperation.
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Figure 2.4: Centralized, Decomposed, Distributed and Non-Cooperative optimisation schemes (from Yang
and Johansson [53]).

On one hand, when the number of agents increase, solving the problem in a centralised way may

become computationally intractable. Also, assuming a limited communication network, a decomposed

scheme needs constant communication of all agents with a centralised unit (or all-to-all communications)

which is hardly implementable in real applications. On the other hand, non-cooperative optimisation

hardly assures a optimal solution for global tracking goals. Thus, we want to solve the problem using a

distributed layout.

To implement our optimisation-based algorithm, we aim for a distributed optimisation where each

agent makes decisions communicating with other agents to cooperatively strive for the global good. The

global tracking problem is divided in n sub-problems which are solved in parallel and locally by each

agent, improving the scalability to large mobile sensor networks. Also, we seek to implement algorithms

based on as few communication as possible and between neighbour agents only.

2.4 Concluding Remarks

To summarise, we state our problem as follows.

How to guide a group of UAVs to optimally track a set of moving ground targets. Considering a limited

resources scenario, where the number of agents is lower than the number of targets, we seek to obtain

the single best estimation of all targets. We consider a target estimation quality inversely proportional to

the distance agent-target. Assuming sensors with a maximum sensing range, we aim to ensure full target

coverage at all times. Assuming a limited communication network, we want to implement distributed

algorithms with as few communication as possible between neighbour agents only.
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Chapter 3

Related work

An overall understanding of how the research community have addressed and formulated the problem is

given. The tracking goal is defined in different ways which lead to different performance criteria, different

agent models are considered, and the target estimation differs within the literature. Also, the literature

can be divided according to the tracking application: single- or multi-target tracking, with a centralised

or a distributed implementation.

3.1 Performance criteria

The performance criterion (2.4) typically weights the expected target uncertainty U of the system and the

expected utility-cost C to move the agents.

Expected target uncertainty

The quality of the target estimation is often related to the Fisher information or the Shannon information

(Grocholsky et al. [22]).

The Fisher Information Matrix (Definition 8) is based on the covariance matrix of the estimated

position probability distribution which is a measure of the estimation uncertainty (Zhao et al. [55]).

Definition 8 (Fisher Information Matrix (FIM)). Giving n sensors with models (2.3)

zi = hi(xipos, tpos) + ζi, i ∈ {1, ..., n},

where zi denotes the measurement of the sensor i, the function hi(xi, tpos) models the sensor i, xipos is

the position of the sensor i, tpos is the position of the target, and ζi is the zero-mean Gaussian noise with

covariance Σi. The FIM is expressed as

F(x, t) :=

n∑

i=1

(
∂hi

∂tpos

)>
(Σi)−1

(
∂hi

∂tpos

)
.

Remark 1 (Sensor Models).

Typically the sensor models used are (Zhao et al. [55])

• range-only: hi(xipos, tpos) = ||tpos − xipos||.
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• bearing-only: hi(xipos, tpos) =
tpos−xi

pos

||tpos−xi
pos|| .

• range-and-bearing: hi(xipos, tpos) = tpos − xipos.

Since the target uncertainty metric U is defined as a scalar function, and no scalar function can capture

all aspects of the FIM matrix, different functions are proposed according to the application (Mihaylova

et al. [36], Uciński [52]):

• D-optimal design: steers the agents to the positions x that minimise the determinant J(F(x, t)) =

−det(F(x, t)), or its logarithm J(F(x, t)) =− log(det(F(x, t))). This metric is designed to minimise

the volume of the confidence ellipsoid of the estimates.

• A-optimal design: steers the agents to the positions x that minimise the trace J(F(x, t)) =

tr(F(x, t)−1) which suppresses the variance of the estimations.

• L-optimal design: steers the agents to the positions x that minimise the weighted trace J(F(x, t)) =

tr(WF(x, t)−1). This criterion is a generalisation of the previous one and a special case can be

seen in De Geeter et al. [16].

• Sensitivity criterion: steers the agents to the positions x that minimise the trace J(F(x, t)) =

−tr(F(x, t)). This metric represents a simplified version of the A-optimal criterion.

• E-optimal design: steers the agents to the positions x that minimise the maximum eigenvalue

J(F(x, t)) = λmax(F(x, t)−1), minimising the length of the largest axis of the ellipsoid.

• Zhao, et al.’s criterion: steers the agents to the positions x that minimise the metric J(F(x, t)) =

||F(x, t)− λ̄I||2, where λ̄ = 1/d
d∑
i=1

λi, {λi}di=1 denotes the eigenvalues of the FIM F(x, t), and I is

the identity matrix. This objective function has close connection to the D-optimal design and it

has a easier analytical tractability (Zhao et al. [55]).

The Shannon information is based on the probability density function, which models the observations

made by the agents. This metric describes the probability of obtaining a particular observation zi given

the positions xipos and tpos. The concept of Shannon information or Entropy (Definition 9) measures

the inherent uncertainty of a distribution representing another measurement of the uncertainty of a state

estimation (Mathews and Durrant-Whyte [34]).

Definition 9 (Entropy). Giving n sensors with observations modelled by the conditional density

p(zi|xipos, tpos), i ∈ {1, ..., n},

the entropy is defined as the negative of the expectation of the distribution p(zi|xipos, tpos)

Hz(p,x, t) := −Ez[log(p(zi|xipos, tpos))],

where E[.] denotes the expected value.

Different performance criteria based on the Shannon information are used, being the minimisation of

the entropy the most common (Mihaylova et al. [36]):

• entropy criterion: steers the agents to the positions x that minimise the entropy of the posterior

distribution J(p,x, t) = Hz(p,x, t). This metric is designed to minimise the compactness of a

distribution.
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Information-based performance criteria like the ones presented here are typically non-convex in the

optimisation variables, i.e., agents’ positions and control variables; and very often Non-deterministic

Polynomial-time hard (NP-hard) (Zhou and Roumeliotis [58],Zhou and Roumeliotis [59]). 1 This class

of problems is extremely computational demanding, it has lead Researchers to develop heuristics to solve

them.

Expected utility-cost

The cost C measures the energy spent to move the agents. This factor is a function of the inputs u,

typically formulated as:

• absolute input : minimises the weighted sum of the absolute value of the inputs given to the system

J(uk) =
n∑
i=1

(ρi||uik||2).

• relative input : minimises the weighted sum of the relative inputs given to the system J(∆uk) =
n∑
i=1

(ρi||∆uik||2), where ∆uik = uik − uik−1 is the changing in the input.

3.2 Agent models

Different agent models (2.1) are used to insert the vehicle dynamics in the optimisation-based algorithm.

Apart from the quadrotor model (Point-mass model (2.9)) and the fixed-wing model (Dubins model

(2.11)), other models often used are:

• Way-points dynamics, single integrator dynamics:

xik+1 = xik + uik, i ∈ {1, ..., n},

where xi is the position and ui is the relative way-point of the agent i. The goal is to find optimal

way-points. Note that if the input is constrained, it represents having agents with limited velocity.

This formulation is generally suitable for any vehicle which has an efficient low level controller to

move between way-points. However, it does not take into account the vehicle dynamics, for example

the attitude of the agents is not considered. Moving forwards or backwards has the same control

cost which may not be the most suitable for fixed-wing UAVs.

• Linear dynamics, Multi-Input Multi-Output (MIMO) linear systems:

xik+1 = Axik + Buik, i ∈ {1, ..., n},

where xi is the position and ui the input of the agent i, A a state-matrix and B a input-matrix.

This dynamics is a generalization of the Point-mass dynamics (2.9) described by a MIMO linear

system.

• Linear varying dynamics, Linear Parameter-Varying (LPV) systems:

xik+1 = A(γ)xik + B(γ)uik, i ∈ {1, ..., n},
1In computational complexity theory, Non-deterministic Polynomial-time hard (NP-hard) is a class of problems which

are, informally, “at least as hard as the hardest problems in NP”. Therefore, a problem is NP-hard if solving it in polynomial
time would make possible to solve all NP problems in polynomial time. The abbreviation NP refers to Non-deterministic
polynomial time problems which are accepted to have polynomial time using a non-deterministic Turing machine.
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where xi is the position and ui the input of the agent i, γ are the parameters of the system, A and

B are the state-matrix and the input-matrix given as a function of these parameters.

LPV systems are suitable to approximate non-linear systems. The non-linear model is formulated

as a parametrized linear system, where the parametrization is dependent on the states (Bruzelius

[10]). Here, a flying-wing can be described parametrizing the state and input matrices as a function

of the UAV states.

• A non-linear 3D dynamics, using the continuous 6 Degrees-Of-Freedom (DOF) fixed-wing aircraft

model presented in Adami and Zhu [1], converted to a discrete-time model using a basic forward

difference to express the continuous derivative ẋ ≈ x(k+1)−x(k)
∆t :




xik+1

vik+1

γik+1

ωik+1




=




xik
vik
γik
ωik




+







A1(γik)vik
A2(ωik)vik
A3(γik)ωik
A4(ωik)




+




03×3 03×3

B2 03×3

03×3 03×3

03×3 B4




[
f ik
τ ik

]



∆t, i ∈ {1, ..., n}

where [xi,vi,γi,ωi]> is the state of the agent i (xi the position, vi the velocity, γi the angular

position and ωi the angular velocity), [f i, τ i]> the input given to the agent i (f i the force and τ i

the torque), and the matrices A1,A2,A3,A4,B2,B4 defined in Adami and Zhu [1] as a function

of the moments of inertia Ixx, Ixz, Iyy, Iyz of the UAV.

This complex model describes in detail any fixed-wing agent, adding the “manoeuvrability” of the

UAV to the optimisation algorithm. However, controlling non-linear systems is not a trivial task.

Steering the agents using precise non-linear models increase largely the computational load of the

tracking problem. Therefore, for real implementations, we assume to have faster inner loops with

low-level controllers to control the UAVs, and a path planning outer loop for target-tracking.

3.3 Estimation

Throughout our work, we assume to estimate the position of the targets exactly (with the exception of the

Chapter 8 where we add sensing noise). However, filtering strategies are implemented in the literature to

estimate the targets’ state from a set of noisy measurements. Extended Kalman Filter (EKF) is usually

used for estimating the targets’ position and update its estimation (Mathews and Durrant-Whyte [34]).

However, these strategies assume a centralised fusion centre to compute and update the estimation. For

distributed implementations, other strategies are used

• Distributed Kalman Filter : first introduced in Olfati-Saber [40] and used for tracking applications

in Olfati-Saber [41], this algorithm relies on embedded consensus filters that dynamically compute

averages of sensor data from all sensors in a distributed way. The sensor data and the covariance

data pass by Low-Pass and Band-Pass consensus filters respectively. Then, both informations go

to Micro Kalman Filter iterations implemented by each agent.

• Distributed Particle Filter : implemented and tested in Sheng et al. [47], it uses a low dimensional

Gaussian mixture model to approximate local sufficient beliefs and provide a robust tracking per-

formance with reduced communication. The estimation is proved to converge almost surely to the

centralised Bayesian estimation. A recent survey on different approaches and algorithms can be

found in Hlinka et al. [24].

• Decentralised Data Fusion: derived in Manyika and Durrant-Whyte [32] and applied in Grocholsky

et al. [22], Ong et al. [43], this approach allows fusing information in a fully distributed approach
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where each sensor seeks to maximise the information gathered without knowledge of other decision

makers. The network of sensors communicates the state estimations using information measure-

ments.

3.4 Literature review

The literature is divided over the single- and multi-target tracking, with centralised or distributed imple-

mentations. Furthermore other relevant related work is analysed.

3.4.1 Centralized single-target tracking

In LaValle et al. [29], the minimisation of the distance travelled by a single agent is considered, while

maintaining visibility towards a target. This visibility is introduced as a soft constraint into the cost-

function. A finite horizon RHC is implemented to compute the distance travelled while maintaining the

target inside a visible range. In terms of sensing-models, omnidirectional cameras are used and considered

to be capable of sensing a target inside a given visibility range. The agents dynamics are considered single

integrator dynamics and the observation of the state of the agents is perfect. The target is moving and no

estimation strategies are implemented. Two schemes are considered: when we can predict the movement

of the target and when it is completely random. Visibility-based motion planning is introduced and the

problem is considered to be generally a NP-hard problem. Finally, real simulations are considered.

In LaValle et al. [28], the problem of searching for one moving target in a maze is introduced and

proved to be NP-hard. The goal is to compute the minimum number of agents needed to find a single

target inside a constrained 2D environment. The algorithm seeks to compute trajectories for a set of

agents in order to cover the area without missing the target. The searching trajectories are computed a

priori and a mathematical formulation is used to prove whether there is a chance of the target to escape

the agents’ radar or not. Omnidirectional cameras are used and considered to be capable to sense a

target inside a given visibility range. The agents also have a single integrator dynamics and their states’

observation is perfect. Only one target is considered and it is moving the best possible way to avoid

being sensed by the agents. Visibility-based motion planning is introduced and an exhaustive set of maze

examples are tested to prove the formulation developed.

In Zhou and Roumeliotis [59], the problem of optimal trajectory generation for a team of heterogeneous

robots moving in a plane and tracking a moving target by processing relative observations is proved to

be NP-hard. The performance criteria is defined in an A-optimal design fashion using the FIM. The

problem is solved analytically for one agent only. Then, using cyclic coordinate one-step-ahead descent

method, they solve a relaxation of the general NP-hard problem in a way to achieve linear complexity

with the number of agents. This algorithm is called the non-linear Gauss-Seidel algorithm. Regarding the

sensors, they consider combinations of range-only, bearing-only and range-and-bearing sensors. Single

integrator dynamics are considered and the position of the agents is assumed to be known with precision.

The targets are dynamic and they move with a random walk. The targets’ position is estimated using a

recursive centralised EKF.

In Zhao et al. [55], the performance criterion is given by

J(F(x, t)) = ||F(x, t)− λ̄I||2,

where λ̄ given by the average of the eigenvalues λi, i = {1, ..., d} of F(x, t)

λ̄ =
1

d

d∑

i=1

λi.
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Fig. 12. Tracking a point target in a cluttered environment. Significant reductions to target position error were still realizable

even in the presence of obstacles.
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Fig. 13. Experimental architecture used by each pursuer. The 802.11b blocks correspond to threads where cooperation—and

as a result communication—with other robots is required.

Figure 3.1: Tracking a moving target in a cluttered environment (from Spletzer and Taylor [50]).

This non-convex performance criterion is proved to have closer connections to the D-optimal design for-

mulation, however it simplifies the problem in 3D cases where the determinant of the FIM is hardly

analytically tractable. Necessary and sufficient optimal placement conditions are obtained analytically.

Regarding the sensors: range-only, bearing-only and Received Signal Strength (RSS) sensors are con-

sidered separately. Again, agents dynamics are considered as single integrator dynamics with perfect

observations. The targets are static and no estimation is assumed, therefore their position is assumed

to be known. Simulations are made using a centralised gradient control law. A gradient control law

implements the optimal placement obtained analytically. Distribution implementations are only possible

by dividing the group of agents into several sub-teams with non-arbitrary size.

3.4.2 Centralized multi-target tracking

In Spletzer and Taylor [50], the non-convex performance criteria is based on the Shannon information

and it captures how the expected error in the estimation varies with the different robot configurations.

Particle filtering is used and a gradient-based single-step optimisation is implemented. Different sensors

combinations are considered and allowed in their work. 2nd order 2D vehicle dynamics are used. Also,

obstacles are considered to constraint the agents’ movement (see Figure 3.1). The targets move according

to a random walk and estimation strategies are mentioned. Incorporating a prediction model of the

targets dynamics is considered. An interesting simulation is developed using two target models: one

“known” model to compute algorithm predictions and a more realistic model to simulate the targets’

movement. Target-agent assignments and heterogeneous sensor models are implicitly encoded in the

algorithm, although not tested.

In Bakhtari and Benhabib [2], the non-convex problem of maximising the combined visibility of all

sensors to target recognition is addressed. They use a finite control horizon to predict, for all possible next

targets’ and obstacles’ placement, where the sensors should be placed to guarantee line-of-sight towards

every target (see Figure 3.2). Cameras moving with bounded velocity along fixed lines are considered.

The targets and obstacles have a random movement. Regarding the sensors, they use bearing-only sensors

with a limited bearing range, i.e., the camera is only able to track the targets inside a pre-defined bearing

range and subjected to having line-of-sight towards the target. The level of recognition of a certain

target is defined as a function of the quality of the sensing-image, which depends mainly on the camera

orientation. Also the minimum number of cameras needed to obtain a certain quality is studied for

different scenarios.

In Derenick et al. [17], the performance criterion is defined using graph theory. It seeks to maximise
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Fig. 1. Example of occluded regions of a sensor’s workspace.

solutions of four sensor agents is [S11S21S32S41]). The judge

agent, then, selects the combination with the highest visibility

and informs the sensor agents of its decision. If no acceptable

combination is found, the judge agent increases the depth

of the search space by requesting the sensors agents’ third-

ranked solutions. This process is repeated until an acceptable

combination is found or the allowable search time has elapsed.

In the event that no acceptable combination is found within the

allocated search time, the first-ranked solutions (sensor agents’

initial intentions) are used. This ensures that the system is not

in a virtual deadlock if no solution exists that would satisfy the

external rules.

C. Positioning Strategy

The positioning strategy aims to determine the optimal pose

of a sensor for the surveillance of a particular target given

the sensor’s current location, motion capabilities, time to data-

acquisition instant, and the model of the environment. The first

step is to determine the occluded regions in the workspace.

In order to accomplish this, the pose of each object (OOI or

obstacle) is predicted for the demand instant. Next, each object

is modeled as a single geometric primitive. Occluded regions

are determined by modeling the OOI under surveillance as a

light source and calculating geometric shadow volumes [31]

(Fig. 1). The algorithm, subsequently, determines the region

of the workspace that the sensor can travel to before the

target reaches the demand instant, referred to herein as feasible

region. This region is defined by the sensors’ dynamic motion

capabilities, such as maximum velocity νmax, acceleration a,

as well as time to next demand instant dt. For a sensor with

one translation DOF (herein, denoted as along the x axis), the

feasibility region xfeasible is defined as

xl ≤ xfeasible ≤ xr. (7)

In (6), xr is the right limit defined by

xr=νo(dta1)+
1

2
a(dta1)

2+νmax(dtc1)+νo(dts1)+
1

2
a(dts1)

2

(8)

where νo is the current sensor velocity, dta1, dts1, and dtc1
are the time the sensor travels while accelerating, decelerating,

and at constant velocity, respectively, in order to get to the right

travel limit, each defined by

dta1 =

{
νmax−νo

a , if
(
2νmax−νo

a

)
< dt

1
2

(
dt− νo

a

)
, else

(9)

dts1 =

{
νmax

a , if
(
2νmax−νo

a

)
< dt

1
2

(
dt+ νo

a

)
, else

(10)

dtc1 = dt− (dta1 + dts1). (11)

Also, in (6), xl is the left limit defined by

xl=νo(dta2)−
1

2
a(dta2)

2−νmax(dtc2)+νo(dts2)−
1

2
a(dts2)

2

(12)

where dta2, dts2, and dtc2 are the time the sensor travels

while accelerating, decelerating, and at constant velocity, re-

spectively, in order to get to the left travel limit, each defined by

dta2 =

{
νmax+νo

a , if
(
2νmax+νo

a

)
< dt

1
2

(
dt+ νo

a

)
, else

(13)

dts2 =

{
νmax

a , if
(
2νmax+νo

a

)
< dt

1
2

(
dt− νo

a

)
, else

(14)

dtc2 = dt− (dta2 + dts2). (15)

Lastly, the algorithm determines an optimal sensor pose

that would yield maximum visibility, which is both feasible

and unoccluded (i.e., within the acceptable regions). This is

achieved by discretizing the acceptable region into a prespec-

ified number of positions. An optimum pose is selected by

evaluating the visibility metric at each discrete position. The

coordination and positioning of each sensor is repeated continu-

ously as new information, regarding the environment, becomes

available.

D. Simulation Example

In order to demonstrate the proposed dispatching algorithm,

a simulated example is briefly discussed in this section. In this

example, a generalized 3-D surveillance system, equipped with

four active sensors, each with five-DOF mobility (3-D position,

pan, and tilt), is considered. Each sensor is confined to operate

within its own cubic-shaped workspace of 100 × 100 units

(Fig. 2). All sensors have five-unit-per-second maximum trans-

lational velocity. Four objects (two OOIs and two obstacles),

modeled as ten-unit diameter spheres moving at three units per

second, enter the workspace.

The demand instants are set for 2-s intervals. The visibility

of each sensor, participating in the data-acquisition process,

is calculated based on the sensor model given in Appendix A.

Once a target is recognized with a predefined confidence, it

is designated as an obstacle for its remaining duration in the

Figure 3.2: Feasible sensor regions towards a target (from Bakhtari and Benhabib [2]).

Fig. 6. Trajectories of UAVs and target using MII. A “*” marker

has been placed on each trajectory every 300 s to help visualize

time evolution.

Fig. 7. UAV headings with control using MII.

Fig. 8. Norm of tracking error using MII.

case. The tracking error of all of the above algorithms

is considerably better than that obtained using random

UAV motion (subject to the given turning constraint)

as illustrated in Figs. 12—13. Fig. 14 shows the norm

of the actual tracking error for one run of a scenario

with sensors fixed at the initial UAV locations. Much

larger tracking errors are observed in this case. This

is due to the relatively small sensor aperture and poor

orientation. Here the aperture and orientation refer to

the conglomerate UAV network, where each UAV acts

Fig. 9. Trajectories of UAVs and target using MIA. A “*”

marker has been placed on each trajectory every 300 s to help

visualize time evolution.

Fig. 10. UAV headings using MIA.

Fig. 11. Norm of tracking error using MIA.

like an antenna element in an adaptive, reconfigurable

array. Clearly, the use of closed-loop heading control

significantly reduces the tracking error by arranging

the UAVs into a more optimal orientation.

It is clear from the examples above that there

are two competing factors that drive the behavior

of the mobile UAV sensors: 1) the desire to reduce

the range to the target in order to keep the received

signal power from becoming too small, and 2) the

need for the sensors to spread out and provide a
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Figure 3.3: Fixed-wing tracking behaviour (from Zhan et al. [54]).

the visibility of observation the targets

J(x) = −λ2(LV(x)),

where λ2 the second smallest eigenvalue of the state-dependent Laplacian LV(x) of the visibility graph

GV(x). The problem is non-convex and sequentially linearised as a SDP, subjected to linear matrix

inequalities. The constraints ensure full target coverage and minimal network connectivity across the

agents. A Second-Order Cone Program (SOCP) relaxation was considered for large teams. The SOCP is

easier and more efficient to solve, being therefore more suitable for large teams implementation. Regarding

the models, they consider range-and-bearing sensors, single integrator agent dynamics and static or

moving targets. The position of the agents and of the targets is assumed to be known with precision

(perfect estimation). A constraint where each target has to be followed by at least k agents is implemented,

the so-called k-coverage constraint.

In Zhan et al. [54], the metric is defined as L-optimal design performance criterion. The problem

is non-convex and NP-hard in general (Zhou and Roumeliotis [58],Zhou and Roumeliotis [59]), thus it

is relaxed to a sequential optimisation approach to have an easier tractability. One-step-ahead gradient

optimisation is introduced to steer only the heading of the UAVs. Radar sensors (range-only) with

Doppler effects, targets moving with constant velocity, and basic 2D fixed-wing dynamics are considered.

An EKF is also introduced to estimate the targets’ position. Simulations are obtained using the Dubins

constant-velocity 2D fixed-wing model (see Figure 3.3). Results of the error in the position and velocity

of the targets are obtained and the heading control input is analysed.
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3.4.3 Distributed single-target tracking

In Mart́ınez and Bullo [33], the global performance criteria is formulated in a D-optimal design fashion.

An one-step ahead gradient descent algorithm is implemented, with computed steepest descent rules.

Only range sensors are mentioned in this work. 2D single integrator dynamics are considered to move the

set of agents. However, the agents movement is considered to be constrained to the static boundary ∂Q
of a compact convex set Q (see Figure 3.4). The agents’ position is assumed to be known with precision.

The targets are moving, and an EKF is used to compute the targets’ position estimation. However, for

this estimation, a centralised fusion centre is needed. The control input is computed by each agent in

a distributed way based on detection of the clockwise and counter-clockwise agents along the allowed

trajectory ∂Q (see Figure 3.5). Despite having good results without requiring much communication, it

constraints the agents movement to a one dimensional translation on a static boundary.

(ii) each of the sensors {p1, . . . , pn} moves in discrete
time along ∂Q;

(iii) each of the sensors {p1, . . . , pn} detects its imme-
diate clockwise and counterclockwise neighbors in
∂Q and acquires the corresponding distances.

p4

p3

p1

q0

p2

p5

Fig. 1. Assumptions (i) and (iii): the sensors move along the
boundary of a fixed Q and the target moves inside Q.

For this static scenario with limited information, the mo-
tion coordination objective is to steer {p1, . . . , pn} to the
equally-spaced angular positions around the target q0
exponentially fast. There is no estimation process here;
the algorithm will be incorporated later as part of the es-
timation filter and coordination algorithm in Section 3.

Remark 3.1 Assumption (iii) means that an imple-
mentable control law for an agent can only depend on
the agent’s position relative to its neighbors (in the nat-
ural ring topology along ∂Q). We call such a control law
spatially distributed along ∂Q. •

3.1 From the boundary of Q to a circle and back

Because we take h(r) = r, an optimal configuration
(p1, . . . , pn) satisfies condition (a) of Lemma 2.2. In other
words, in order to find an optimal configurations of the
sensors, we only need to adjust their polar coordinates
about the target q0. Since the region Q is a convex set,
we can just focus on these polar coordinates and define
the motion control strategies on a circle.

Let ∂Q be implicitly defined by the continuous equation
x ∈ ∂Q if and only if g(x) = 0. Given a point q in
the interior of a compact convex set Q, define the map
ϕq : ∂Q→ T by

ϕq(p) =
p− q

‖p− q‖ .

One can show that ϕq is continuous with continuous in-
verse ϕ−1

q : T → ∂Q given by ϕ−1
q (v) = q + λv where

λ ∈ R+ the unique solution to g(q + λp) = 0. We illus-
trate the map ϕq in the following figure.

In what follows, we let q0 denote the current estimate of
the target location, we let ϕq0(p) be the angular compo-
nent of the polar coordinates of p centered at q0, and we
identify pi ∈ ∂Q ⊂ R2 with ηi = ϕq0(pi) ∈ T, for all i.

q0

Fig. 2. Six sensors with angular configuration equally spaced
about the point q0.

3.2 Basic behaviors for uniform coverage of the circle

As discussed, the location of the sensors is described
by the vector (η1, . . . , ηn) of elements of T. We assume
that angles are measured counterclockwise and that the
sensors are placed in counterclockwise order (we adopt
the convention that ηn+1 = η1 and that η0 = ηn).

As described in Assumption (iii), the sensors motion is
described by a discrete-time control system:

ηi(t+ 1) = ηi(t) + ui, i ∈ {1, . . . , n} .

Here ui is the scalar control magnitude of the ith sensor.
In a way consistent with Assumption (iv), we assume
that ui is a function only of the relative angular distances
in the counterclockwise direction dcounterclock,i = ηi+1−
ηi > 0 and clockwise direction dclock,i = ηi − ηi−1 > 0.
We also assume that each sensor obeys the same motion
control law u : [0, 2π] × [0, 2π] → R, so that the closed-
loop system becomes:

ηi(t+ 1) = ηi(t) + u(dcounterclock,i(t), dclock,i(t)),

dcounterclock,i(t) = ηi+1(t)− ηi(t),

dclock,i(t) = ηi(t)− ηi−1(t).

In order to achieve uniform distribution of the sensors
on the circle, two simple behaviors arise fairly naturally,
see Figure 3. First, we consider the Go towards the
midpoint behavior with umidpoint : [0, 2π]× [0, 2π]→ R

umidpoint(dcounterclock, dclock) =
1

2

(
dcounterclock − dclock

)
.

The interpretation is clear: each sensor moves towards
the midpoint of the angular segment between the pre-
ceding and following sensor. In the original coordinate
system, each sensor moves along ∂Q towards the bisector
of the triangle with vertex q0 and vertices given by the
preceding and following sensor. A second intuitive rule
is the Go towards the midpoint of Voronoi seg-
ment behavior umidpoint Voronoi : [0, 2π]× [0, 2π]→ R

umidpoint Voronoi(dcounterclock, dclock) =

1

4

(
dcounterclock − dclock

)
.
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Figure 3.4: Sensors placed along a static
boundary surrounding the target (from
Mart́ınez and Bullo [33]).

ηi−1
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d co
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te
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ηi−1+ηi
2

ηi+ηi+1

2

ηi+1

ηi

Fig. 3. The Go towards the midpoint u1/2 and Go to-
wards the midpoint of Voronoi segment u1/4 behaviors.

The interpretation is the following: the Voronoi segment
of the ith sensor at position ηi is the angular segment
from (ηi−1 + ηi)/2 to (ηi + ηi+1)/2, and the control law
Go towards the midpoint of Voronoi segment
steers ηi towards the midpoint of this segment.

These two rules are particular instances of the following
family of linear algorithms parametrized by κ ∈ R:

uκ(dcounterclock, dclock) = κ(dcounterclock − dclock).

Clearly, umidpoint and umidpoint Voronoi are equal to uκ for
κ = 1/2 and κ = 1/4, respectively. Because uκ(d, d) = 0
for all d ∈ R+, the equally-spaced angle position (where
the sensors are uniformly distributed around the target)
is an equilibrium point 3 for the uκ-closed-loop system.

3.3 Convergence analysis

To perform a convergence analysis, it is convenient to de-
fine the relative angular distances di = ηi+1− ηi, for i ∈
{1, . . . , n} (and adopt the usual convention that dn+1 =
d1 and that d0 = dn). So long as the counterclockwise or-
der of the sensors is not violated, we have (d1, . . . , dn) ∈
S2π = {x ∈ Rn | xi ≥ 0,

∑n
i=1 xi = 2π}. The change of

coordinates from (η1, . . . , ηn) to (d1, . . . , dn) and the
control law uκ jointly lead to the closed-loop system

di(t+ 1) = κdi+1(t) + (1− 2κ)di(t) + κdi−1(t).

3 The more general linear feedback u(dcounterclock, dclock) =
adcounterclock + bdclock does not have the desired equilibrium
set unless a+ b = 0. The case of a+ b 6= 0 is studied in the
context of cyclic pursuit, see [7] and references therein.

This is a linear time-invariant dynamical system with
state d = (d1, . . . , dn), transition matrix Aκ given by




1− 2κ κ 0 · · · 0 κ

κ 1− 2κ κ
. . .

. . . 0

0 κ 1− 2κ
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0
. . .

. . . κ 1− 2κ κ

κ 0 · · · 0 κ 1− 2κ




,

and governing equation

d(t+ 1) = Aκd(t), for t ∈ N∪{0}. (7)

Theorem 3.2 The control law uκ is spatially distributed
along ∂Q, and, for κ ∈]0, 1/2[, the solutions to the cor-
responding closed-loop system (7) preserve the counter-
clockwise order of the sensors and converge exponentially
fast to (2π/n, . . . , 2π/n).

Proof. Recall the notion and properties of circulant ma-
trices from [8]. Since Aκ is circulant with representer
pAκ

(s) = (1− 2κ) + κs+ κsn−1, its eigenvalues are

λℓ = pAκ

(
exp

(2πℓ
√
−1

n

))
= 1− 2κ+ 2κ cos

(2πℓ
n

)
,

for ℓ ∈ {1, . . . , n}. Observe that λn = 1 with eigenvector
1T = (1, . . . , 1). If κ > 0 and ℓ ∈ {1, . . . , n− 1}, then

−1 ≤ cos
(2πℓ

n

)
< 1 =⇒ 1− 4κ ≤ λℓ < 1.

Therefore, if κ ∈]0, 1/2[, then λ1, . . . , λn−1 belong to the
interval ] − 1, 1[. Additionally, if κ ∈]0, 1/2[, then Aκ

is a doubly-stochastic matrix, which implies that S2π is
invariant for Aκ.

Let {e1, · · · , en−1,1} be a basis of orthogonal eigenvec-
tors for Aκ corresponding to {λ1, . . . , λn}, respectively.
Any initial condition d(0) can be written as

d(0) =
n−1∑

ℓ=1

ρℓeℓ + ρn1 .

Since
∑n

i=1 di(0) = 2π, then ρn = 2π
n . Therefore

d(t) = Aκd(t− 1) =

n−1∑

ℓ=1

λt
ℓρℓ eℓ +

2π

n
1 .

If κ ∈]0, 1/2[, then each |λℓ| < 1, for ℓ ∈ {1, . . . , n− 1}
and, therefore, each trajectory t 7→ d(t) converges to
2π
n 1, the equal-angle configuration, exponentially fast.
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Figure 3.5: Computing next position com-
municating with the direct neighbours
(from Mart́ınez and Bullo [33]).

In Zhou and Roumeliotis [56], the performance criterion is based on the Shannon information

J(p(z)) = tr(p(z)),

where tr(.) is the trace of a given matrix, which is in general NP-hard (Zhou and Roumeliotis [58]).It is

reformulated to the minimisation of the maximum eigenvalue

J(p(z)) = λ1(p(z)),

which is identical to minimising the 2-norm of the sum of a given set of 2D vectors. For this partic-

ular problem the two criteria result in the same solution (Zhou and Roumeliotis [57]). An one-step

ahead gradient descent algorithm is implemented and a novel adaptive relaxation algorithm is proposed.

This algorithm is shown to have identical results as an exhaustive search-based algorithm. A planning

path is assumed over a certain time-horizon, in spite of considering a one-step-ahead steepest descent

cost-function. Regarding the sensors, range-only sensors are used. Single integrator dynamics in a 2D

environment are considered, assuming perfect observation of the position of the agents. The targets are

moving and a centralised fusion centre is needed for implementing the EKF to estimate the targets’ posi-

tion. The relaxation algorithm proposed smooths the cost function avoiding local minima while reducing

the problem complexity, from exponential with the number of agents, to linear. This implementation still

needs a centralised unit to be successfully implemented.

In Beard et al. [4], the convex squared distance towards the targets is minimised

J(x) =
1

2

n∑

i=1

m∑

q=1

||tqpos − xipos||2,
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where xipos is the position of the agent i and tqpos is the position of the target q. The goal is to obtain

the best image as possible, spaced with some desired fixed time-intervals. An one-step ahead gradient

descent algorithm is implemented. Image sensing is modelled as a function of the relative target-agent

distance. A fixed-wing path planning is considered on real UAVs. A minimal forward motion constraint

was considered. The targets are assumed to be static, and no estimation of their position is considered.

Flight-test results were obtained with fixed-wing UAVs flying at a predefined altitude. Also, consensus

communication (Olfati-Saber et al. [42], Yang and Johansson [53]) algorithms are implemented to ensure

the right communication needed for distributing the solution. Here, we can say that no continuous

tracking is implemented, the agents still have to follow a predefined set of way-points.

In Mathews and Durrant-Whyte [34], an entropy fashion performance criterion is used. They min-

imise the entropy over a given finite planning horizon. Steepest descent rules are used to perform the

optimisation. Regarding all the models, for the sensors bearing-only models are used, single integrator

dynamics considered for the agents and static targets are assumed. The position of the agents is known

at all times and the targets estimation is implemented with an EKF. However, the EKF implementation

makes use of a centralised fusion centre. The Partial Separability concept is introduced which allows the

local algorithms to avoid having full models of the other agents.

In Olfati-Saber [41], a potential function

Uλ = U(q) + λIλ

is used as the performance criterion. This cost-function has two main components: a structural potential

U(q) which seeks to achieve a given flocking formation and an information value component Iλ given

by a A-optimal design fashion. An one-step ahead gradient descent algorithm is implemented with local

constant-step descent update rules. The sensors are modelled as range-and-bearing sensors. 2nd order 2D

vehicle dynamics are mentioned, and the targets are moving. A Distributed Kalman Filter is implemented

in each agent to update the targets’ estimation. Perfect observation on the agents’ states is assumed. The

author presents a joint tracking- and flocking-based behaviour, joining together two different concepts

mention in the literature.

3.4.4 Distributed multi-target tracking

In Parker [44] and Parker and Emmons [46], The authors assume that sensing a target with one agent

only is enough to track it. The problem proposed is to maximise time during which each target is begin

monitored by at least one sensor-agent. They implement a finite predictive horizon of N -steps with a

steepest descent update rule and a performance criterion as follows.

J(x) =

k+N∑

t=k+1

m∑

q=1

n∨

i=1

bi,qt ,

where bi,qt is a boolean function defined as

bi,qt =





1, if the agent xi is observing the target tpos at time t,

0, otherwise.

Since this problem is proved to be NP-hard, a relaxation using force fields is considered. The concept of

force fields is based on sources emanating forces that can attract or repel the agents. In this case, the

targets origin a attractive force field around them and the agents origin an repelling one. On the one

hand, if a given agent is placed near a certain target q, there is a force trying to bring this agent closer
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Figure &' The problem depicted in terms of omni5directional 7D robot sensors9

 Related Work

Research related to the multiple target observation problem can be found in a number of domains<

including art gallery and related problems< multi5target tracking< and multi5robot surveillance tasks9

While a complete review of these Aelds is not within the scope of this article< we will brieBy outline

the most relevant previous work in these areas9

The work most closely related to the CMOMMT problem falls into the category of the art gallery

and related problems C&DE< which deal with issues related to polygon visibility9 The basic art gallery

problem is to determine the minimum number of guards required to ensure the visibility of an

interior polygonal area9 Variations on the problem include Axed point guards or mobile guards

that can patrol a line segment within the polygon9 Most research in this area typically utilizes

centralized approaches to the placement of sensors< uses ideal sensors Knoise5free and inAnite rangeL<

and assumes the availability of suMcient numbers of sensors to cover the entire area of interest9

Several authors have looked at the static placement of sensors for target tracking in known polygonal

environments9 For example< Briggs CPE uses art gallery theorems in the development of algorithms for

planning the set of placements from which a sensor can monitor a region within a task environment9

Her approach uses weak visibility as a model for detectability< in which all points in the area to be

monitored are visible from at least one point in the sensor placement region9 These works diRer

from the CMOMMT problem< in that our robots must dynamically shift their positions over time

to ensure that as many targets as possible remain under surveillance< and their sensors are noisy

and of limited range9

Sugihara et al1 C7&E address the searchlight scheduling problem< which involves searching for a

mobile SrobberT Kwhich we call targetL in a simple polygon by a number of Axed searchlights<

regardless of the movement of the target9 Their objective is to determine whether a search schedule

exists< given a polygon and the locations of the searchlights9 In this context< a search schedule

is a mapping from an interval of time to a direction in which the searchlight should aim9 They

develop certain necessary and suMcient conditions for the existence of a search schedule in certain

situations9 This work< however< assumes that there is only one target< that the target cannot enter

or exit the polygon after the start of the problem< and that the searchers maintain Axed positions9

It also does not give a prescriptive algorithm for determining the appropriate search schedule for

W

Figure 3.6: Simulation scenario with entries and exits (from Parker [44]).

to target q. On the other hand, if this same agent is close to another agent, there exists a force trying

to separate them. This force fields concepts is significantly easier to implement but it does not ensure to

find an optimal solution. Also, stability and convergence analysis is difficult to study using this setup.

Regarding the sensors, omnidirectional cameras are considered, with a limited sensing range. The agents

are modelled as a single integrator with bounded velocity. Their position is assumed to be measured with

precision. The targets are moving and no estimation strategy is used. All the agents share the same

global coordinates system and a limited communication range is considered. Also, the number of targets

is assumed to change with time. A finite set of enter and exit areas is considered, from where targets can

entry or exit the simulation, as in Figure 3.6.

In Parker [45], the maximisation of the following metric is considered

J(x) =

k+N∑

t=k+1

m∑

q=1

g(Bt, q)

N
,

where g(Bt, q) is given by

g(Bt, q) =





1, if there exists an i such that bi,qt = 1,

0, otherwise.

They use an one-step-ahead local descent update rules with constant step size. Important to notice that

perfect communication is considered between all the agents. The sensors are, once more, omnidirectional

cameras with limited sensing range. Single integrator agents with bounded velocity are considered. The

position of the agents is assumed to be perfectly observed. The targets do move, however no estimation

strategy is implemented. The goal is to determine where the sensors should be located to maintain all the

targets in view. This algorithm is implemented in a distributed way, considering a limited communication

range where each agent can communicate only with the nearby agents. This communication range is

considered to be greater than the sensing range. The ratio between the targets and agents is considered

to be around 1/2. Here, also the same coordinated system is assumed among the different agents which

facilitates its distribution.

In Matsuyama and Ukita [35], the goal is to guarantee an image of all the targets regardless their

movement. They implement a finite predictive horizon of N -steps with a steepest descent update rule.

Their scenario considers tilting cameras with a limited bearing range. These cameras are in fixed positions,

i.e., the agents do not move. Therefore, the goal is to head the cameras such that a single image towards
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Figure 3.7: RoboFlag patrolling example (from Chung et al. [13]).

all the targets is obtained. The targets are moving in a given space. No estimation strategies are used

as the targets’ position is assumed to be known. Simulations of cooperative distributed vision in a room

are considered.

In Grocholsky et al. [22], the performance criterion is based on the Shannon information. They also

implement a Receding Horizon Controller of N -steps with a steepest descent update rule. The sensors

considered are bearing-only. Non-linear 2D UAV dynamics with linear constraints are considered. A set

of static target-features is considered and this work uses a Decentralised Data Fusion strategy for their

estimation.

In Chung et al. [13], the problem is formulated usingD-optimal design. The authors use one-step ahead

local descent update rules, with constant step size and considering perfect communication. Regarding

the models, they consider range-only sensors, single integrator agent dynamics with perfect observation

and random-walk moving targets. The targets’ position is estimated with a decentralised EKF based

on perfect communication between agents. Agent-target collisions are avoided considering a sweet spot

in the range-sensor. The performance of the decentralised gradient descent implementation is compared

with a centralised exhaustive search. An interesting scenario is described in the context of the RoboFlag

problem: five agents seek to track one single target when another target arrives, then the agents split to

sense both targets and they gather together again when the second target disappears (Figure 3.7). Note

that here the problem of agent-target assignment is addressed and solved implicitly.

Tang and Ozguner [51] is one of the few papers considering specifically a limited resources scenario,

i.e., a number of agents lower than the number of targets n� m. Based on the fact that the uncertainty of

a target status is proportional to how frequently the target track is updated, the performance criterion is

to minimise the average time duration between two consecutive observations for all targets. The motion-

planning is stated as a NP-hard optimisation-based problem solved with a gradient-based method. A

suboptimal approach is proposed to reduce largely the computational load. The sensors considered are

cameras which are able to sense any target moving on the ground plane inside their “footprint”-sensing

area. The Dubins car model is agents model. Perfect observers are considered, i.e., the state of the agents

is always known. The targets move randomly without any estimation strategy. The motion planning

consists in two stages: task decomposition (tracking the whole set of targets is divided into disjoint task

assignments based on K-mean clustering developed in Bishop [6]) and individual path generation using a

heuristic method (Murty [38]). However, the authors consider the agents to move much faster than the

targets, which avoids constant updates on the task decomposition.

In Simonetto and Keviczky [48], the performance criterion is given according to graph theory, defined

as the joint maximisation of connectivity and visibility of the considered Graph. Even for a single target,

the resulting problem is non-linear and NP-hard. Due to the non-convexity of the cost-function, it is
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relaxed using 1st order Taylor expansions to obtain a convex problem. They are interested only in the

network topology, then no sensors are considered. Single integrator vehicle dynamics are considered,

and the 2D vehicle positions is assumed to be known. The targets are moving with a random walk

behaviour. Their velocity is bounded, therefore their future position is assumed to lay in a circle which

the centre is the current position. The performance criterion considers all the possible future targets’

position and computes the agents’ position that maximises the connectivity for the worst case. Thus,

this problem definition can be seen as a robust maximisation problem. Local SDPs are derived from the

global problem and solved by each agent with the use of local communication. The distributed algorithm

is simulated and compared with the centralised behaviour, fulfilling the global constraints of minimal

connectivity and visibility. Both centralised and distributed behaviours are presented and the solutions

of both formulations are compared.

3.4.5 Other related fields

There are a number of other relevant works, related to field detection, formation control, area coverage

and space partition.

In field detection, the “targets” assume geometric forms instead of being mass-points. A possible

scenario is the estimation of a fire perimeter, updating frequently estimations on the fire progress (Casbeer

et al. [12]). A group of UAVs is used to monitor and track the propagation of large forest fires in order

to supply quick information to the fire fighters. The goal is to minimise the information latency, i.e., the

performance criterion is the time-delay between sensing the environment and transmitting the information

to a ground station. A decentralised approach is followed considering range communication limitations.

In order to accomplish agents refuel, a cooperation algorithm is developed to deal with a dynamically

changing number of agents. In order to deal with dynamic fire, the algorithm also deals with expansions

and contractions of the fire perimeter. Monte-Carlo simulations are implemented using a 6DOF UAV

model flying around the perimeter of a high fidelity fire model (the EMBYR model Hargrove et al. [23]).

These simulations assume limited UAV fuel, highly dynamic fire and a even number of UAVs.

Another field detection case is the parameter estimation of a certain distributed system defined in

a spatial domain (Uciński [52]). The problem is to obtain the optimal sensors position to accurately

estimate a set of parameters of a continuous system. The dynamics of the vehicles and various geometric

constraints on their movement are taking into account. The cost function is defined in a centralised

way, using a Fisher Information Matrix. Four optimality criteria are defined, being one of them the

D-optimal design. Three types of generic vehicles dynamics are treated. Sensor clusterisation (different

sensors tending to the same point), collision avoidance and vehicles limitations are defined as problem

constraints. The solution is obtained numerically through iteratively linearisation and optimisation.

Formation control is another research topic relating UAVs and distributed control. A decentralised

receding horizon scheme to achieve coordination among agents is described in Keviczky et al. [27] and

Borrelli et al. [7]. In these papers, the main focus is on the high-level control and coordination of

autonomous vehicle teams to keep a certain formation. A graph structure is used to describe the com-

munication topology between the agents. On each vehicle, a RHC performance criterion is implemented

and information from the direct-neighbours is used to predict their position. The graph structure and

the decentralised RHC scheme are described in detail. This procedure assumes the agents to be mod-

elled by MIMO piecewise linear models and it implements low computational effort controllers. Collision

avoidance is always ensured, even when the local RHC problems become infeasible. The final algorithm

is proved to be easily implemented in hardware platforms and run in real-time. Stability analysis on the

receding horizon controllers for decoupled/distributed systems can be found in Keviczky et al. [26].

The field of area coverage is motivated by environmental monitoring applications, where the goal is
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to cover a given set of interest. An area coverage problem is formulated in Howard et al. [25]. Giving an

area of interest, the goal is to maximise the area covered by the sensors network, while minimising the

time spent to deploy this network. The solution is deployed using a potential field approach, constituting

a distributed and highly scalable solution. Therefore, the agents can react fast to changes on the environ-

ment area or changes on the number of sensors. The use of potential fields is mainly motivated by highly

dynamic environments and low computational power. This approach is easy and fast to implement, in

order to compute the path planning in real-time.

Distributed control to solve coverage problems is mentioned in Bullo et al. [11]. A space-partitioning

problem for groups of autonomous mobile agents is suggested: the authors seek to find the optimal

partition with respect with a multi-centre performance criterion. A gossip coverage algorithm is proposed

to solve this territory partitioning problem, based on local asynchronous unreliable communication. This

coverage algorithm is based on the “centring and partitioning” algorithm, first introduced by the classic

methods of Lloyd (Lloyd [30]). Convergence properties of this gossip algorithm to the optimal centroidal

Voronoi partitions (Du et al. [19]) are discussed in detail.

Ad hoc communication networks is a researching field that creates and maintains a network of mobile

agents connected by wireless. The problem proposed seek to relay data from the exploring robots towards

ground-stations, and vice-versa. In Simonetto et al. [49] and references therein, heuristic approaches are

formulated regarding the network connectivity of these networks. A fixed ground-station, so-called hub, a

set of n agents and m targets, are defined in Simonetto et al. [49] where an ad hoc communication network

problem is posed considering a limited resources scenario n� m. The authors maximise the connectivity

of the communication network over time of the shortest-path case for each target. The connectivity

between two sensors, or a sensor and a target, is constrained to line-of-sight between them. The problem

is solved using dynamic potential fields, where the current overall needs of the team dynamically change

the applicable potential fields.

3.5 Considerations

There is no standard formulation for these optimisation-based tracking problems among the literature.

Different scenarios motivate different tracking goals formulated with different performance criteria. Re-

garding our formulation, the 2-norm distance of the agents towards the targets is the metric to be

minimised in Beard et al. [4]; and the assumption that sensing a target with one agent only is enough to

track it is also considered by the authors Parker [44] and Parker and Emmons [46].

Tang and Ozguner [51] also considers a limited resources scenario, where the proposed NP-hard

problem is to guide a set of agents to minimise the mean of the Average Time Duration between two

consecutive observations of each target. However, the authors assume that the agents move much faster

than the targets, thus the agent-target assignment is fixed during the simulation.

Regarding the agent models, the Dubins model describes a simple 2D constant speed agent with a

bounded turning radius. It is largely used in the literature as a simple kinematic model of fixed-wing

UAVs moving in a given plane (Zhan et al. [54] and Tang and Ozguner [51], to name a few). Good

analysis on the stability and robustness of the time-optimal trajectory generation for Dubins car model

can be found in Balluchi et al. [3].

Regarding the observation and estimation models, most of the mentioned literature (Derenick et al.

[17], Tang and Ozguner [51], Zhou and Roumeliotis [56], Mathews and Durrant-Whyte [34], Parker [45]

and Olfati-Saber [41]) also assume perfect observation of the agents’ states (Assumption 1). The position

of the targets is also assumed to be known with precision (Derenick et al. [17], Parker [45], Parker [44] and

Parker and Emmons [46]), motivating our initial noiseless estimation assumption within a given sensing

range (2.16).
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Chapter 4

Naive centralised solution

After formulating the problem (Chapter 2), we first consider a so-called naive centralised approach. This

proof-of-concept approach help us concluding whether the distributed-algorithms we propose later meet

our goal: to obtain the single best estimation of all targets.

In this approach we assume the following

• a centralised implementation: the problem is formulated in a centralised optimisation scheme where

a central entity is required to do all the computations for all agents;

• the original performance criterion: we implement the original performance criterion (Definition 3)

which represents a non-convex cost-function which is in general difficult to solve;

• no maximum sensors’ range: unlimited sensors range Ri =∞, i = 1, ..., n, therefore the full target

coverage constraint is always guaranteed.

4.1 Problem Formulations

Considering separately the two agent models, two optimisation-based problems can be formulated: the

quadrotors and fixed-wings centralised problem. Using the quadrotor model (2.9,2.10), the agents’ state

is given by the quadrotors’ position and velocity, and the problem is constrained to linear equality and

inequality constraints. Using the fixed-wing model (2.11,2.12), the position and attitude of the fixed-

wings define the agents’ state, and the problem has not only linear equality and inequality constraints,

but also non-linear equality constraints due to the non-holonomic dynamics.

Problem 2 (Naive centralized tracking for Quadrotors).

Given the optimisation variables xit+1 = [xit+1,pos,x
i
t+1,vel]

>,uit, i = {1, ..., n}, t = {k, ..., k +

N − 1} stacked as

o =

[
uit

xit+1

]
=




uit

xit+1,pos

xit+1,vel


 , i = {1, ..., n}, t = {k, ..., k +N − 1}, (4.1)
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where xivel = [viE , v
i
N , v

i
h]> and ui = [f iE , f

i
N , f

i
h]>, and the cost function

J̄(o) :=

k+N−1∑

t=k

[ m∑

q=1

(
min

i∈{1,...,n}
{||xit+1,pos − tqk,pos||2}

)
+ ρ

n∑

i=1

||uit||2
]
+

+ ϕ

m∑

q=1

(
min

i∈{1,...,n}
{||xik+N,pos − tqk,pos||2}

)
,

(4.2)

we define the problem

min
o
J̄(o) s.t.





[
−B I6

]

 uit

xit+1


 = Axit, t = k

[
−A −B I6

]



xit

uit

xit+1


 = 06×1, t = {k + 1, ..., k +N − 1}

hit ≥ hmin, t = {k + 1, ..., k +N}
−vmax ≤ vit,E , vit,N , vit,h ≤ vmax, t = {k + 1, ..., k +N}
−fmax ≤ f it,E , f it,N , f it,h ≤ fmax, t = {k + 1, ..., k +N}

, i = {1, ..., n},
(4.3)

where, the matrices A,B are defined in (2.9).

The parameters are

N predictive horizon

n,m number of agents, targets

ρ, ϕ performance weighting factors

hmin, vmax, fmax quadrotors’ specifications

Wmax targets’ maximum velocity

∆t sampling period.

Problem 3 (Naive centralized tracking for Fixed-wings).

Given the optimisation variables xit+1 = [Eit+1, N
i
t+1, θ

i
t+1]>,uit = uit, i = {1, ..., n}, t =

{k, ..., k +N − 1} stacked as

o =

[
uit

xit+1

]
=




uit

Eit+1

N i
t+1

θit+1



, i = {1, ..., n}, t = {k, ..., k +N − 1}, (4.4)

where xipos = [Eit+1, N
i
t+1, h̄]>, and the cost function

J̄(o) :=

k+N−1∑

t=k

[ m∑

q=1

(
min

i∈{1,...,n}
{||xit+1,pos − tqk,pos||2}

)
+ ρ

n∑

i=1

|uit|2
]
+

+ ϕ

m∑

q=1

(
min

i∈{1,...,n}
{||xik+N,pos − tqk,pos||2}

)
,

(4.5)
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we define the problem

min
o
J̄(o) s.t.





[
−∆t 1

]

 uit

θit+1


 = θit, t = k

[
−1 −∆t 1

]



θit

uit

θit+1


 = 0, t = {k + 1, ..., k +N − 1}


E

i
t+1

N i
t+1


−


E

i
t

N i
t


 =


VM∆t cos θit

VM∆t sin θit


 , t = {k, ..., k +N − 1}

−umax ≤ uit ≤ umax, t = {k + 1, ..., k +N}

, i = {1, ..., n}.
(4.6)

The parameters are

N predictive horizon

n,m number of agents, targets

ρ, ϕ performance weighting factors

h̄, VM , umax fixed-wings’ specifications

Wmax targets’ maximum velocity

∆t sampling period.

Note that, since this is a naive approach is only a proof-of-concept, the full target coverage constraint

is not considered. I.e., an unlimited sensing range is assumed Ri =∞, i = {1, ..., n}.

Remark 2 (Control Variables).

Considering the naive centralised problems 2 and 3, the actual control variables are set of inputs

uit, i = {1, ..., n}, t = {k, ..., k + N − 1}. I.e., the future agents states xt+1 are obtained using the

agents model, knowing the current state xk and the future inputs ut. However, to simplify the

problem and write the cost as a function of the future agents states, we leave the dependency on the

vehicle dynamics implicitly in the constraints (4.3) and (4.6) Therefore, we add the future agents

states considering the optimisation variables [uit,x
i
t+1]>, i = {1, ..., n}, t = {k, ..., k +N − 1}.

After defining the problem mathematically, it is important to label the type of optimisation problem

before proceeding. Knowing the problem we are dealing with helps us analysing which optimisation

strategy to use. A key point is to define whether we are dealing with a convex or a non-convex problem. A

convex optimisation problem is defined with a convex real-valued function, subjected to convex inequality

constraints and affine equality constraints, restricting the problem to a convex set.

Analysing the performance criteria (4.2) and (4.5), we can directly see that apart from the point-wise

minima function “min”, the other functions are Euclidean norms. Euclidean norms are convex functions

and the sum of convex functions is also a convex function. The point-wise minimum function is shown

in Figure 4.1, and defined as follows.

f(x, y) = min{x, y}.

From Figure 4.1, one can see that the current function is not a convex function, in fact it is a concave

function. Therefore, we conclude that both naive centralised problems 2 and 3 are non-convex problems.

Non-convex problems are difficult to solve, and in general, compromise between a very long computational
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Figure 4.1: Point-wise minimum function.

time and finding the global optimum has to be made. We implemented the two problems with the MatLab

tool fmincon, which applies an interior point algorithm to solve non-convex problems.

4.2 Simulation results

Static targets

First a simple static targets scenario is considered: eight targets m = 8, statically placed inside the

given space tqpos ∈ S, forming two groups of four targets in a square shape. The goal is to check with

a basic static example, where the final optimal placement can be directly seen, whether the presented

centralised approach can achieve the optimal position. Two quadrotors are considered, placed without

velocity at random initial positions inside the convex space S and meeting the constraint hi ≥ hmin. The

optimisation parameters used are presented in Table 4.1.

Parameter Value Description
N 3 finite horizon
n,m 2, 8 number of agents, targets
ρ, φ 0.01, 0.01 performance weighting factors

hmin, vmax, fmax 10, 2, 2 quadrotors’ specifications
∆t 1 time-step (in seconds)
k 60 number of time-steps of the simulation

Table 4.1: Static targets using quadrotors
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Figure 4.2: Static targets Agents’ Movement.
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Figure 4.3: Static targets performance.

The agents’ movement of a single simulation during 60 time-steps is presented in Figure 4.2, and the

correspondent performance in Figure 4.3. The desired optimal placement, single best estimation for all
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targets, can be directly seen due to the placement of the targets. The global optimum is obtained when

each quadrotor is placed in the centre of each square group of targets, with the minimum altitude and

null velocity. The agents converge to the desired optimum at steady-state.

Therefore, this naive centralized approach arrives to the expected behaviour in this static case, and

the optimal performance is reached.

Moving targets

Then a moving targets scenario is considered using quadrotors and fixed-wings. Using 10 agents to track

100 random-walk targets, the parameters list is presented in Table 4.2.

Parameter Value Description
N 3 finite horizon
n,m 10, 100 number of agents, targets
ρ, φ 0.01, 0.01 performance weighting factors

hmin, vmax, fmax 10, 2, 2 quadrotors’ specifications
h̄, VM , umax 10, 2, 0.8 fixed-wings’ specifications
Wmax 3 targets’ maximum velocity

∆t 1 time-step (in seconds)
k 60 number of time-steps of the simulation

Table 4.2: Moving targets using quadrotors or fixed-wings
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Figure 4.4: Quadrotors’ descent.

For the quadrotors case, we can see the agents moving towards the minimum altitude hi = hmin

(Figure 4.4) while for the fixed-wings case, they fly at a fixed altitude of hi = h̄. The agents’ movement

during the simulation is presented for the quadrotors and fixed-wings in Figures 4.5, 4.6 respectively. For

the fixed-wing case, we can see the expected flying-dynamics without steep turns.

The performance criteria for both cases is shown in Figure 4.7. First, in a transitory stage, the

agents move towards matching the different groups of targets. For the quadrotors’ case, the performance

criterion starts with a significantly higher value due to initial random altitudes hi0 > 10, i = 1, ..., n,

instead of hi0 = 10, i = 1, ..., n, for the fixed-wings’ case. Then, the performance criteria stabilises and,

due to the targets’ movement, oscillates around a “stationary” value.

Comparing both agents’ dynamics, after the transitory phase, the performance criterion stabilises

around J̄quad = 0.73 × 105 and J̄wing = 0.81 × 105. The fixed-wing model has a decreasing in perform-

ance around 11% when compared with the quadrotors. This decrease is motivated by having the turns

constrained to smooth movements.
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Figure 4.5: Moving targets using Quadrotors
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Figure 4.6: Moving targets using Fixed-wings
(see legend of Figure 4.4).
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Figure 4.7: Moving targets performance.

Computational Time

The naive centralised moving targets simulations took 678 seconds per time-step for the quadrotors

and 117 seconds per time-step for the fixed-wings. The time difference is motivated by the size of the

optimisation variables, 9 per agent per horizon-step for the quadrotors and 4 per agent per horizon-step

for the fixed-wings. Also, the quadrotors can move along a 3D space (E,N, h), in contrast with the

fixed-wings which are constrained to a fixed altitude h̄.

Regarding the time complexity with the number of agents, the MatLab tool fmincon uses a Sequential

Quadratic Programming (SQP) method. The number of agents increase the number of optimisation

variables by 9N for the quadrotors problem and by 4N for the fixed-wings problem. Simulation results

comparing the computational time of a single time-step with different number of quadrotors and fixed-

wings can be seen in Figure 4.8.

4.3 Final outlook

This naive centralised approach took minutes to compute the control inputs for a single time-step using

ten agents. Two reasons motivate these time results: being a centralised algorithm and being a non-

convex optimisation. In a centralised implementation, the number of optimisation variables increase
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Figure 4.8: Computational time of a single time-step with the number of agents.

largely with the number of agents. In our case, the number of optimisation variables is 9N per quadrotor

and 4N per fixed-wing. Also, solving a non-convex problem is time consuming due to the need of using

non-convex optimisation algorithms. Therefore, we conclude that this implementation is far from feasible

for real implementations.

Regarding optimality and feasibility, we conclude that achieving the global optimum is not our first

priority. Considering moving targets, the global optimum is constantly changing due to the highly

dynamic changing environment. Therefore, we are far more interested in obtaining fast and feasible

algorithms. The UAVs should be guided to decrease our cost-function towards a local optimum along

feasible solutions, rather than guaranteeing to find the global minimum in the long term.

In order to face the results obtained with this naive centralised implementation, we aim to

• relax the problem formulation to obtain a convex optimisation which it is easier and faster to solve:

we aim to achieve an implementation that runs in less than one second per time-step;

• distribute the problem over the agents: to reduce the increase of time complexity with the increase

of the number of agents;

• introduce a sensors’ range limitation and ensure full target coverage.
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Chapter 5

A novel two-layer approach

The proposed tracking problem (Chapter 2) was formulated using a centralised approach (Chapter 4).

This centralised implementation meets the desired behaviour but does not fulfil our requirements in term

of computational load and time complexity. In this chapter, we propose a relaxed approach to implement

the problem in a distributed scheme via convex optimisation-based algorithms.

Single-agent case

First, considering the single-agent case, the performance criterion (2.8) becomes

J̄k =

N−1∑

t=0

[ m∑

q=1

(
||x̂k+t+1,pos − tqk,pos||2

)
+ ρ||uk+t||2

]
+ ϕ

m∑

q=1

(
||x̂k+N,pos − tqk,pos||2

)
. (5.1)

Note that, the point-wise minimum function is not present. This performance criterion is a convex

function and the problem can be formulated as a convex optimisation. Also, the problem is inherently

local, i.e., there is only one agent involved.

Therefore, we can conclude that the current formulation for the single-agent case already fulfils our

goals: a convex optimisation and a distributed scheme. This result motivates the use of this “single-agent

metric” (5.1) also for the multi-agents case. Considering each agent as a separated tracking problem

suggests that we might achieve convexity and distribution for our problem.

Global picture

Considering the multi-agents case, the performance criterion

J̄k(xk,uk, ...,uk+N−1) :=

N−1∑

t=0

[ m∑

q=1

(
min

i∈{1,...,n}
{||x̂ik+t+1,pos − tqk,pos||2}

)
+ ρ

n∑

i=1

||uik+t||2
]
+

+ ϕ

m∑

q=1

(
min

i∈{1,...,n}
{||x̂ik+N,pos − tqk,pos||2}

) (5.2)

has the point-wise minimum which plays an important role in this problem: it computes for each target

which is the closer agent. This role is called in the literature the agent-target assignment as it assigns for

each target which is the agent to consider, it formulates the global picture comparing the positions of the

all the agents with respect to each target. In fact, the point-wise minimum function does not implement

the assignment separately, the assignment and the tracking problems are coupled in (5.2).
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If we were considering the agents’ and the targets’ positions to be static, then the “min” function

would simply compute the agent-target assignment. However, the vehicles’ positions change along the

predictive horizon, changing the agent-target assignment together with the vehicle dynamics.

If the agent-target assignment was solved a priori, the targets would be already divided among the

agents and we could apply (5.1). Unfortunately, this is not the case, our proposed formulation has a

centralised fashion (5.2) which couples the assignment and the tracking problems.

Relaxation

In the current formulation, the point-wise minimum function solves the agent-target assignment in a

centralised way and coupled with the tracking problem. The positions of all the agents are compared in

order to assign an agent to each target along the entire predictive horizon for every time-step. Thus, our

assignment and tracking problems are fully coupled in (5.2). We relax the current formulation to split the

Assignment Problem from the Tracking Problem (see Figure 5.1). In the relaxed form, first we solve the

agent-target assignment beforehand at each time-step. Then, we steer the agents using the local tracking

performance criterion (5.1). This relaxation allows us to meet one of our goals: to convexify the tracking

problem.

Figure 5.1: Problem relaxation and distribution.

The centralised approach assigns each target to the closer agent placed at xik+t,pos along the predictive

horizon t = {1, ..., N}. Thus, the assignment changes during the optimisation along the predictive horizon,

depending on the future predicted positions of the agents xk+t,pos.

In our relaxation, in order to compute the Assignment Problem beforehand, we will not compute the

assignment along the predictive horizon. Instead, we will compute the assignment only once for each

time-step k, and use it along the predictive horizon of the optimisation k + t, t = 1, ..., N . Therefore,

our relaxation will consider only a single future position for each agent denoted by xiF,pos (Figure 5.2).

Figure 5.2: Single future position computed beforehand.

The single future agents position xF,pos is the variable that we use to divide the space among the
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agents, i.e., to solve the Assignment Problem. The global assignment problem is defined as a function of

xF,pos as follows.

Problem 4 (Global assignment problem).

Given the set of n agents, the set of m targets, and a set of future positions for each agent

xiF,pos, we seek to assign each target q = {1, ...,m} to the closer agent {a1, ..., am}, by computing

aq = arg min
i∈{1,...,n}

{||xiF,pos − tqpos||2}. (5.3)

In Chapter 6, motivating by the fact that the local tracking problem steers the agents towards the

targets centre-of-mass, we define this future agents position as the targets’ centre-of-mass of a given

partition.

With this definition for xF,pos, we guarantee that the steady-state solution of the original and the

relaxed problems are equivalent (Chapter 8). This result (Theorem 4), together with the comparison

analysis done in Chapter 8, are very important as they prove the close relation between the two problems.

Distribution

The global AP (Problem 4) needs a centralised entity to compute for all targets which is the closer

agent that will add the target to its local TP (see Figure 5.1).

This assignment problem relates to coverage problems (Bullo et al. [11], Du et al. [19],Lloyd [30])

which seek to split a given area according to a certain performance criterion. Using coverage algorithms,

the space is partitioned in sectors, and each sector is assigned to one agent. Thus, the targets inside a

given sector will appear in the respective agent’s tracking problem.

Therefore, our idea is to distribute the assignment problem among the agents. Motivated by work

developed in Bullo et al. [11], we implement distributed partition algorithms to solve our assignment

problem based only on synchronous or asynchronous communication between neighbours.

Once the assignment problem is distributed (Figure 5.1), we meet our goals obtaining a convex tracking

problem using a distributed optimisation scheme.

Two-layer approach

Splitting our naive centralised approach into a agent-target assignment (AP) and local tracking prob-

lems (TP) motivates our two-layer approach. A first layer solves the AP, i.e., it splits the set of targets

among the agents. Then, n local TPs, one for each agent, are implemented in the second layer. This novel

two-layer approach has a distributed scheme with local convex optimisation-based tracking problems.

1. Global assignment problem [Chapter 6]: the first layer represents the global problem of assigning

the set of targets among the different agents. A dynamic graph with the targets and agents is

defined in which, at each time-step, each target appears only on the tracking problem of one agent.

The global assignment problem is defined in Problem 4 which we show to be equivalent to a formu-

lation using Voronoi partitions (Problem 5). To solve this problem we first propose a centralised

Lloyd algorithm, and then we introduce two distributed algorithms based on the work of Bullo
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et al. [11]. A synchronous- and an asynchronous-distributed algorithm are implemented based on

different communication protocols between neighbour agents only.

Global optimality is not guaranteed for any of the distributed algorithms. In fact, not even the

centralised Lloyd algorithm ensures that. However, both algorithms ensure to converge (almost

surely) to local optima. Comparing both algorithms, the synchronous-distributed algorithm con-

verges faster but it needs every agent to communicate with all its neighbours at all time-steps in a

synchronised fashion. In spite of converging slower, the asynchronous-distributed algorithm needs

only a single pair of random neighbours to communicate at each time-step and it converges using

∼ 75% less communications than the synchronous-based algorithm.

2. Local tracking problem [Chapter 7]: the second layer implements n local tracking problems. Each

agent tracks the set of targets that are assigned to it. This layer is inherently divided into n

independent problems.

The local tracking problem is defined using the performance criterion (5.1) for quadrotors and

fixed-wings agents. A full target coverage constraint is added using a worst-case scenario fash-

ion, guaranteeing persistent feasibility of the local tracking problems as long as there is a feasible

solution.

The quadrotors’ problem is a convex optimisation problem, formulated in a Semi-Definite Positive

program (SDP) form. For the fixed-wings’ case, a non-linear equality constraint is needed due to the

non-holonomic dynamics. Thus, this constraint is linearised and a Sequential Convex Programming

(SCP) algorithm is introduced to solve the linearised SDPs sequentially. Both problems have linear

time complexity with the number of targets O(m). And, since this problem is defined locally for

each agent, there is no time complexity dependence with the number of agents.

In Chapter 8, the complete two-layer algorithm is formulated. The pseudo-code to implement on each

agent is derived for the synchronous- and asynchronous-distributed two-layer algorithms. The centralised

and the novel two-layer approach solutions are analysed, and equivalence of the steady-state solutions

of both approaches for static targets is proved (Theorem 4). Also, some considerations are presented

regarding moving targets. Our algorithms are extended with heterogeneous teams adaptations, collision

avoidance and refuelling manoeuvres.

Finally, in Chapter 9, the centralised, the synchronous-distributed and the asynchronous-distributed

algorithms are simulated and compared for three scenarios: static targets, slow targets and fast targets.

Considering n = 10 agents and m = 100 targets, assuming to have n machines, one for each of the n

agents, and using SeDuMi 1.3 in MATLAB R2012a; each machine would take around 0.8-0.95 seconds to

compute the path planning for the respective agent at each time step achieving real-time. Also, noise

simulations are analysed and the refuelling manoeuvre performance presented.
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Chapter 6

The global assignment problem

The global Assignment Problem (AP) assigns each target to one agent, such that each agent has a finite

and defined number of target to track (TP). This problem is defined in a centralised way depending on

the agents’ and targets’ positions (Problem 4). Once the problem only depends on the current positions,

it is formulated in the same way for quadrotors and fixed-wings. Work on this target-agent assignment

problem can be found under coverage control problems. Coverage problems seek to study the partitioning

of tasks for groups of autonomous agents (Howard et al. [25] and Bullo et al. [11]).

In this chapter, first of all we will recall the Assignment Problem defined in Chapter 5. Then as

a first step, we will transform it into a future position’s Voronoi-partition problem which divides the

ground-plane among the agents. One of the possible approximate solutions of this “dynamic” Voronoi-

partition problem is the Lloyd algorithm, considering a set of fixed-points, which is however a centralised

algorithm. Lloyd algorithm can be seen as a minimisation procedure of a certain energy functional. By

the use of Bullo et al. [11] we will see how to devise distributed algorithms to minimise the same energy

functional of the Lloyd algorithm and ultimately solve the given AP.

6.1 Assignment problem

The Assignment Problem (AP) is first defined in a centralised way in Problem 4 which computes for each

target q the closer agent aq, considering a set of future agents’ positions (xiF,pos)
n
i=1

aq = arg min
i∈{1,...,n}

{||xiF,pos − tqpos||2}, (6.1)

i.e., we seek to divide the space into n regions, one for each agent. Considering the ground-plane (h = 0)

of our 3D convex space S, we define a 2D set of interest Q := [E,N ]> ⊂ R2. Note that Q is a compact

convex subset of R2 with non-empty interior. We define a n-partition of Q as follows.

Definition 10 (n-partition of Q). An n-partition of Q, denoted by (vi)ni=1, is an ordered collection of n

closed subsets of Q, with non-empty interiors, satisfying the properties:

i .
⋃n
i=1 v

i = Q;

ii . ∀i,j∈{1,...,n},i6=j int(vi) ∩ int(vj) = ∅.

Also, (vi)ni=1 ∈ Vn, where Vn denotes the set of n-partitions of Q.

Let i = {1, ..., n} denote the unique number of the set of agents (Definition 4), we attribute a one-

to-one correspondence between the agents and the components of the n-partition (vi)ni=1. We refer to vi
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as the tracking region of the agent i, i.e., the task of each agent i is to track the targets placed inside

the subset vi ⊂ Q. We also define a set of points (yi)ni=1 in Q, one for each component of the partition

(vi)ni=1. We refer to yi ∈ Q as the centre-point of the tracking region vi of the agent i.

6.2 Step 1. The equivalent Voronoi partition problem

Among all the possible n-partitions (vi)ni=1 ∈ Vn of Q, the define the Voronoi n-partition of Q, generated

by the set of points (yi)ni=1, as follows.

Definition 11 (Voronoi n-partition of Q by y). The Voronoi n-partition (vi(y))ni=1 of Q by the set of

points (yi)ni=1 is defined as

vi(y) := {g ∈ Q | ∀j∈{1,...,n},j 6=i ||g − yi|| ≤ ||g − yj ||}, i = {1, ..., n} (6.2)

where yi represents the centre-point of the tracking region vi, and g = (E,N) the coordinate in the

ground-plane Q.

This partition is particularly suitable for dividing the space evenly among the agents. Also, the

Voronoi partition (Definition 11) allows us to redefine our Global Assignment Problem as follows.

Problem 5 (Equivalent global assignment problem).

Given the set of n agents, the set of m targets, and the Voronoi n-partition using the position of

the agents (vi(xF,pos))
n
i=1, we seek to assign each target to the closer agent, by assigning a tracking

region vi for each agent i. The tracking regions are defined as

vi(xF,pos) := {g ∈ Q | ∀j∈{1,...,n},j 6=i ||g − xiF,pos|| ≤ ||g − xjF,pos||}, i = {1, ..., n}. (6.3)

In fact both AP formulations (Problem 4 and Problem 5), have exactly the same solution. However,

the equivalent Voronoi partition Problem 5 makes easier the distribution of the assignment problem. In

Figure 6.1, we can see the global assignment problem solved using the Voronoi partition.
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Figure 6.1: Partition example for solving agent-target assignment problem. The red circles represent the
position of the agents and the blue stars the position of the targets.
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Remark 3 (Heterogeneous teams).

In the case where we have heterogeneous teams, i.e., agents with different sensing ranges or

dynamics, we can introduce an extended version of the our Assignment Problem by introducing the

power Voronoi partitions.

Definition 12 (Power Voronoi n-partition of Q by y). The power Voronoi n-partition (vi(y))ni=1

of Q by the set of points (yi)ni=1 is defined as

vi(y) := {g ∈ Q | ∀j∈{1,...,n},j 6=i ||g − yi|| − wi ≤ ||g − yj || − wj}, i = {1, ..., n} (6.4)

where yi represents the centre-point of the tracking region vi, wi the power factor of the agent i,

and g = (E,N) the coordinate in the ground-plane Q.

Note that the higher the power-factor wi, the more space is assigned to the agent i. Therefore

the weight can be seen as a measure of the sensing-capability of a certain agent comparing with the

others.

6.3 Step 2. Lloyd algorithm

The global Assignment Problem 5 seeks to find the Voronoi partition (vi(xF,pos))
n
i=1 considering a future

position for each agent xiF,pos. Knowing that the Tracking Problem seeks to steer each agent i towards

the “centre” of the targets inside the tracking region vi, motivates the use of this “centre” as the its future

position xiF,pos. Also, this choice help us obtaining convergence guarantees in Chapter 8. Therefore, the

proposed problem can be solved using the so-called “centring and partitioning” algorithm first introduced

by Lloyd [30].

Defining the generalised centroid of each subset (vi)ni=1 of Q as in Bullo et al. [11].

Definition 13 (Generalised centroid C of the subset vi ⊂ Q). The generalised centroid of a compact set

vi ⊂ Q is given by the unique minimum

C(vi) := arg min
yi

{∫

vi

f(||yi − g||)φ(g)dg

}
, (6.5)

where yi is any point in vi, vi is a compact subset of Q, φ(g) : Q → R+ a bounded integrable positive

density function defined in vi, g the coordinate in the subset vi ⊂ Q, and f a performance Lipschitz

function f : R+ → R+.

And defining the performance function as the 2-norm Euclidean distance f(g) = ||g||2, the global

minimum of the generalised centroid of vi is the centre-of-mass, defined as follows.

Definition 14 (Centre-of-mass C of the subset vi ⊂ Q). The centre-of-mass of a compact set vi ⊂ Q is

given by

C(vi) :=

(∫

vi

φ(g)dg

)−1 ∫

vi

gφ(g)dg, (6.6)

where vi is a compact subset of Q, φ(g) : Q→ R+ a bounded integrable positive density function defined

in vi, and g the coordinate in the subset vi ⊂ Q.
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To study the global convergence of the Lloyd algorithm, we first define the Lloyd map (Du et al. [18]).

Definition 15 (Lloyd Map M). The Lloyd map is given by M = C ◦ V , where C denotes the map that

matches the partition {vi(y)}ni=1 to the mass centroids {C(vi)}ni=1, and V denotes the Voronoi partition

{vi(y)}ni=1 of the set of points {yi}ni=1.

Then we recall some results from Du et al. [19].

Proposition 2 (Fixed point of the Lloyd Map). Any limit point y = (yi)ni=1 of the Lloyd algorithm is

a fixed point of the Lloyd map M (Definition 15) and a critical point of the energy functional H.

Theorem 1 (Unique fixed point). If a given fixed point y = (yi)ni=1 is unique, then the Lloyd algorithm

converges globally.

Theorem 2 (Finite set of fixed points). If the iterations in the Lloyd algorithm stay in a compact set,

where the Lloyd map M is continuous, then the algorithm is globally convergent to a critical point of H.

Our Lloyd map has typically more than a single fixed point, as we will see in the simulation results.

Therefore, global optimality of the Lloyd algorithm is not ensured. However, considering moving targets

scenarios, converging to the global optimum is not our first priority.

6.4 Step 3. The energy functional

The Lloyd’s “centring and partitioning” algorithm chooses the partition v and the centre-points y that

minimise the following energy functional

H(v,y) :=

n∑

i=1

∫

vi

f(||yi − g||)φ(g)dg, (6.7)

where yi is any point in Q, (vi)ni=1 is a n-partition of Q, φ(g) : Q → R+ a bounded integrable positive

density function defined in Q, g the coordinate in the ground-plane Q, and f a performance Lipschitz

function f : R+ → R+. We define our density function φ(g) as a target density function

φ(g) :=
m∑

q=1

δ(g − tqpos), (6.8)

where tqpos represents the position of the target q, g the coordinate in the ground-plane Q, and δ the

Dirac function. Note that this density function is bounded, integrable, non-negative and defined in along

the ground-plane g ∈ Q. Using the density function (6.8) and using the 2-norm performance function

f(g) = ||g||2, we rewrite the energy functional of the Assignment Problem as follows.

H(v,y) =

n∑

i=1

∫

vi

||yi − g||2
∑

tqpos∈vi
δ(g − tqpos)dg =

n∑

i=1

( ∑

tqpos∈vi
||yi − tqpos||2

)
. (6.9)

Regarding the energy functional metric (6.9) that the Lloyd algorithm seek to minimise, we recall the

Proposition 2.4. from Bullo et al. [11] (Proposition 3).

Proposition 3 (Energy functional H(v,y)). Considering any partition (vi)ni=1 ∈ Vn, any set of points

(y)ni=1 ∈ Q, and the energy functional (6.7), the following properties hold




H(vvoronoi(y),y) ≤ H(v,y),

H(v, C(v)) ≤ H(v,y),
(6.10)
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where vvoronoi(y) represents the Voronoi partition of Q by y (Definition 11) and C(v) corresponds to the

centre-of-mass of the subsets (vi)ni=1 ∈ Q (Definition 14).

Therefore, the so-called “centring and partition” algorithm, i.e., dividing the space using Voronoi

partitions and centring the partitions in the centre-of-mass points, is a monotonically non-increasing

with the energy functional (6.9).

6.5 Step 4. Distributed algorithms

We distribute the proposed Lloyd algorithm to solve the global AP into distributed AP units adapting

the work done of Bullo et al. [11]. The authors present two distributed extensions of the Lloyd “centring

and partitioning” algorithm, relying on synchronous and asynchronous local communication respectively.

First we introduce some definitions needed to distribute our Assignment Problem.

Definition 16 (Neighbour agents). A pair of agents (i, j) with tracking regions vi, vj ∈ Q are considered

neighbours if and only if:

∂vi ∩ ∂vj 6= ∅. (6.11)

Definition 17 (Delaunay graph). The Delaunay graph (de Berg et al. [15]) is the undirected graph with

the node set (yi)ni=1, and with edges in (yi,yj) if and only if the agents (i, j) are neighbours.

Definition 18 ((yi,yj)-bisector half-space). Considering the Voronoi partition (Definition 11) and two

distinct points yi,yj ∈ Q, the (yi,yj)-bisector half-space is given by

B(yi,yj) := {g ∈ Q | ||g − yi|| ≤ ||g − yj ||}, (6.12)

where yi,yj represents two points in Q and g the coordinate in the ground-plane Q.

Then, using the density function (6.8) and the 2-norm performance function f(g) = ||g||2, we compute

the centre-of-mass (6.6) of vi ⊂ Q as follows.

C(vi) =

(∫

vi

∑

tqpos∈vi
δ(g − tqpos)dg

)−1 ∫

vi

g
∑

tqpos∈vi
δ(g − tqpos)dg =

1

mi

∑

tqpos∈vi
tqpos, (6.13)

where mi is the number of elements of the set {tqpos}mq=1 ∈ vi, i.e., the number of targets inside the

tracking region vi.

Remark 4 (Analytical solution for the centre-of-mass equation).

Note that using the targets’ density function (6.8) and a 2-norm Euclidean distance perform-

ance function, the centre-of-mass Equation (6.13) avoids the numerical computation of integrations

which speeds up the assignment algorithm.

Finally, the two partition-based coverage algorithms are presented, based on the work of Bullo et al.

[11]. These algorithms minimise the energy functional (6.9) with distributed communication schemes.

The tracking regions update of the algorithms is defined as follows.

vik+1 =

(
vik ∪ vjk

)
∩B(C(vik), C(vjk)), (6.14a)
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vjk+1 =

(
vik ∪ vjk

)
∩B(C(vjk), C(vik)), (6.14b)

where the bisector half-space B(., .) is given by (6.12), and the centre-of-mass C(vi) by (6.13).

For both algorithms, a distributed scheme is implemented based on direct-neighbours communication.

However, the communication protocol required varies between the two presented algorithms.

1. synchronous-reliable-distributed communication: needs a synchronous communication protocol between

the agents without failures;

Algorithm 1 (Synchronous-distributed coverage).

- for all k ∈ N, each agent i ∈ {1, ..., n} maintains in memory a tracking region vik ⊂ Q
- given (v1

0 , ..., v
n
0 ) an initial polygonal n-partition of Q

repeat

1. for every pair of communication neighbour agents (i, j) (6.11)

2. each agent computes its centre-of-mass C(vik), C(vjk) (6.13)

3. agent i communicates its centroid C(vik) to agent j and vice-versa

4. update tracking regions vik+1 (6.14a) and vjk+1 (6.14b)

until the simulation is stopped.

2. asynchronous-unreliable-distributed communication: the communication protocol can be asynchron-

ous and failures may occur without compromising the performance.

Algorithm 2 (Asynchronous-distributed coverage (Gossip)).

- for all k ∈ N, each agent i ∈ {1, ..., n} maintains in memory a tracking region vik ⊂ Q
- given (v1

0 , ..., v
n
0 ) an initial polygonal n-partition of Q

repeat

1. select a random pair of communication neighbour agents (i, j) (6.11)

2. agents i, j compute its centre-of-mass C(vik), C(vjk) (6.13)

3. agent i communicates its centroid C(vik) to agent j and vice-versa

4. update tracking regions vik+1 (6.14a) and vjk+1 (6.14b)

until the simulation is stopped.

The amount of communication needed differs largely between the two algorithms. In the Algorithm

1 (Figure 6.2), at each time-step every agent communicates with its direct neighbours in the Delaunay

graph (Definition 17). In the worst-case scenario, an agent might have (n−1) neighbours to communicate

with. Therefore, each agent must be able to communicate with all the other agents for this worst-case

scenario. In the Algorithm 2, the communication needed is largely reduced: only a random pair of

neighbour agents communicate at each time-step (Figure 6.3).

6.5.1 Distributed algorithms properties

Our synchronous-reliable distributed Algorithm 1, is in fact a adaptation of the classical Lloyd “centring

and partition” algorithm (Du et al. [18]). The Lloyd algorithm motivated many research efforts in later
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Figure 6.2: Synchronous-distributed Algorithm
1 where every agent communicates with its
neighbours every time-step.

Figure 6.3: Asynchronous-distributed Al-
gorithm 2 where only a random pair of neigh-
bour agents communicate at each time-step.

years. Despite the successful application in a large number of applications, the global convergence of this

algorithm is proved only by a very few known conditions (Du et al. [19]). The main converging result for

the Lloyd algorithm is presented here in Proposition 3.

Generally, the global minimum of the energy functional (6.9) is not guaranteed with the proposed

distributed coverage Algorithm 1. The “centring and partition” is an alternating variable algorithm, i.e.,

we do not minimise for the optimisation variables (v,y) together, we first optimise for y and then for v.

Also, the synchronous-distributed coverage Algorithm 1 has some limitations, as it is applicable only

in the presence of synchronized and reliable communication between all the agents. Also, in the worst-case

scenario, an agent must be able to communicate with all the other agents.

Therefore, we formulate the asynchronous-distributed coverage Algorithm 2 which is a simple, robust

and effective algorithm for noisy and uncertain communication protocols. This algorithm is implementable

in an asynchronous, unreliable and delayed communication. However, due to having less communications

per time-step, the asynchronous-distributed coverage algorithm converges slower than the distributed

coverage one.

To study the convergence of the asynchronous-unreliable distributed Algorithm 2, with respect to the

distributed solution of Algorithm 1, we recall a convergence result from Bullo et al. [11].

Theorem 3 (Convergence under persistent gossip communication). Considering the Lloyd map M

(Definition 15) which is a stochastic process. If M is a randomly persistent stochastic process, then

the gossip coverage Algorithm 2 converges almost surely to the set of fixed points of the Lloyd map M .

Using a random process to select the pair of communication neighbour agents, the asynchronous-

distributed coverage Algorithm 2 converges almost surely to a fixed point of the Lloyd map, i.e., it

converges to a local minimum. However, the solution obtained with this algorithm can, in general, be

different than the solution using the synchronous-distributed coverage Algorithm 1. Also, the global op-

timality of this asynchronous-distributed Algorithm 2 is not guaranteed, as in the synchronous-distributed

Algorithm 1.

6.5.2 Distributed algorithms results

The convergence of the two proposed coverage algorithms is analysed with numerical results. We propose

a synchronous-distributed coverage Algorithm 1 and an asynchronous-distributed coverage Algorithm 2,

which seek to find the n-partition of the space Q that minimises the energy functional (6.9).
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Note that, with moving targets scenarios, there is no stationary solution. Thus, the convergence of

these algorithms is studied using static targets. The parameters used for the simulation are presented in

Table 6.1.

Parameter Value Description
n,m 10, 100 number of agents, targets
k 60 number of time-steps of the simulation

Table 6.1: Assignment problem parameters using static targets.

Synchronous-distributed coverage algorithm global convergence

Regarding our synchronous-distributed coverage Algorithm 1 and using the same targets’ positions,

the energy-functions from ten simulations using different initial points are presented (Figure 6.4).
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Figure 6.4: Synchronous-distributed coverage algorithm: many local minima.

As mentioned in the previous section, our synchronous-distributed algorithm, an adaptation of the

classical Lloyd algorithm, does not guarantee to find the global optimum. We see clearly that, for the

same problem (same targets’ positions), we obtain different solutions depending on the initial condition

(initial Voronoi partition). Therefore, we can conclude that, in general, our problem has many local

minima. The presented algorithm does not avoid local optima which makes the steady-state solution

very sensitive to the initial conditions.

Asynchronous-distributed coverage algorithm convergence

The asynchronous-distributed coverage Algorithm 2, requires less communication between the agents.

However, its results are not deterministic, in the sense that, the algorithm does random movements

in the choice of which agents should communicate at each time step. Using the same static scenario

(targets’ position) and starting with the same initial conditions (initial Voronoi partition), the results

of the synchronous-distributed algorithm and of ten independent simulations using the asynchronous-

distributed algorithm are shown (Figure 6.5).

The asynchronous-distributed coverage Algorithm 2 converges almost surely to a local minimum of

the energy function (6.9) (Theorem 3). However, as realised in the simulations, the Algorithms 1 and 2

may not have the same partition solution. Therefore, depending on the random movement of the gossip

coverage algorithm, it will end up in different local optima.
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Figure 6.5: Asynchronous-distributed coverage algorithm: convergence to synchronous-distributed solu-
tion.

The obtained results also suggest that the slower convergence of the asynchronous-distributed al-

gorithm might in fact help finding better partitions than the one obtained using the synchronous-

distributed algorithm. As seen in Figure 6.5, the asynchronous-unreliable algorithm manage to escape

the local optimal obtained with the synchronous-reliable algorithm and find a better partition in two out

of ten simulations.

Synchronous- and asynchronous-distributed coverage algorithms comparison

The synchronous-distributed coverage Algorithm 1 takes an average of 6.6 time-steps to converge to

the steady-state solution, while the asynchronous-distributed coverage Algorithm 2 needs 32.5 time-steps

in average.

In terms of communication protocol, the asynchronous-distributed coverage does not need a synchron-

ous nor reliable communication network. Regarding bandwidth, the synchronous-distributed coverage

needs around 20 agent-to-agent communications per time-step in this scenario, while the asynchronous-

distributed coverage algorithm uses a single agent-to-agent communication per time-step.

The asynchronous-distributed coverage needs significantly less communications to converge to the

steady-state solution. The Algorithm 2 needs 32.5 × 1 = 32.5 communications to converge, while the

Algorithm 1 needs roughly four times more communications 6.6× 20 = 132.

To summarise, despite converging slower, the asynchronous-distributed coverage algorithm removes

some limiting assumptions regarding the communication protocol made by the synchronous-distributed

coverage algorithm. The asynchronous-distributed coverage converges using 75% less communications,

without compromising the performance of the steady-state solution. It is able to optimise the Assignment

Problem even with an asynchronous, unreliable, and delayed communication (Bullo et al. [11]). In fact,

the simulation results suggest that the steady-state energy-function might even be lower.

Remark 5 (Vehicle dynamics).

Note that these partition algorithms do not take into account the vehicle dynamics. Therefore

the AP is defined in the same way for quadrotors and fixed-wings, regardless the local TPs.
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Chapter 7

The local tracking problem

In this chapter we define the local tracking problems for both UAV models: quadrotors and fixed-wings.

After assigning the set of targets to be tracked by each agent, we implement the corresponding tracking

algorithm. These local problems are inherently distributed, i.e., we have one problem to be solved

independently by each agent, corresponding to the second layer of our novel two-layer approach.

Starting with the quadrotor case, we define the local multi-target tracking problem for one agent.

The problem is introduced as in the naive approach, then it is rearranged to a Semi-Definite Positive

program (SDP) to steer the UAV. The SDP is a common sub-field of convex optimisation which deals

with the optimisation of a linear cost function subjected to linear equality constraints and to Linear-

Matrix Inequalities (LMIs). The full target coverage constraints are also introduced as LMIs. This type

of problem can be solved efficiently by different solvers which typically implement interior point methods.

For the fixed-wing case, the problem is non-convex due to their non-holonomic dynamics. Therefore,

we linearise the problem to obtain a convex problem. A Sequential Convex Programming (SCP) is

proposed to solve SDPs iteratively and steer the fixed-wings.

7.1 Local tracking problem for a quadrotor

Using a single quadrotor (Figure 2.2), we first recall the discrete-time double integrator unit point-mass

dynamics

xk+1 ≡
[
xk+1,pos

xk+1,vel

]
= fquad(xk,uk) ≡ A

[
xk,pos

xk,vel

]
+ Buk, A =

[
I3 I3∆t

03×3 I3

]
, B =

[
03×3

I3∆t

]
,

s.t.





h ≥ hmin

−vmax ≤ vE , vN , vh ≤ vmax

−fmax ≤ fE , fN , fh ≤ fmax

,

(7.1)

where x is the state of the quadrotor given by its position xpos and its velocity xvel = [vE , vN , vh]>, the

input u = [fE , fN , fh]> corresponds to the force applied along the three axis, and ∆t is the sampling

period. We consider limitations on the quadrotors minimum flying altitude, bounded velocity and force,

given by the parameters hmin, vmax, fmax.
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7.1.1 Performance criterion

Using the our performance criterion (4.2), used in centralised approach (Problem 2) for the single quad-

rotor case

J̄ =

k+N−1∑

t=k

[ m∑

q=1

(
||xt+1,pos − tqk,pos||2

)
+ ρ||ut||2

]
+ ϕ

m∑

q=1

(
||xk+N,pos − tqk,pos||2

)
, (7.2)

which seeks to minimise the distance over time towards the current targets’ position. We rewrite the cost

function removing the constant terms (depending only on t) as follows.

J̄ =

k+N−1∑

t=k

[ m∑

q=1

(
(xt+1,pos)

>xt+1,pos − 2xt+1,post
q
k,pos + ρu>t ut

]

+ ϕ

m∑

q=1

(
(xk+N,pos)

>xk+N,pos − 2xk+N,post
q
k,pos

)
.

Using the optimisation variables U = ut,Xpos = xt+1,pos,Xvel = xt+1,vel, t = {k, ..., k +N − 1}, stacked

as

o =




ut

xt+1,pos

xt+1,vel


 , t = {k, ..., k +N − 1},

and defining, using the Kronecker product ⊗,

Q1 = I3N , Q2 =

[
03(N−1)×3(N−1)

I3

]
, d =

[
−2

m∑
q=1

tqk,pos

]

3×1

, c1 = [1N×1 ⊗ d], c2 =

[
03(N−1)×1

d

]
.

(7.3)

We can write the performance criterion in a quadratic form

J̄ = X>pos[mQ1 +mϕQ2]Xpos + U>[ρQ1]U + [c1 + ϕc2]>Xpos.

7.1.2 Equality constraints

Considering the equality constraints in (4.3) of the Problem 2 for a single quadrotor, we can formalise

them in the form

Aeqo = beq,

with

Aeq =




[
−B I6

]
[
06×3 −A

] [
−B I6

]
[
06×3 −A

] [
−B I6

]

. . .
. . .[

06×3 −A
] [
−B I6

]




, (7.4)

and

beq =




A

[
xk,pos

xk,vel

]

06(N−1)×1


 , (7.5)

where, the matrices A,B are defined in (7.1).
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7.1.3 Inequality constraints

Considering the inequality constraints in (4.3) of the Problem 2 for a single-quadrotor, we can formalise

them in the form

Aineqo ≤ bineq,

with

Aineq = IN ⊗




I3

−I3 [
0 0 −1

]

I3

−I3




(7.6)

and

bineq = 1N×1 ⊗




13×1 ⊗ fmax

13×1 ⊗ fmax

−hmin

13×1 ⊗ vmax

13×1 ⊗ vmax



. (7.7)

7.1.4 Full target coverage constraint

At all times, we constrain the agent’s position to be able to sense all the targets that are assigned to it.

To achieve that, our full target coverage constraint considers all the possible targets’ positions for the

next time steps. However, constraining the problem considering all the possible targets’ positions for the

entire predictive horizon would be too restrictive due to two main reasons:

• the targets’ movement is considered independent from the agents’ positions, thus it is unlikely that

the targets will travel often at full speed away from the agents;

• the targets that move away from the line-of-sight of one agent are likely to be assigned to another

closer agent later on.

Therefore, we will constraint the problem considering all the possible targets’ positions only for the

next time step tk+1,pos.

Considering our UAV dynamics, both for quadrotors and fixed-wings, the relationship input-output is

delayed by one time-step. Any change in the input takes one extra time-step to be noticed in the agent’s

position, i.e., the input uk influences the state at k + 1 but the position only at xk+2,pos, instead of

xk+1,pos. Thus, the full target constraint will be applied considering the positions two time-steps ahead,

bounding the distances ||xk+2,pos − tqk+1,pos||, q = {1, ...,m}.
The next targets’ position is given by the random walk model (2.14):

tqk+1,pos = tqk,pos + tqk,vel∆t, q ∈ {1, ...,m},

where tqpos is the position of the target q with no altitude hq = 0, and the velocity is given by tqvel =

[wqE , w
q
N , 0]>, where wqE , w

q
N are zero mean bounded Gaussian noises, bounded by ||tvel|| ≤ Wmax. Note

that in general we can have targets with different maximum velocities in the same scenario. The agent

does not know the future targets’ position, only their maximum velocity. Thus, the coverage has to be

guaranteed for all possible next cases.

To guarantee full target coverage, we define the worst case scenario such that if we guarantee to fulfil

the constraints for these points, we are feasible for any future targets’ positions. This worst case scenario
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is illustrated in the Figure 7.1, and it happens exactly when all the targets move away from the agent at

full speed

tq,∗k+1,pos = tqk,pos +
Wmax

||tqk,pos − xk,pos||

(
tqk,pos − xk,pos

)
∆t, q = {1, ...,m}. (7.8)

 

Figure 7.1: Full target coverage: the possible next targets’ positions (bounded by the circumferences)
and their worst-case scenario (marked with stars).

With this easy-to-implement formulation, we guarantee that the agent will be always capable to

sense every target for the next time step regardless their movement. To motivate the need of this

implementation, in Figure 7.2, one can clearly see that the cost function will be reduced if the agent

moves closer to the group of targets placed together. However this constraint guarantees that the worst

case scenario of the far away target is still within the agents’ tracking range.

 

Figure 7.2: Full target coverage: worst case scenario motivation.

Once defining the worst case scenario (Equation (7.8)), we can introduce the remaining full target

coverage constraints:

Mq =

[
I3 (xk+2,pos − tq,∗k+1,pos)

(xk+2,pos − tq,∗k+1,pos)
> R2

]
� 0, q = {1, ...,m}.

7.1.5 Semi-Definite Positive Program

Once we have only linear constraints: linear equalities, linear inequalities and linear matrix inequalities

(full target coverage constraint); we seek to obtain a linear performance criterion to have a so-called

Semi-Definite Positive program (SDP). Thus, the quadratic terms of the cost-function are transformed

49



into LMIs using the Schur Complement (Definition 6), obtaining a so-called epigraph form problem.

min
o
J̄1(o), J̄1(o) := X>pos[mQ1 +mϕQ2]Xpos + U>[ρQ1]U + [c1 + ϕc2]>Xpos ⇔

⇔ min
o
J̄2(o) s.t.

[
[mQ1 +mϕQ2]−1 Xpos

X>pos βX

]
� 0 ∧ βX ≥ 0 ∧

[
[ρQ1]−1 U

U> βU

]
� 0 ∧ βU ≥ 0,

J̄2(o) := [c1 + ϕc2]>Xpos + βX + βU.

Now, we can define the local TP for the quadrotor case as a SDP.

Problem 6 (Quadrotor local Tracking Problem in a SDP form).

Given the optimisation variables U = ut,Xpos = xt+1,pos,Xvel = xt+1,vel, t = {k, ..., k+N−1},
stacked as

o =




ut

xt+1,pos

xt+1,vel


 , t = {k, ..., k +N − 1},

and the cost function

J̄(o) := c>Xpos + β, (7.9)

we define the problem

min
o
J̄(o) s.t.





Aeqo = beq,

Aineqo ≤ bineq,

Mq =


 I3 (xk+2,pos − tq,∗k+1,pos)

(xk+2,pos − tq,∗k+1,pos)
> R2


 � 0, q = {1, ...,m},


Q−1

X Xpos

X>pos βX


 � 0, βX ≥ 0,


Q−1

U U

U> βU


 � 0, βU ≥ 0,

(7.10)

where c = [c1 + ϕc2], β = βX + βU, QX = [mQ1 + mϕQ2] and QU = [ρQ1]. The matrices

Q1,Q2, c1, c2,Aeq,beq,Aineq,bineq are defined in (7.3), (7.4), (7.5), (7.6), (7.7). The worst case

scenario tq,∗k+1,pos, q = {1, ...,m} defined in (7.8).

The parameters of the problem are

N predictive horizon

m number of targets

ρ, ϕ performance weighting factors

hmin, vmax, fmax agents’ specifications

Wmax targets’ maximum velocity

∆t sampling period

R agents’ maximum sensing range.

Note that this problem is a convex problem (defined with a convex cost function subjected to convex

inequality constraints and affine equality constraints). It was simulated using the solver SeDuMi from

the MATLAB toolbox YALMIP (Lofberg [31]), commonly used to solve Semi-Definite Positive programs.

A simulation with multiple moving targets is presented to show the local tracking algorithm for quad-

rotors. The simulation parameters are presented in Table 7.1 and in the Figures 7.3,7.4 the quadrotor’s
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path and the cost-function during the simulation. As expected, the agent moves closer to the set of ten

moving targets decreasing the cost function. Then, the performance stabilizes, oscillating due to the

movement of the targets.

Parameter Value Description
N 3 finite horizon
m 10 number of targets
ρ, ϕ 0.01, 0.01 performance weighting factors

hmin, vmax, fmax 10, 2, 2 quadrotors’ specifications
Wmax 3 targets’ maximum velocity

∆t 1 time-step (in seconds)
R 50 agents’ maximum sensing range
k 80 number of time-steps of the simulation

Table 7.1: Quadrotor local tracking SDP parameters.
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Figure 7.3: Quadrotor local SDP path.
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Figure 7.4: Quadrotor local SDP performance.

This simulation took 0.6 seconds per time-step to run using SeDuMi 1.3 in MATLAB R2012a, which

represents a great improvement and matches our objectives. The time complexity of this problem can

be derived analytically, it is a SDP which uses interior-point methods. The time complexity is given by

O(max{o3, o2c}) (see Nemirovski [39]), where o represents the number of optimisation variables and c

the number of constraints.

In this case, the number of optimisation variables is o = 9N and the number of constraints c =

24N + 8m + 2, where N is the predictive horizon and m the number of targets. Therefore the time

complexity of this problem depend mainly on the predictive horizon N but it also increases with the

number of targets m. The dependence with the number of targets is linear, i.e., our algorithm is O(m).

Since this problem is defined locally for each agent, there is no dependence with the number of agents:

each agent solves its own tracking problem in a parallel fashion.
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7.2 Local tracking problem for a fixed-wing

Using a single fixed-wing (Figure 2.3), we recall the discrete-time fixed-altitude nonholonomic Dubins car

model

xk+1 ≡



Ek+1

Nk+1

θk+1


 = fwing(xk, uk) ≡



Ek

Nk

θk


+



VM cos θk

VM sin θk

uk


∆t,

s.t. − umax ≤ u ≤ umax,

(7.11)

where x is the state of the fixed-wing given by its 2D position [E,N ]> and orientation θi, the scalar input

u corresponds to the change of heading command, and ∆t is the sampling period. These agents fly with

constant velocity VM and with a fixed-altitude xpos = [E,N, h̄]>. We also consider that the fixed-wings

have a maximum turning rate.

7.2.1 Performance criterion

Using the our performance criterion (4.5), used in centralised approach (Problem 3) for the single fixed-

wing case, rewritten in the same manner as the quadrotors’ case, using the optimisation variables U =

ut,X = xt+1,θ = θt+1, t = {k, ..., k +N − 1}, stacked as

o =



ut

xt+1

θt+1


 =




ut

Et+1

Nt+1

θt+1



, t = {k, ..., k +N − 1},

and defining, using the Kronecker product ⊗,

Q1 = I2N , Q2 =

[
02(N−1)×2(N−1)

I2

]
, d =

[
−2

m∑
q=1

tqk,pos

]

2×1

, c1 = [1N×1 ⊗ d], c2 =

[
02(N−1)×1

d

]
,

(7.12)

we can also write the performance criterion in a quadratic form for the fixed-wing case

J̄ = X>[mQ1 +mϕQ2]X + U>[ρIN ]U + [c1 + ϕc2]>X.

7.2.2 Linear equality constraints

Considering the linear equality constraints in (4.6) of the Problem 3 for a single fixed-wing, we can

formalise them in the form

Aeqo = beq,

with

Aeq =




[
−∆t 0 0 1

]
[
0 0 0 −1

] [
−∆t 0 0 1

]

. . .
. . .[

0 0 0 −1
] [
−∆t 0 0 1

]



, (7.13)

and

beq =

[
θk

0(N−1)×1

]
. (7.14)
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7.2.3 Non-linear equality constraints

Considering the non-linear equality constraints in (4.6) of the Problem 3 for a single fixed-wing, we can

formalize it in the form

Anonlino + dnonlin(o) = bnonlin,

with

Anonlin =




[
02×1 I2 02×1

]
[
02×1 −I2 02×1

] [
02×1 I2 02×1

]

. . .
. . .[

02×1 −I2 02×1

] [
02×1 I2 02×1

]



,

(7.15)

dnonlin = −VM∆t




[
cos θk

sin θk

]

...[
cos θk+N−1

sin θk+N−1

]



, (7.16)

and

bnonlin =




[
Ek

Nk

]

02(N−1)×1


 . (7.17)

7.2.4 Inequality constraints

Considering the inequality constraints in (4.6) of the Problem 3 for a single fixed-wing, we can formalise

them in the form

Aineqo ≤ bineq,

with

Aineq = IN ⊗
[

1 0 0 0

−1 0 0 0

]
, (7.18)

and

bineq = 1N×1 ⊗
[
umax

umax

]
. (7.19)

7.2.5 Full target coverage constraint

Using the same worst case scenario, modelled by

tq,∗k+1,pos = tqk,pos +
Wmax

||tqk,pos − xk,pos||

(
tqk,pos − xk,pos

)
∆t, q = {1, ...,m}. (7.20)

we can reintroduce the full target constraint as in (7.10):

Mq =

[
I3 (xk+2,pos − tq,∗k+1,pos)

(xk+2,pos − tq,∗k+1,pos)
> R2

]
� 0, q = {1, ...,m}.

Note that again here a change in the input uk has effects only in the position two time-steps ahead

xk+2,pos. Therefore, we will implement the full target constraint again with a two steps horizon.
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7.2.6 Non-convex Problem

Having the constraints defined, and simplifying again the performance criterion in the epigraph form

min
o
J̄(o) s.t.

[
[mQ1 +mϕQ2]−1 X

X> βX

]
� 0 ∧ βX ≥ 0 ∧

[
[ρIN ]−1 U

U> βU

]
� 0 ∧ βU ≥ 0,

J̄(o) := [c1 + ϕc2]>X + βX + βU,

we can formulate our local tracking problem for the fixed-wing case. However, we end up with a non-

convex problem due to the presence of non-linear equality constraints Anonlino + dnonlin(o) = bnonlin.

7.2.7 Linearisation of the non-linear dynamics

In order to convexify our problem, there are different ways of linearising non-linear constraints

1. Feedback dynamic inversion: this technique is widely used in the literature (see Keviczky et al. [27])

as it obtains a reasonable good performance. However it is difficult to apply for this case, we want

to control at least 2N outputs (positions (Ek+t, Nk+t)
N
t=1) using only N control variables (changes

of heading (uk+t−1)Nt=1);

2. Non-holonomic transformation: our vehicle dynamics, the Dubins car, is a nonholonomic dynamics.

In Fazenda and Lima [21], the Authors cover the case when the dynamics can be made holonomic by

using a suitable transformation. They define a mapping from the initial variables to the holonomic

dynamics variables. However in our case, we still have constraints in the actual position of the

agents. Thus, even if we find a transformation which makes the dynamics holonomic, we will need

to have the inverse of the transformation for the positions’ constraints which will lead to non-linear

constraints once more;

3. Sequential Convex Programming : perhaps the most suitable for this rather “simple” discrete-time

case. Using the first Taylor expansion of nonlinear functions, the Sequential Convex Programming

(Definition 19) linearises the equality constraints and the problem becomes a Semi-Definite Positive

program. We compute a SDP optimisation around the linearised vector θ0, then we update the

initial vector θ0 and we run the optimisation again until the stopping criterion is met.

7.2.8 Sequential Convex Programming

To solve our fixed-wing local tracking, we propose to use a Sequential Convex Programming.

Definition 19 (Sequential Convex Programming (SCP)). A Sequential Convex Programming (SCP) is

a local optimisation method for non-convex problems, where convex portions of the problem are solved

efficiently (in our case using a Semi-Definite Positive program). SCP starts with an initial point (initial-

headings θ0) and it updates this point by

θ0,i+1 = (1− α)θ0,i + αθ∗i (θ0,i), (7.21)

where α is the step-size, θ0,i the linearised point and θ∗i (θ0,i) = [θk+1, ..., θk+N−1]> the solution of the

linearised convex SDP. The Sequential Convex Programming stops when the distance between the new

linearised point and the solution obtained is small enough

||θ0,i+1 − θ∗i (θ0,i)|| < ε. (7.22)
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The choice of the step-size plays an important role in the SCP performance. Two main techniques

can be used for determining the step-size α in Sequential Convex Programming problems:

• Line-search methods: the step-size is the variable of a line-search optimisation (see Bertsekas [5]).

Assuming the initial point θ0 and its SDP solution θ∗(θ0), the initial point is updated following

(7.21), where the step-size α is computed using the line-search

α = min
α∈[0,s]

J̄((1− α)θ0 + αθ∗(θ0)) + λh((1− α)θ0 + αθ∗(θ0)), (7.23)

where J̄ is the cost function, λ is the vector with the Lagrangian multipliers of the equality con-

straints, h is the absolute value of the original nonlinear equality constraints h = |Anonlino +

dnonlin(o)− bnonlin|, and s bounds the step-size 0 < s < 1 to avoid large steps at a time.

This method requires the computing another optimisation problem in addition to the linearised

convex Semi-Definite Positive program. Also, the line-search problem is a non-convex problem

which is generically difficult to solve. However this problem is a single-variable unconstrained

one which can be solved in a relatively efficient way. Nevertheless, it will still require an extra

computational effort which we wish to avoid.

• Trust-region methods: another option is the use of the so-called trust-regions (see Conn et al. [14]).

In this method the step-size α is fixed and there is no need of solving another optimisation problem,

instead a constraint is added to the linearised convex SDP problem to bound the solution θ∗(θ0).

The idea is guarantee a more precise linearisation by bounding the solution of the convex problem

to a trust-region around the initial point

(
θ∗(θ0)− θ0

)
∈ T .

The most common trust region used, which will be also considered here, is to constraint the solution

to a box around the linearised point. Therefore we constrain the solution vector element-wise

|θ∗k+t(θ0)− θ0,k+t| ≤ τ ⇔
[
θ∗k+t(θ0)

−θ∗k+t(θ0)

]
≤
[
τ + θ0,k+t

τ − θ0,k+t

]
, t = {1, N − 1}. (7.24)

Then, adding the constraint (7.24), we can run the SDP algorithm and update the linearised point

using a fixed step-size in (7.21) until the stopping criterion is met (7.22). This method adds no

extra computational power and it guarantees that each optimisation solution is close enough to the

linearised point, i.e., the solution is inside the trust-region where the linearisation is considered to

be a good approximation of the non-linear function. The trust-region should be tuned (see Boyd

[9]) since

– τ too large leads to poor approximations and possibly a bad choice for θ∗(θ0),

– τ too small ensures good approximations but the progress gets slower.

Fixing an initial headings-vector θ0 = [θ0,k+1, ..., θ0,k+N−1]>, we linearise the trigonometric functions

cosine and sine using the first Taylor expansion





cos θk+t ≈ cos θ0,k+t − sin θ0,k+t

(
θk+t − θ0,k+t

)

sin θk+t ≈ sin θ0,k+t + cos θ0,k+t

(
θk+t − θ0,k+t

) , t ∈ {1, ..., N − 1},
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where the linearisation precision is inversely proportional to the distance towards the linearised point

|θt − θ0,t|. In our case, it means that the turns of our fixed-wing should be smooth and the heading rate

u should be bounded to a short interval.

We can rewrite the non-linear equality constraint as another linear equality constraint

Anonlino + dnonlin(o) = bnonlin ⇒ Aeq2(θ0)o = beq2(θ0), (7.25)

with

Aeq2(θ0) =




Q3

Q4(θ0,k+1) Q3

. . .
. . .

Q4(θ0,k+N−1) Q3



,

Q3 =
[
02×1 I2 02×1

]
,Q4(θ0,k+t) =

[
02×1 −I2 −VM∆t

[
− sin(θ0,k+t)

cos(θ0,k+t)

]]
,

(7.26)

and

beq2(θ0) =




[
Ek

Nk

]
+ VM∆t

[
cos θk

sin θk

]

VM∆t

[
cos θ0,k+1 + θ0,k+1 sin θ0,k+1

sin θ0,k+1 − θ0,k+1 cos θ0,k+1

]

...

VM∆t

[
cos θ0,k+N−1 + θ0,k+N−1 sin θ0,k+N−1

sin θ0,k+N−1 − θ0,k+N−1 cos θ0,k+N−1

]




. (7.27)

Thus, our linearised local tracking problem becomes a convex Semi-Definite Positive program.

Problem 7 (Fixed-wing local linearised Tracking Problem in a SDP form).

Given the optimisation variables U = ut,X = xt+1 =

[
Et+1

Nt+1

]
,θ = θt+1, t = {k, ..., k+N − 1},

stacked as

o =



ut

xt+1

θt+1


 =




ut

Et+1

Nt+1

θt+1



, t = {k, ..., k +N − 1},

a fixed headings vector

θ0 =




θ0,k+1

...

θ0,k+N−1


 ,

and the cost function

J̄(o) := c>X + β, (7.28)
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we define the problem

min
o
J̄(o) s.t.





Aeqo = beq,

Aineqo ≤ bineq,

Aeq2(θ0)o = beq2(θ0),

Mq =


 I3 (xk+2,pos − tq,∗k+1,pos)

(xk+2,pos − tq,∗k+1,pos)
> R2


 � 0, q = {1, ...,m},


QX

−1 X

X> βX


 � 0, βX ≥ 0,


QU

−1 U

U> βU


 � 0, βU ≥ 0,

(7.29)

where c = [c1 + ϕc2], β = βX + βU, QX = [mQ1 + mϕQ2] and QU = [ρIN ]. The matrices

Q1,Q2, c1, c2,Aeq,beq,Aineq,bineq,Aeq2(θ0),beq2(θ0) are defined in (7.12), (7.13), (7.14), (7.18),

(7.19), (7.26), (7.27). The worst case scenario tq,∗k+1,pos, q = {1, ...,m} defined in (7.20).

The parameters of the problem are

N predictive horizon

m number of targets

ρ, ϕ performance weighting factors

VM , umax, h̄ agents’ specifications

Wmax targets’ maximum velocity

∆t sampling period

R agents’ maximum sensing range.

We implemented a Trust-region Sequential Convex Programming to solve the linearised local SDP

(Problem 7). Defining the parameters

α step-size

τ trust-region

ε stopping criterion

imax maximum number of iterations,

we implement our SCP algorithm.

Algorithm 3 (Sequential Convex Programming (SCP)).

- for every time-step k of the Tracking Problem 7, initiate the SCP with i := 0

- given a step-size α and a trust-region τ

- given a stopping criterion ε and a maximum number of iterations imax

- defining the starting point with the current heading θ0,0 := 1(N−1)×1 ⊗ θk
repeat

1. Determine the optimal θ∗(θ0,i) solving the linearised local tracking Problem 7, constrained

to the trust-region inequality constraint (7.24)

2. Update the linearisation point θ0,i+1 = (1− α)θ0,i + αθ∗i (θ0,i), i = i+ 1

until the stopping criterion is satisfied ||θ0,i − θ∗i−1(θ0,i−1)|| < ε ∨ i = imax.

Note that this Sequential Convex Programming problem becomes fully convex, it solves iteratively the

linearised fixed-wing SDP (defined with a convex cost function subjected to convex inequality constraints
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and linear equality constraints). Once more, the solver SeDuMi from the MATLAB toolbox YALMIP

(Lofberg [31]) is used to compute each SDP optimisation.

Parameter Value Description
N 3 finite horizon
m 10 number of targets
ρ, ϕ 0.01, 0.01 performance weighting factors

VM , umax, h 2, 0.8, 10 agents’ specifications
Wmax 3 targets’ maximum velocity

∆t 1 time-step (in seconds)
R 50 agents’ maximum sensing range
k 80 number of time-steps of the simulation

Table 7.2: Fixed-wing local tracking SDP parameters.
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Figure 7.5: Fixed-wing non-linear local tracking
SDP path.
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Figure 7.6: Fixed-wing non-linear local tracking
SDP performance.

The same simulation presented in the local TP for a quadrotor with multiple moving targets is

simulated here for a fixed-wing. The simulation parameters are presented in Table 7.2, and the results

using the original non-linearised non-convex problem using the MatLab tool fmincon are presented in the

Figures 7.5,7.6.

max # iterations trust-region time per time-step mean of stationary performance
imax = 1 τ = 0.8 0.5 seconds J̄ = 9811
imax = 2 τ = 0.7 0.8 seconds J̄ = 9765
imax = 3 τ = 0.6 1.3 seconds J̄ = 9640
imax = 4 τ = 0.4 1.8 seconds J̄ = 9632
imax = 5 τ = 0.4 2.3 seconds J̄ = 9611

Table 7.3: Fixed-wing SCP parameters and results.

The results using our Sequential Convex Programming to solve the linearised SDP problem are presen-

ted in the Figures 7.7,7.8. Fixing the stopping criterion ε = 0.01 rad, different values for the step-size α

are tested, ending up with α = 0.3 as the more suitable one. Then, different values for the trust-region

τ(imax) as a function of the maximum number of iterations imax are simulated. I.e., for a given maximum

number of iterations, we pick the most suitable value for the trust-region. The list of the parameters used

in the SCP, and their respective results, are summarized in Table 7.3. These simulations are obtained
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Figure 7.7: Fixed-wing linearised local tracking
SCP paths: the red crosses represent the targets
final positions and the coloured lines the agent
path obtained with different SCP parameters.

Figure 7.8: Fixed-wing linearised local tracking
SCP performances.

using our Sequential Convex Programming Algorithm 3 and SeDuMi 1.3 in MATLAB R2012a to solve the

local linearised fixed-wing Tracking Problem.

Comparing the non-linear and the SCP results, the performance and the path are quite similar. The

Sequential Convex Programming has more oscillations due to the approximations done in the linearisation,

but it offers an easier implementation due to its convex SDP formulation.

The Sequential Convex Programming has a similar time complexity to the SDP, i.e., given by

O(max{io3, io2c}), where o is the number of optimisation variables o = 4N , c the number of constraints

c = 15N + 8m+ 2, and i the number of SDP iterations. Therefore, the time complexity depends mainly

on the finite horizon N and, obviously, on the number of SDP iterations i. The dependence with the

number of targets is linear, i.e., our algorithm is O(m). Since this problem is defined locally for each

agent, there is no dependence with the number of agents: each agent solves its own tracking problem in

a parallel fashion.

Regarding the different SCP simulations, the cost-function decreases with the number of iterations.

However, the time spent per time-step increases almost proportionally with imax. The most interesting

trade-off are the ones obtained with a maximum number of iterations of two or three. We will consider

the case with imax = 2, τ = 0.7, α = 0.3, ε = 0.01 which runs with a rate of 0.8 seconds per time-step.
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Chapter 8

Distributed two-layer algorithms

In this chapter we define the final agent algorithms for our two-layer approach: using synchronous-reliable

communication (Synchronous-distributed Algorithm 4) and using a asynchronous-unreliable communica-

tion (Asynchronous-distributed Algorithm 5). Equivalence between our novel two-layer approach and the

centralised approach is proved under some conditions. The implementation with heterogeneous teams

and emergency manoeuvres are also discussed.

8.1 Agent algorithms

In this section the algorithms to be implemented on each agent are presented. The pseudo-code of our two-

layer approach, which has an Assignment Problem and a Tracking Problem component, is implemented

locally on each agent.

8.1.1 Synchronous-distributed two-layer algorithm

Considering a synchronous-reliable communication protocol, the synchronous-distributed two-layer al-

gorithm can be implemented. The pseudo-code scheme of each agent i is presented in Figure 8.1, and

described in Algorithm 4.

Figure 8.1: Synchronous-distributed two-layer algorithm of Agent i.

The synchronous-distributed two-layer algorithm receives three inputs:

1. the current state of the agent xik obtained using a GPS/INS sensor (Assumption 1),

2. the current sensing measurements of all the targets inside the tracking region {tqk}mq=1 : tqk ∈ vik
which are within the agent’s sensing range Ri (2.16),

3. the set of neighbours j = {1, ..., ni} (Definition 16).
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Regarding the Assignment Problem, the agent computes the targets-centroid of its tracking region

C(vik). Then, the agent sends this value to all its neighbours. Finally, for every neighbour j, it receives

back its targets-centroid C(vjk) and uses it to update its own tracking region.

Using its current tracking region vik, the Tracking Problem is solved differently for a quadrotor and

a fixed-wing. For a quadrotor the local SDP is solved, while for a fixed-wing a Sequential Convex

Programming solves the local linearisation SDP iteratively. Finally, we steer the agent using the first

control variable solution uk of the Tracking Problem.

Algorithm 4 (Synchronous-distributed two-layer algorithm of Agent i).

repeat

1. Input: xik, {tqk}mq=1 : tqk ∈ vik, set of neighbours j = {1, ..., ni}
2. Compute centroid: C(vik) (6.13 of Chapter 6)

3. Communicate to all the neighbours: C(vik)

4. Receive from all the neighbours: C(vjk), j = {1, ..., ni}
5. Update tracking region: vik+1 using C(vjk), j = {1, ..., ni} (6.14a of Chapter 6)

6. Solve local tracking problem: obtain the control variables u

Quadrotor: Solve the SDP Problem 6 (Chapter 7)

Fixed-wing: Run the SCP Algorithm 3, solving the linearised SDP Problem 7 (Chapter 7)

7. Steer the agent: apply first control variable uk

until the simulation is stopped.

8.1.2 Asynchronous-distributed two-layer algorithm

Considering an asynchronous-unreliable communication protocol, the asynchronous-distributed two-layer

algorithm can be implemented. The pseudo-code scheme of each agent i is presented in Figure 8.2, and

described in Algorithm 5.

Figure 8.2: Asynchronous-distributed two-layer algorithm of Agent i.

The asynchronous-distributed two-layer algorithm receives the same three inputs as Algorithm 4: xik,

{tqk}mq=1 : tqk ∈ vik and the set of neighbours j = {1, ..., ni}.
Regarding the Assignment Problem, the agent calls its Lloyd process, a randomly persistent stochastic

process. It decides to “gossip” with one neighbour with a probability of pgossip = 1/n. If the agent does

not communicate, it updates its new tracking region vik+1 = vik and the algorithm continues with the

Tracking Problem (step 7.). Otherwise, the agent selects a random neighbour j and computes the targets-

centroid of its tracking region C(vik). Then, the agent sends this value to the neighbour j and receives

back its targets-centroid C(vjk). Finally, it updates its own tracking region using the information received.
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Using the tracking region vik, the Tracking Problem is solved as in Algorithm 4, for a quadrotor and a

fixed-wing. Then, we steer the agent using the first control variable solution uk of the Tracking Problem.

Algorithm 5 (Asynchronous-distributed two-layer algorithm of Agent i).

repeat

1. Input: xik, {tqk}mq=1 : tqk ∈ vik, set of neighbours j = {1, ..., ni}
2. Lloyd process: jump with probability (1− pgossip) to 7., pick a random neighbour j

3. Compute centroid: C(vik) (6.13 of Chapter 6)

4. Communicate to neighbour: C(vik)

5. Receive from neighbour: C(vjk)

6. Update tracking region: vik+1 (6.14a of Chapter 6)

7. Solve local tracking problem: obtain the control variables u

Quadrotor: Solve the SDP Problem 6 (Chapter 7)

Fixed-wing: Run the SCP Algorithm 3, solving the linearised SDP Problem 7 (Chapter 7)

8. Steer the agent: apply first control variable uk

until the simulation is stopped.

8.1.3 Algorithms discussion

The presented synchronous- and asynchronous-distributed local algorithms implement in each agent our

distributed two-layer approach of multi-UAV multi-target tracking problem.

Regarding the communication protocol between neighbour agents, the synchronous-distributed al-

gorithm needs a synchronous and reliable protocol where every pair of neighbour agents communicate

with each other at every time-step. The asynchronous-distributed algorithms is implementable with an

asynchronous and unreliable protocol where only one pair of neighbour agents communicate in average

at each time-step. The required bandwidth is two coordinates (E,N) per message. The Assignment

Problem is fully described and analysed in Chapter 6.

Regarding the computational required on-board, it is required for each UAV to have a Semi-Definite

Positive program (SDP) solver. Using the solver SeDuMi 1.3 in MATLAB R2012a, the Tracking Problem

is solved within a second for the quadrotor and the fixed-wing case, using a scenario with n = 10 agents,

m = 100 targets and N = 3 predictive horizon. Regardless the vehicle dynamics, the time complexity is

linear with the number of targets O(m), and it does not depend on the number of agents n. The Tracking

Problem is derived and analysed in Chapter 7.

Remark 6 (Distributed two-layer algorithms initialisation).

Considering the set of n agents placed at x0,pos, and the set of m targets placed at t0,pos inside

the tracking-plane of interest Q. Our distributed two-layer implementations have to be initialised

with an initial n-partition of Q by x0,pos (6.2), where each agent i is initialised with the tracking

region vi0(x0,pos) ⊂ Q.
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8.2 Centralised and distributed two-layer solutions comparison

We have presented two approaches to solve for our multi-target multi-UAV tracking problem. Analysing

both problem formulations, we seek to examine under which conditions the two approaches can be consider

equivalent or lead to similar results.

1. a centralised naive approach: where the problem is formulated in a fully centralised way, requiring

a central entity with constant communication with all the agents. The centralised naive approach

seeks to minimise the following performance criterion

J̄ =

k+N−1∑

t=k

[ m∑

q=1

(
min

i=1,...,n
{||xit+1,pos − tqk,pos||2}

)
+ ρ

n∑

i=1

(||uit||2)

]
+

ϕ

m∑

q=1

(
min

i=1,...,n
{||xik+N,pos − tqk,pos||2}

)
.

2. a distributed two-layer approach: where we divide the problem into a global assignment problem

and many local tracking problems, it can be implemented either using a synchronous-reliable com-

munication (distributed algorithm) or with a more generic asynchronous-unreliable protocol (gossip

algorithm). The two-layer approach is given by the solution of two problems: the global assign-

ment problem and the local tracking problems. The assignment problem seeks to find the partition

(vi)ni=1 which minimises the energy functional H(v,y). The local tracking problems, one for each

subset vi, steer the agent i to minimise the cost-function J̄ i.





H(v,y) =
n∑
i=1

( ∑
tqpos∈vi

||yi − tqpos||2
)
,

J̄ i =
k+N−1∑
t=k

[ ∑
tqk,pos∈vi

(
||xit+1,pos − tqk,pos||2

)
+ ρ||uit||2

]
+ ϕ

∑
tqk,pos∈vi

(
||xik+N,pos − tqk,pos||2

)
.

Single agent case

For the one-agent scenario, it is obvious to see that both formulations are exactly the same. With a single

agent there is no partition of the space v1 ≡ Q and both implementations seek to minimise

J̄ ≡ J̄1 =

k+N−1∑

t=k

[ m∑

q=1

(
||x1

t+1,pos − tqk,pos||2
)

+ ρ||u1
t ||2
]

+ ϕ

m∑

q=1

(
||x1

k+N,pos − tqk,pos||2
)
.

Steady-state solution

Considering static targets, we can compare the steady-state results defined as follows.

Definition 20 (Steady-state solution of a static Tracking Problem). Considering a static targets Tracking

Problem with quadrotor agents, the steady-state solution is the static positions to which the quadrotors

converge to.

Note that for the fixed-wings’ case, there are not steady-state positions because the agents do not

stop moving. The fixed-wings will instead tend to move in circles around the steady-state solution that

could be obtained using quadrotors. Therefore, analysing the centralised and the two-layer steady-state

solutions with respect to the final quadrotors’ position, we prove the following.

Theorem 4 (Steady-state solution for static targets scenario). Considering the centralised naive problem

and the distributed two-layer relaxation, under a static targets scenario, both approaches optimise the same

functional at steady-state, thus they have the same steady-state global optimum.
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Proof. For the centralised implementation, the optimal steady-state solution is given by the minimum of

the steady-state performance criterion

min
x
J̄ss =

k+N−1∑

t=k

[ m∑

q=1

(
min

i=1,...,n
{||xiss,pos−tqpos||2})+ρ

n∑

i=1

(||uiss||2)

]
+ϕ

m∑

q=1

(
min

i=1,...,n
{||xiss,pos−tqpos||2}

)
⇔

⇔ min
x
J̄ss = (N + ϕ)

m∑

q=1

(
min

i=1,...,n
{||xiss,pos − tqpos||2}

)
⇔ min

x
J̄ ′ss =

m∑

q=1

(
min

i=1,...,n
{||xiss,pos − tqpos||2}

)
,

where xiss,pos represents the steady-state position of the agent i and tqpos the position of the static target

q. Note that since the positions of the agents do not change, the input is null uiss = 0, i = 1, ..., n.

Now, we split the space Q into n tracking regions (vi)ni=1 using a Voronoi partition (Definition 11).

Picking the steady-state position of the agents (xiss,pos)
n
i=1 as the Voronoi centroids, we divide the space

into n regions that, by definition, satisfy

tqpos ∈ vi ⇔ arg min
j=1,...,n

{||xjss,pos − tqpos||2} = i,

i.e., if a target q is in the tracking region of an agent i, it means that the agent i is the closest agent to

the target q. Then, we reformulate our cost-function using the Voronoi partition vi(xss,pos) (Definition

11)

min
x
J̄ ′ss =

m∑

q=1

(
min

i=1,...,n
{||xiss,pos − tqpos||2}

)
⇔ min

x
J̄ ′ss =

n∑

i=1

( ∑

tqpos∈vi(xss,pos)

||xiss,pos − tqpos||2
)
. (8.1)

For the two-layer implementation, the agents’ steady-state position is given by the optimal value of

local performance criterion

min
xi
ss,pos

J̄ iss =

k+N−1∑

t=k

[ ∑

tqpos∈vi

(
||xiss,pos − tqpos||2

)
+ ρ||uiss||2

]
+ ϕ

∑

tqpos∈vi

(
||xiss,pos − tqpos||2

)
⇔

⇔ min
xi
ss,pos

Jiss = (N + ϕ)
∑

tqpos∈vi

(
||xiss,pos − tqpos||2

)
⇔ min

xi
ss,pos

J ′iss =
∑

tqpos∈vi

(
||xiss,pos − tqpos||2

)
. (8.2)

where the steady-state partition vi is the solution of the global assignment problem, given by the minimum

of the energy functional

min
v,y
H(v,y) =

n∑

i=1

( ∑

tqpos∈vi
||yi − tqpos||2

)
. (8.3)

Comparing the local tracking steady-state solutions (8.2) and the minimum of the solutions of the

global assignment problem (8.3), we can realise that the steady-state solutions xiss,pos indeed tend to the

centre-of-mass yi of the energy functional. Therefore, the steady-state solution satisfies xiss,pos = yi, i =

1, ..., n, and the two-layer performance criterion is given by

min
v,x
H(v,xss,pos) =

n∑

i=1

( ∑

tqpos∈vi
||xiss,pos − tqpos||2

)
,
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which is achieved considering the Voronoi partition of the space (Proposition 3)

min
x
H(xss,pos) =

n∑

i=1

( ∑

tqpos∈vi(xss,pos)

||xiss,pos − tqpos||2
)
. (8.4)

Comparing the centralised performance criterion (8.1) and the assignment performance criterion (8.4),

we conclude that the optimal steady-state solution is identical.

The Theorem 4 says that the centralised naive and the distributed two-layer problems have the same

optimal steady-state solutions (Definition 20). However, we can not ensure to have the same results using

the two different implementations, both distributed coverage algorithms (Algorithm 1 and Algorithm 2)

often end up in local minima, missing the global optimum.

Considerations for moving targets

Considering moving targets, there is no steady-state solution. The agents are constantly adapting to the

new targets’ positions. The centralised performance can be rearranged considering an optimal partition

for every time-step along the predictive horizon t = {k, ..., k + N − 1}. This optimal partition is given

by the Voronoi partition using the position of the agents at each time step as the Voronoi centroids

(vi(xt+1,pos))
n
i=1, t = k, ..., k +N − 1. The centralised performance criterion becomes

min
x
J̄ =

n∑

i=1

J̄ i(x),

J̄ i =

k+N−1∑

t=k

[ ∑

tqk,pos∈vi(xt+1pos)

(
||xit+1,pos−tqk,pos||2

)
+ρ||uit|||2

]
+ϕ

∑

tqk,pos∈vi(xk+N,pos)

(
||xik+N,pos−tqk,pos||2

)
.

(8.5)

Comparing the centralised performance criterion per agent (8.5), with the local performance criterion

of the two-layer approach

J̄ i =

k+N−1∑

t=k

[ ∑

tqpos∈vi

(
||xit+1,pos − tqk,pos||2

)
+ ρ||uit||2

]
+ ϕ

∑

tqpos∈vi

(
||xik+N,pos − tqk,pos||2

)
, (8.6)

we can realise that the only difference is in the partition (vi)ni=1 chosen for each case

1. centralised naive approach partition: every time step, n partitions along the predictive horizon are

computed centrally. These partitions divide the set of targets by their closest agent, for every future

agents’ positions

(vit)
n
i=1 = (vi(xt,pos))

n
i=1, t = k + 1, ..., k +N. (8.7)

2. distributed two-layer approach partition: every agent has its own tracking region, updated every

time-step (distributed algorithm) by communicating with its direct neighbours, or updated sporad-

ically (gossip algorithm) by communicating with only one of its direct neighbour agents. These

partitions tend to the minimum of the energy functional, given the Voronoi partition over the

points y

H(v,y) =

n∑

i=1

( ∑

tqpos∈vi
||yi − tqpos||2

)
⇒ H(y) =

n∑

i=1

( ∑

tqpos∈vi(y)

||yi − tqpos||2
)
,
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which we have seen to be equal to the performance criterion of the centralised implementation at

steady-state (see Equation (8.1)).

Therefore we can see clearly here the differences between the two implementations. The tracking

criterion is the same, however the space partition is done differently. In the centralised approach, the

partition is given by the predicted agents’ positions over the predictive horizon (8.7). However, in the

distributed approach, the partition is done by a different variable y which tends to the steady-state

position of the agents if we consider static targets. Considering moving targets, both the partition

variable y (which follows the “centring and partition” algorithm) and the position of the agents (which

tends to the targets’ centre-of-mass) have the same optimal position.

Note that, it is very unlikely that both implementations will end up with the same results for the

moving targets scenario. However, it is shown that both solutions are related, and the slower the targets

move, the closer the agents get to the steady-state solution and the more similar are both implementations.

8.3 Heterogeneous teams

Regarding the use of heterogeneous teams, the proposed two-layer algorithms allow the use of

• Quadrotors and Fixed-wings combinations: with our novel two-layer approach the Assignment Prob-

lem and the Tracking Problem are solved independently. Once having the Assignment Problem in-

dependent of the vehicle dynamics, the agents’ model only influences the local Tracking Problems.

Thus, our two-layer approach inherently allows the use of different vehicle dynamics.

• Different sensing capabilities: the use of agents with different sensing ranges is also possible with

the current implementation. In Remark 3 (Chapter 6), the Voronoi n-partitions is relaxed to Power

Voronoi n-partitions (Definition 12). These partitions introduce power-factors (wi)ni=1 which allow

to assign more tracking-space to some agents and less to others. These weights can be seen as a

measure of the relative sensing-capability of each agent comparing with the others.

8.4 Emergency manoeuvres

To complement our algorithm, we add a some manoeuvres to face two “emergency” situations. Both

manoeuvres represent punctual situations that we seek to solve in order to continue with the optimal

tracking task. Simulations regarding these manoeuvres can be seen in Chapter 9.

8.4.1 Collision avoidance

The first manoeuvre to add to our algorithm relates to the collision avoidance between our agents. Two

agents are in danger of colliding when their position is closer than a given range RCA (8.8).

∀i=1,...,n∃j=1,...,n,j 6=i : ||xi − xj || < RCA, (8.8)

Therefore, when this situation occurs, the collision avoidance algorithm starts. Note that this situation

is unlikely to occur because each agent has its own tracking region and its position tends to be inside

this region.

Algorithm 6 (Collision Avoidance).
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- choose from the two agents in conflict (i, j) : ||xi − xj || < RCA, the agent i with the highest

altitude hi ≥ hj (or choose randomly if they have the same altitude)

repeat

1. Guide the agents in the E,N plane normally using the two-layer algorithms

2. if hi < hj + RCA, then increase the altitude of the agent i towards hj + RCA, else

maintain the altitude hi of the agent i

3. Maintain the altitude hj of the agent j

until ||xi − xj || ≥ RCA
- for the fixed-wings’ case, bring the agent i back to the fixed altitude hi = h̄

For both agents’ dynamics, and after an initial transitory phase in the quadrotors’ case, the multi-

target multi-UAV tracking is done entirely in a plane with fixed altitude: h̄ for fixed-wings and hmin for

quadrotors. Therefore, the third space dimension, the altitude, can be successfully used for this collision

avoidance manoeuvre. Note that for the fixed-wings’ case, we have to bring back the agent to the fixed

altitude h̄; but for the quadrotors’ case, this is done automatically by the algorithm.

8.4.2 Agents refuelling

UAVs are typically flying agents with a short endurance. The use of Low Altitude Short Endurance

(LASE) UAVs is considered inexpensive and highly suitable for real applications, however due to their

short endurance, intelligence to return for refuelling has been considered (Casbeer et al. [12]).

The problem of allowing agents to refuel is basically the same problem as dealing with a slow dynamic

changing number of agents. When one agent needs to refuel, it leaves its mission and we have to

compensate in order to run the target-tracking algorithm with one agent less. In a similar way, when one

agent returns from refuelling, the number of agents at our disposal increases by one.

Thus, two algorithms will be proposed, an agent departure and an agent arrival algorithm, which

simulation results can be seen in Chapter 9.

Algorithm 7 (Agent Departure).

- given a departure agent j

- pick randomly one of the neighbours (agent i) of the departing agent j

- rearrange the tracking region vik+1 = vik ∪ vjk
- remove the agent j from the set of agents nk+1 = nk − 1

Algorithm 8 (Agent Arrival).

- given an arrival agent j

- pick randomly one agent (agent i)

- guide the new agent j to the tracking region vi

- split the tracking region into two

vik+1 = vik ∩B(C(xik), C(xjk))

vjk+1 = vik ∩B(C(xjk), C(xik))

- add agent j to the set of agents nk+1 = nk + 1
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Chapter 9

Algorithm results

In this chapter our two-layer approach is simulated and compared with the original centralised for-

mulation. First, using static targets, the results using the centralised, synchronous-distributed and

asynchronous-distributed are compared for both quadrotor and fixed-wing agents. These simulations,

specially using quadrotors, help us analysing the steady-state solution (Definition 20) for the three al-

gorithms.

Then, the set of simulations is repeated using slow moving targets (targets moving slower than the

agents) and fast moving targets (targets moving faster than the agents). Instead of analysing the steady-

state results, using moving targets we are more interested in comparing how the different algorithms

adapt to more dynamic environments.

To summarise, the three algorithms implemented are: (1) the centralised naive approach, (2) the

two-layer synchronous-distributed approach, (3) the two-layer asynchronous-distributed approach. Using

two agent models: (a) quadrotors, (b) fixed-wings. With three different targets’ scenarios: (i) nearly

static targets Wmax = 0.01, (ii) slow moving targets Wmax = 1, (iii) fast moving targets Wmax = 3. And

using the simulation parameters presented in Table 9.1.

Parameter Value Description
N 3 finite horizon
n,m 10, 100 number of agents, targets
ρ, φ 0.01, 0.01 performance weighting factors

hmin, vmax, fmax 10, 2, 2 quadrotors’ specifications
h̄, VM , umax 10, 2, 0.8 fixed-wings’ specifications
imax, τ, α, ε 2, 0.7, 0.2, 0.01 SCP parameters
Wmax 0.01 & 1 & 3 different targets’ maximum velocity
R 40 agents’ sensing range
∆t 1 time-step (in seconds)
k 60 number of time-steps of the simulation

Table 9.1: Final simulations parameters with different targets’ velocities.

Note that the maximum quadrotors velocity is vmax = 2 and the constant fixed-wings velocity is

VM = 2 (Table 9.1). Therefore, the slow (fast) moving targets scenario correspond to assuming that the

targets move slower (faster) than the agents.
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Figure 9.1: Static targets quadrotors performance.
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Figure 9.2: Static targets fixed-wings performance.
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Figure 9.3: Static targets quadrotors path: the red
crosses represent the targets final positions and the
coloured lines the agents path obtained with the
algorithms of Figure 9.1.
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Figure 9.4: Static targets fixed-wings path: the red
crosses represent the targets final positions and the
coloured lines the agents path obtained with the
algorithms of Figure 9.2.
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Figure 9.5: Static targets final
synchronous-distributed parti-
tion (quadrotors, fixed-wings).
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Figure 9.6: Static targets final
asynchronous-distributed parti-
tion (quadrotors).
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Figure 9.7: Static targets final
asynchronous-distributed parti-
tion (fixed-wings).
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Figure 9.8: Slow targets quadrotors performance.
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Figure 9.9: Slow targets fixed-wings performance.
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Figure 9.10: Slow targets quadrotors path: the red
crosses represent the targets final positions and the
coloured lines the agents path obtained with the
algorithms of Figure 9.8.
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Figure 9.11: Slow targets fixed-wings path: the red
crosses represent the targets final positions and the
coloured lines the agents path obtained with the
algorithms of Figure 9.9.
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Figure 9.12: Slow targets final
synchronous-distributed parti-
tion (quadrotors, fixed-wings).
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Figure 9.13: Slow targets final
asynchronous-distributed parti-
tion (quadrotors).
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Figure 9.14: Slow targets final
asynchronous-distributed parti-
tion (fixed-wings).
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Figure 9.15: Fast targets quadrotors performance.
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Figure 9.16: Fast targets fixed-wings performance.
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Figure 9.17: Fast targets quadrotors path: the red
crosses represent the targets final positions and the
coloured lines the agents path obtained with the
algorithms of Figure 9.15.
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Figure 9.18: Fast targets fixed-wings path: the red
crosses represent the targets final positions and the
coloured lines the agents path obtained with the
algorithms of Figure 9.16.
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Figure 9.19: Fast targets final
synchronous-distributed parti-
tion (quadrotors, fixed-wings).
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Figure 9.20: Fast targets final
asynchronous-distributed parti-
tion (quadrotors).
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Figure 9.21: Fast targets final
asynchronous-distributed parti-
tion (fixed-wings).
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In Figures 9.1-9.7, we can see the results for the three algorithms using quadrotors and fixed-wings

for a nearly static scenario Wmax = 0.01. In Figures 9.1 and 9.2, we see the cost-function of the three

implementations for quadrotors and fixed-wings respectively. Considering the steady-state solutions of

the quadrotors’ case, we realise that the algorithms do not converge to the same optimal. We have

a centralised algorithm which finds the best solution, and nearby optima for the two-layer approach

(synchronous-distributed and asynchronous-distributed). Note that the asynchronous solution is better

than the synchronous one, as expected in Chapter 6.

Despite converging slower, the asynchronous-distributed algorithm is able to avoid local minima better

than the synchronous-distributed algorithm which demands more communication. In Figures 9.6 and 9.7,

we see the two final partitions obtained with the asynchronous-distributed algorithm (for quadrotors and

fixed-wings). They are different from each other due to the randomness of our asynchronous algorithm,

and they are both better than the final partition obtained with the synchronous-distributed Algorithm

9.5. Therefore, we motivate that for static and nearly-static cases, the asynchronous-distributed algorithm

not only needs less communication but also performs better than the synchronous-distributed algorithm.

The fixed-wings’ case has worse results than the quadrotors’. They tend to oscillate around the steady-

state solutions while achieving a considerably lower performance. This is clearly caused by the constrained

non-holonomic dynamics of these agents. Nevertheless they exhibit the same qualitative results: the

centralised algorithm performs better, the asynchronous-distributed algorithm converges slower but it

achieves a better local minimum than the synchronous-distributed algorithm which converges faster but

stops easier in local minima. In Figures 9.3 and 9.4, the path of the agents is showed.

In Figures 9.8-9.14, we show similar results obtained using the slow moving targets scenario Wmax = 1,

while in Figures 9.15-9.21, we have simulated a fast moving targets scenario Wmax = 3. For the “slow”

case, the targets move slower than the agents, and faster than the agents in the “fast” moving case. The

first remark about the moving case is that there is no steady-state solution to compare the algorithms or

the partitions. However, we can still compare the performance obtained by the different approaches.

For the moving targets’ case, the performance obtained using our novel two-layer approach is quite

similar to the centralised solution (for both communication schemes). The asynchronous-distributed al-

gorithm converges slower which affects its performance more than in the static targets’ case. However,

after some iterations the performance is less compromised and the asynchronous-distributed algorithm

obtains very similar performance to the synchronous-distributed one. Adding the fact that it can run

with an asynchronous and unreliable communication protocol, we opt for the asynchronous-distributed

algorithm has our preferred algorithm to implement the two-layer multi-UAV multi-target tracking prob-

lem.

Agents Centralized Synchronous-distributed Asynchronous-distributed
Quadrotors 146 seconds 8.2 (0.82) seconds 7.9 (0.79) seconds
Fixed-wings 94 seconds 9.4 (0.94) seconds 9.3 (0.93) seconds

Table 9.2: Simulation time in seconds per time-step (locally).

An average of the time spend in the previous simulations is presented in Table 9.2. Note that our

two-layer approach distributes the problem among the agents. Therefore, for the synchronous-distributed

algorithm and the asynchronous-distributed algorithm, the computational time spent for computing the

tracking solution is done locally by each agent. Thus, for real implementations, we need n machines, one

for each of the n agents. Each machine would take around 0.8-0.95 seconds to compute the path planning

for the respective agent at each time step, i.e., lower than one second, achieving “real-time”.

Regarding the communication needed for this implementations

• Centralized naive approach: needs a centralised entity to compute the solution of the centralised
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problem formulation, all the agents need to communicate with this central unit at all time-steps;

• Two-layer synchronous-distributed approach: each agent computes its own solution, it needs a

reliable and synchronous communication protocol where each agent needs to communicate at all

time-steps with all its direct neighbours; they only communicate two coordinates with each other

CE(vi), CN (vi);

• Two-layer asynchronous-distributed approach: each agent computes its own solution, it can be

implemented with a unreliable and asynchronous communication protocol; at each time-step only

a random pair of neighbour agents communicate with each other; they also only communicate two

coordinates CE(vi), CN (vi) with each other.

Regarding feasibility, the algorithm constraints are fulfilled during all the simulations using the distrib-

uted algorithms. The worst-case scenario analysis guarantees feasibility for the local tracking problems

as long as there is a feasible solution. The existence of a feasible solution depends mainly on the space

size, number of agents and agents sensing range which analysis is not studied here.

Noise simulations

Considering our two-layer asynchronous-distributed algorithm for a slow targets scenario (Wmax = 1)

using quadrotors, and the parameters presented in Table 9.3, we now considering the noisy sensing model

(2.15)

zi,qk = tqk,pos + ζi,qk ||xik,pos − tqk,pos||,

where ζi,qk = [ζi,qk,E , ζ
i,q
k,N , 0]>, and ζi,qk,E , ζ

i,q
k,N are zero mean Gaussian noises with standard deviation ξ.

In Figure 9.22, we can see the effect of the observing/sensing noise in our algorithm.

Parameter Value Description
N 3 finite horizon
n,m 10, 100 number of agents, targets
ρ, φ 0.01, 0.01 performance weighting factors

hmin, vmax, fmax 10, 2, 2 quadrotors’ specifications
Wmax 1 targets’ maximum velocity
R 40 agents’ sensing range
∆t 1 time-step (in seconds)
k 60 number of time-steps of the simulation

Table 9.3: Noise simulations parameters.

Feasibility is accomplished during the entire simulation for the different observing noises. Relaxing

the targets perfect observation assumption, one can conclude that the performance is not compromised

until an unitary standard deviation ξ = 1. For greater deviation, i.e. for poorer target-tracking sensors,

the performance starts being compromised. However, the qualitative results are maintained and the

performance decreases when the noise increase as expected.

Considering the exactly the same scenario as before, we also attempt to relax the Assumption 1 by

consider imperfect actuators. The steering actuator is now modelled by

uik = uik + σik,

where σik = [σik,E , σ
i
k,N , σ

i
k,h]> and σik,E , σ

i
k,N , σ

i
k,h are zero mean Gaussian noises with standard deviation

µ.
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Figure 9.22: Slow targets with observing noise per-
formance.
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Figure 9.23: Slow targets with actuating noise per-
formance.

One can conclude that our algorithm is more sensitive to actuating noise than to sensing noise (Figure

9.23). Feasibility is not always accomplished the simulations due to the vehicle dynamics constraints.

Also, even with a small standard deviation error of µ = 0.02, the decrease of performance is not neg-

lectable. For larger noises µ = 0.1, 0.3, the performance deviates from the noiseless solution, and the

dependence with the level of noise is not as clear as for the observations noise. Therefore, we conclude

that the proposed algorithm needs precise actuators to steer the UAVs accurately.

Emergency manoeuvres

Regarding the emergency manoeuvres, we consider the two-layer asynchronous-distributed algorithm

for slow targets scenario (Wmax = 1). We simulate the agents’ collision avoidance algorithm using

fixed-wings (Figure 9.24) and the agents’ refuelling algorithm using quadrotors (Figure 9.25), the list of

parameters can be seen in Table 9.4.

Parameter Value Description
N 3 finite horizon
n,m 2 & 3, 100 number of fixed-wings & quadrotors, targets
ρ, φ 0.01, 0.01 performance weighting factors

h̄, VM , umax 10, 2, 0.8 fixed-wings’ specifications
hmin, vmax, fmax 10, 2, 2 quadrotors’ specifications

Wmax 1 targets’ maximum velocity
RCA 10 collision avoidance range
R 120 agents’ sensing range
∆t 1 time-step (in seconds)
k 100 number of time-steps of the simulation

Table 9.4: Emergency manoeuvres simulations parameters.

To test the agents’ collision avoidance algorithm, we force a danger of collision situation between two

fixed-wings. Once the two agents stabilise around the centre of their tracking regions, we switch their

tracking regions. Therefore, the first agent goes towards the second agent position and vice-versa. The

collision is avoided by agent 1 which increases its altitude. After the desired separation is replaced, the

agent 1 returns to its fixed-altitude h̄.

The agents’ refuelling is simulated and its performance shown in Figure 9.25. The performance
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Figure 9.24: Slow targets collision avoidance path: the two agents change their tracking region and Agent
1 changes its flying altitude to avoid colliding with Agent 2.
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Figure 9.25: Slow targets refuelling performance: one agent departs to refuel at k = 40 (red circle) and
it arrives back at k = 70 (red square).

decreases largely when one of the three agents departs to refuel (k = 40). Then, the remaining two

agents reorganise themselves, lowering the cost-function J . When the agent returns from refuelling

(k = 70), another transitory phase brings the performance criterion back at k ≈ 90 − 100 to the initial

performance achieved before the refuelling at k ≈ 20− 40.
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Chapter 10

Conclusions and Future Work

Summary of the results

In this work we address the topic of distributed optimisation for collaborative multi-UAV multi-target

tracking. A brief survey on the topic is presented, followed by an analysis of the most relevant state-of-

the-art literature.

The desired UAV behaviour is stated based on limited resources scenario, where the number of agents is

significantly lower than the number of targets, and formulated by a single-best estimation criterion. This

formulation is first solved using a naive centralised approach that clearly does not meet our objectives,

however it proves our desired tracking behaviour using the problem formulation.

The goal of convexifying the problem and distributing it among the agents, motivated our novel

two-layer approach. We relax and distribute our original centralised problem into two layers helping us

accomplish three important achievements.

First, our approach is based only in a local asynchronous and unreliable communication protocol

between the neighbour agents. Being fully distributed and based in a realistic communication scenario,

our proposed algorithm does not need any central node and it is highly scalable for large teams.

Second, the tracking problem is convexifyed which naturally brings nice converging guarantees and

allows a faster implementation. Persistent feasibility is ensured using a worst-case scenario prediction. In

the SDP tracking problem for quadrotors and in the Sequential Convex Programming algorithm which

solves SDPs iteratively for fixed-wings, real-time of our target-tracking problem is achieved with a number

of targets over number of agents ratio up to m/n = 10.

Splitting the global tracking problem into a global assignment problem and local tracking problems is

the third important achievement worth to mention. This approach allows us to completely separate the

partition algorithm from the tracking task. Therefore, the problems can be improved/tested separately,

allowing the assignment problem to be run at a slower rate for instance.

Finally, a theoretical comparison between our two-layer proposed algorithm and our initial problem

formulation is made. The solutions of both approaches are studied and proved to be highly related. For

the static targets scenario, the optimal steady-state solution is proved to be identical, motivating the use

of our algorithms. A comprehensive varied set of simulations is performed and their results discussed.

Also, two emergency manoeuvres are added to our algorithm, in order to deal with collision avoidance

between the agents and with agents’ refuelling.
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Recommendations

This work opens and suggests some challenges for future research. Here we pinpoint the research fields

that we believe to be more interesting.

First of all, an implementation of our pseudo-code on real UAVs, with all the practical issues that

will arise, is a must.

Another research field arises considering scenarios with obstacles. For instance, a set of known

obstacles such as houses can be inserted in our scenario space. These obstacles constrain the line-of-

sight from the agents towards the targets, and this should be taken into account in the optimisation

problem. Also, these obstacles will change the so-called worst-case scenario in the targets’ movement,

changing the full target coverage constraint formulation. Instead of moving away from the agents, the

worst case for a target could be hiding itself by moving closer to a certain obstacle.

Considering the non-holonomic fixed-wings dynamics, the convexification of the problem could be done

with different techniques that are worth of deeper study. Also using fixed-wings, the assignment problem

can be adapted to these vehicle dynamics. For instance, higher weights can be given to the targets “in-

front” of the agent so the Voronoi centroids would tend to be placed considering the vehicle’s heading.

We believe that this idea might be able to adjust the partition, improving the overall performance by

taking into account the agents’ dynamics.

Heterogeneous teams of agents are considered but not simulated. Our algorithms are able to deal

with combining quadrotor and fixed-wing agents, with different ranges and velocities. Simulations using

different agents combinations with different parameters might bring interesting results. The performance

obtained through simulations using different combinations of agents can lead to an interesting analysis

to determine which UAVs are able to track better in a given scenario.

Finally, in most of the real applications, the targets movement is not random. The targets are

themselves vehicles with a certain dynamics. In a urban environment, the targets’ movement can also be

restricted to streets, or more likely to on certain routes. This change will require the presence of a target

model to help the agents predicting where the target is going. Also, when one target travels from one

tracking region to another, information about its model might be needed to be communicated between

agents, in the case of online model estimation.
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