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Abstract—This paper presents an integrated parameter esti-
mator and trajectory tracking controller for a hovercraft.
A generic parameter estimator for time-varying systems linear in
the parameters is derived and then particularized for the dynamic
model of the vehicle at hand. A trajectory tracking controller is
proposed for the nonholonomic hovercraft, which renders the
tracking error system exponentially stable and its zero dynamics
stable. The interconnection of the estimator and the controller is
proven to be locally asymptotically stable. Experimental results
attesting the performance and robustness of the controller and
its interconnection with the estimator are presented.

Index Terms— Hovercraft, nonholonomic systems, parameter
estimation, trajectory tracking.

I. INTRODUCTION

ONLINEAR motion control of underactuated vehicles,
and more specifically thrust propelled surface vehicles,
as in the case of ships or hovercraft, is an active topic of
research that raises new and challenging problems compared
with motion control of its fully actuated counterpart.
Hovercraft are highly versatile and agile vehicles, easily
deployable, and able to withstand motion on different surfaces.
While these characteristics make them top choices in a myriad
of difficult operation scenarios, they also pose additional
challenging and interesting problems in automatic control.
On the one hand, hovercraft are usually underactuated. On the
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other hand, their dynamics can change dramatically over time
as the surface they dwell on varies.

Early work on the control of underactuated surface vehicles
that are able to sideslip laterally can be found in [1], and
the references within, wherein the authors proposed a position
tracking controller for a hovercraft that was modeled from
an underactuated ship with several simplifications such as
neglecting drag, assuming a symmetric shape and consid-
ering that the propellers are located at the center of mass.
The proposed controllers drive the position exponentially to
zero but the surge and angular velocities are taken as input
and the control laws are discontinuous. In [2], a bounded
nonlinear controller is given for stabilization and tracking
of a single vehicle using a cascade backstepping method.
A bounded force controller is specified for the translational
part of the hovercraft system and it is then backstepped
through the angular dynamics resulting in a control law for
the torque input. A controller for hovercraft position tracking
that exponentially stabilizes the tracking error to an arbitrarily
small neighborhood of the origin is proposed in [3]. The
controller is based on nonlinear Lyapunov methods and the
backstepping technique and hinges on driving the position
error of a fixed point in the vehicle frame of reference to
zero, to avoid the introduction of singularities. Nonclassical
controllers such as fuzzy controllers have also been proposed
for trajectory tracking of hovercraft-like vehicles, such as the
switching fuzzy controller developed in [4], but the authors
only consider straight line trajectories and do not regulate the
velocity. The University of Illinois has a testbed for networked
and decentralized control comprised of multiple small hockey
puck-like hovercraft [S]. Each hovercraft has four thrusters
that are able to generate lateral force in any direction and a
fifth one for providing lift. The individual vehicle trajectory
controllers make use of a multirate nonlinear filtering and
control algorithm that improves on an LQR tracking con-
troller but position errors are still noticeable. More recently,
multivariable nonlinear quantitative feedback theory was used
in [6] to design a tracking controller for a hovercraft with
uncertainty in the model parameters. The proposed controller
is robust to uncertain parameters in the model but relies on
local linearization of the nonlinear plant.

In this paper, we propose to design and experimentally
validate a nonlinear controller for a hovercraft based on Lya-
punov methods. The hovercraft model we consider is actuated
through thrust force and rudder angle and subject to static
and linear velocity drag forces. This structure induces lateral
forces on the vehicle dependent on the torque and is in contrast
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with the model used on the above-mentioned works, wherein
hovercraft are driven by two propellers and thrust and torque
are independent. Additionally, an online estimation algorithm
continuously estimates the drag parameters of the hovercraft,
thus allowing for improved performance over different sce-
narios, and the stability of the overall closed-loop system is
analyzed.

This paper is structured as follows. Section II presents a for-
mal statement for the trajectory tracking control and parameter
estimation problems. The general framework for identification
of the unknown parameters is outlined in Section III. The
hovercraft model is specified in Section IV, followed by
the particularization of the parameter estimator design to the
hovercraft model in Section V. The controller design proce-
dure is described in detail in Section VI and its closed-loop
interconnection with the parameter estimator is analyzed in
Section VII. Simulation and experimental results that attest the
performance and stability of the proposed parameter estimator
and trajectory tracking controller are presented in Section VIII
followed by the conclusions in Section IX.

II. PROBLEM STATEMENT

The problems tackled in this paper are threefold and culmi-
nate in a coherent integrated solution. We propose to estimate
constant parameters for a broad dynamic model category,
to design a nonlinear controller for a particular nonlinear
dynamic model in that category, and finally, to analyze the
stability of the closed-loop interconnection between the esti-
mator and the controller.

A generic nonlinear dynamic system can be represented by
the differential equation system

X = hO(X, C’ t)

where x € R" represents the state of the dynamical system,
¢ € R™ represents unknown parameters of the system, and
ho(x,¢,1) : R" x R" x R — R". In this paper, we focus on
nonlinear systems that are linear-in-parameters, i.e., dynamical
systems that can be represented by the state dynamics

x =h(x,7) + G(x, )¢ (1)

with h(x,#) : R” x R - R"” and G(x,7) : R* x R — R"*™,

The estimation problem tackled in this paper consists in
designing an exponentially stable estimator for the unknown
parameters ¢ for a dynamic system with structure (1) of which
full state measurements are available.

As a particular example of a dynamic system with
structure (1) we consider a hovercraft, an underactuated
dynamic system, where the parameters are the drag and input
coefficients. The control objective is to design a state feedback
controller for the hovercraft’s inputs, thrust force, and rudder
angle, with the objective of tracking a predefined trajectory.

The final objective is to prove that the closed-loop inter-
connection of the parameter estimator, particularized for the
hovercraft dynamics, and the tracking controller is stable
under mild assumptions on the initial conditions. This is a
strong result on the interconnection of two nonlinear dynamic
systems, which is much more challenging to analyze than the
interconnection of two linear systems.
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II1. IDENTIFICATION FRAMEWORK

Using state augmentation with the unknown parameters,
the previous dynamical system can be written in block form

as
x| |0 Gx,0)|x h(x, t)
HE [ R R S

Assuming that full state measurements are available, we have

X
y=I[I 0] [J 3)

where the explicit dependence of x, ¢, and y on the time ¢ is
omitted for the sake of simplicity.

The nonlinear system linear-in-the-parameters comprising
the state (2) and output (3) can thus be rewritten as a linear
time-varying (LTV) system

£ = A(NE +u(r) @
y = C(0)&
with
an=[y G0 wo= "7
C(t) =1 0], szm. )

Notice that, where appropriate, x was replaced by y so that the
system can be regarded as linear, as y is available for estimator
design purposes. We now introduce the following Lemma [7]
regarding the observability of system (4):

Lemma 1: Consider the nonlinear system (4). If the
observability Grammian W(fo, ) associated with the pair
(A(#), C(t)) on T = [tg, tf] is invertible then the nonlinear
system (4) is observable in the sense that, given the system
input {u(t),t € 7} and the system output {y(¢),t € T},
the initial condition & (zp) is uniquely defined.

Given the system input u(z),t € Z, and the system out-
put y(¢),t € Z, it is possible to compute the transition matrix
associated with A(¢) through the Peano—Baker series as

t

®(t, 1) = I—i—/fA(O'l)dO']

fo

ty o1
+/ A(O'l)/ A(oy)dordo
I In)

0

153 o1 [0}
+/ A(O‘l)/ A(O‘z)/ A(o3)dozdoardo . ..
1) 1) o

The block structure of A(¢) in (5) can be explored to simplify
the transition matrix by noting that A(¢) is nilpotent, with
A"(t) = 0 for n > 2. This reduces the transition matrix to

iy
Iy
<1>(z,r0)=1+/ A(oydo = | ! A)G(y’”)d”
2 0 I
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The observability Grammian is then given as

Wi, tr) = /

1o

t

! o7 (1, 10)CT (1)C (1) @ (¢, t0)dt

[I /t‘/ G(y, a)da:| dt.

(6)

The structure of A(¢) can be used to derive further conditions
on the invertibility of the Grammian W(t, f7), as stated in
Lemma 2.

Lemma 2: Consider the nonlinear system (4) with realiza-
tion (5), corresponding to a general nonlinear system with
linear unknown parameters. If there exists no unit vector
d € R™ that satisfies the condition

I

— g ty
=/, / G'(y. 0)do
1o

1
/ G(y,0)dod =0
fo
for all time ¢ € Z then the nonlinear system (4) is observable
in the sense that, given the system input {u(¢),t € Z} and
the system output {y(¢),¢ € I}, the initial condition &(ty) is
uniquely defined.

Proof: From Lemma 1 we have that the observability
of the nonlinear system depends on the invertibility of the
Grammian (6). Due to its symmetric nature, it has nonnegative
eigenvalues and is invertible if and only if it is positive definite.
To explore the definite-positiveness conditions for W(t, 1)
we introduce d € R as a unit vector and consider

d"W(to, t5)d
I

= | [ wrom | (1] 0]
_d/t0 /t GT(y.0) I/I()G(y,a)da did

:/totf H:I /I()?G(y,a)da:|d

The proof follows by contraposition. Suppose that the system
is not observable. Then, from Lemma 1, the observability
Grammian W(t, t7) associated with the pair (A(¢), C(¢)) is
not positive definite. Hence, there exists d € R*™™, ||d| = 1,
such that d” Wiz, t £)d = 0, or equivalently

/ ’
fo

As the integrand is nonnegative the previous equation implies

2
dt.

2
dt = 0.

-t
I / G(y,o)do |d
L o

- -
I/ G(y,o)do |[d=0
I

0 m

for all time ¢ € Z. Let us partition the unit vector as d =
[d] dz] with di € R” and dy € R™. The nonobservability
condition can then be written as

t
d; +/ G(y,o)dody, =0
1o

which must be verified for all time for the LTV system to be
nonobservable. In particular, it must be observed for t = 1y,
which leads immediately to conclude d; = 0. But as d is a

Fig. 1. Sketch of hovercraft model.

unit vector, it then follows that, if the system is not observable,
there must exist a unit vector do such that

t
/ G(y,o)dody; =0 @)
fo
for all time ¢ € Z, which concludes the proof by contraposi-
tion. d

In the following section, we present the dynamic model
for the hovercraft. The general conditions for estimator design
outlined in this section will be particularized for the hovercraft
in Section V, where concrete observability conditions are
outlined.

IV. HOVERCRAFT MODEL
The hovercraft, depicted in Fig. 1, is modeled as a rigid
body in a 2-D space. Defining the body frame {B} as a
reference frame attached to the hovercraft’s center of mass
and {I} as an inertial frame, and omitting the explicit time
dependence, we have the following kinematics and dynamics
for the hovercraft:

P=Rv
R = RSr
. (8)
mv =—mSvr +f
Jr=rt

where p € R? is the hovercraft’s position in {/}, v = [u v]” €
R? is the velocity expressed in {B}, r € R is the angular
velocity, R € SO(2) is the rotation matrix that takes vectors
expressed in {B} to {I}, and f and 7 are the total force and
torque acting on the vehicle, respectively. The mass is m > 0,
the inertia J > 0, and the auxiliary skew-symmetric matrix is

S= [‘1) _01}

The forces acting on the hovercraft comprise the thrust force
actuation as well as the aerodynamic and friction drag. The
thrust force generated by the propeller is divided between
surge and sway forces by the rudder, with the sway force
also generating a torque around the center of mass. In the
hovercraft setup the angle and thrust force are known but the
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coefficients multiplying each term are not. Given the nature
of the drag we consider two components: one independent
of the velocity (dry friction, friction with the ground) and
one linear with the velocity (laminar flow friction). The drag
coefficient multiplying the velocities, as well as the dry friction
coefficient, are unknown and must be estimated. This leads to
the following expressions for the force and torque:

£ —dyosignu — dyu + br T cosé ©)
| —dposigno —dyo + by T sinf
T = —dyosignr —dyr —abrT sin6 (10)

where {d,o,d,, dyo,dy, dro,d,,br} € R are the unknown
coefficients corresponding to the friction coefficients
(dywo, dyo, dro), linear drag coefficients (dy, d,, d;), and input
scaling coefficient br. The length of the arm from the center
of mass to the rudder surface is denoted by a, as evidenced
in Fig. 1, T is the thrust force, and 6 corresponds to the rudder
angle. The coefficient b7 scales the thrust input from [0, 1]
(range of remote control input) to force in Newtons and
makes unnecessary an a priori thrust identification. Indeed,
with the proposed approach the identification of the dynamic
system can be performed without having to determine the
exact force generated by the thrust propeller, in Newton.

Particularizing the general hovercraft dynamics with
(9) and (10) we get the explicit dynamics

iw=—m"'dysignu —m'd,u +m~ by T cos6 + vr
b =—mdy signv — m~td,o + m~brT sin@ — ur
F=—J"1d, signr — JYd,r — J7Yaby T siné.

(11)

V. PARAMETER ESTIMATOR DESIGN

The linear structure of the unknown parameters can be
exploited to rewrite the hovercraft system in LTV form
explicitly, which will prove instrumental in designing an esti-
mator for the unknown parameters. Focusing on the dynamics,
a system where the velocities are measured and the parameters
are unknown can be written in LTV form as (4) with realization

Xx=1[u o r]T

¢ =[m'dyoy m'd, m'd m™'d, J7'do J7d,

m~ by T labr]T  (12)
or
_ 0343 G(y,t) _ | —ur
A(t)_[08x3 038 | ) = 0
08><1

C(1) = [I3x3  03xs] (13)

where the auxiliary matrix G(y, ) is

G(y,) = [Gu(y,t) Gu(y,t) G,(y,t) Gr(y,1)]

with
—signu(t) —u(r)
Gu (Y» t) = O O
0 0
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0 0
G,(y, 1) = | —signo(t) —o(t)
i 0 0
0 0
G (y,1) = 0 0
| —signr(t) —r()
[T (t) cos O(1) 0
Gr(y,t) = | T(¢)sin0(t) 0 .
i 0 —T(t)sin6(t)

Starting with the nonobservability condition (7) particularized
for the hovercraft dynamics and taking time derivatives on
both sides we get the equivalent nonobservability condition of

—signu(t)dyy — u(t)dry + T(t) cosO(t)dr7 = 0
—signo(t)dyz — v(t)dza + T (t) sinO(t)dr7 = 0
—signr(t)dys — r(t)dys — T(t) sinf(t)drs =0

forall ¢t € Z, where dp;, fori = {1, -- - , 8}, are the components
of the unit vector d» in (7).

The system (4) with realization (13) is observable if and
only if the sets of functions

{signu(t), u(t), T(t)cos(0(z))} (14a)
{signov(t), v(t), T(t)sin(@())} (14b)
{signr(t), r(t), T(t)sin(0(z))} (14¢)

are linearly independent in Z. Simply put, as long as the actua-
tions 7T (t) and 6(¢) are not constant and sufficiently rich, then
the LTV system is observable and we can recover the unknown
system parameters. Given the LTV structure, a Kalman filter
provides a simple and easily tunable solution. In the event
some of the sets of functions (14a), (14b), and (14c) are not
linearly independent, the stability of the estimator system is
still ensured and estimates converge to a constant, although
they are not guaranteed to converge to the correct parameters.

To conclude this section notice that stronger forms of
observability should be imposed for the stability of the
Kalman filter. In particular, if the LTV system (4) is uni-
formly complete observable, then the Kalman filter is globally
exponentially stable [8], [9]. This form of observability is
closely related to the one previously derived, but further
imposes that the linear independence of the functions in
(14a), (14b), and (14c) must happen uniformly throughout all
time and that each individual function must not degenerate
into another.

VI. CONTROLLER DESIGN

The controller objective is to have a fixed point § € R? in
the body frame, not necessarily the center of mass, to track a
desired trajectory pg, where in the following the explicit time
dependence will be neglected for the sake of simplicity. The
tracking error is defined in the inertial frame as

z=p—ps+ RS (15)
and we denote its time derivative by
7z = 721 = Rv — pg + RSér. (16)
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The second time derivative of the tracking error is
) = %)
= RSvr +m™!

_ —dyosignu — dyu + br T cost
R ( m8vr + [—duo signv — dyv + by T sinf

— Pa + RS?%5r% + RS8J !

«(—=dyo signr — d,r —abyT sinf)
and can be seen as the input, where 7 and 6 are arbitrary
signals, for a double integrator whose output is the tracking
error. The proposed controller can accommodate arbitrary
vectors § for the point in the body-fixed frame to be controlled.

However, in order to preserve the symmetry of the vehicle we
assume throughout the remainder of this paper that the point

is of the form
Ox
= %)
with J, € R.
The proposed controller is designed based on Lyapunov
theory and uses the double integrator structure of the tracking

error system as a departure point. We now apply a typical
Lyapunov function for a double integrator

1 1
V= Ekllezl + EZgZZ —i—,leTzz (17)

to the error system with k; > 0 and § > 0. Its time derivative
can be written as

V=—W(,n)+ Bz +22)" (&2 + k121 + kr22)
where
W(zi,22) = klﬁlezl + k2ﬂ1{12 + (ky — ﬁ)zszz

with k > 0. In order for V (z1, z2) and W (z1, z») to be definite
positive functions the coefficient £ is required to observe

B < ki (18)
4k1ky
_—. 1
F<u e (19)

Expanding 7z, and grouping the actuations 7" and 6 one gets

V=-Wa,n)+ Pz +2)'R
cosf _1 | —duosignu — dyu
' (BT [sin9i| tm |:—duo signo — dyv

— RTiid — 5.r%e — J Y dyo signr + dyr)oxe;

+R%hm+bm0 (20)
with the auxiliary matrix
-1
m 0
B=br |: 0 m!_ Jl&xai| (2D

and unit vectors e; = [1 0]7 and e, = [0 1]7.

The fact that both actuations 7 and 6 appear in the
Lyapunov derivative (20) and span R? allows us to state the
following theorem, where a stabilizing controller is proposed
for the tracking error system.

Theorem 3: Let the hovercraft dynamics be described
by (8) with external force (9) and external torque (10) and con-
sider the system states (15) and (16), where § = [0, 0]” is a
fixed point on the body frame and p, is a bounded reference
trajectory with bounded time derivatives. Choosing the arm
length a and J, such that (21) is invertible, that is

ady #m~'J

and applying the control actions for thrust 7 and rudder
angle 6 such that

cosf| 1 —1 | —duosignu —dyu| o7
T |:sin9i| =B (m |:—duo signv — d,v R" pa
— (5xr2e1 —J! (drosignr + d,r)oxen

+R%Mm+bm0 (22)
with k1 > 0 and k> > 0, renders the origin of the dynamic
system globally exponentially stable.

Proof: With the imposed restrictions in ki, kp, and S
verifying (18) and (19), the Lyapunov function (17) is positive
definite and radially unbounded. Using the control law (22)
to define the system actuation, the closed-loop time deriv-
ative of the aforementioned function is rendered definite
negative

‘./ = _W(Z] > Zz).

From Lyapunov’s stability theorems it follows that the
origin of the error system is globally exponentially
stable. 0

The individual actuations 7' and § are recovered noting that

for a, b € R and
cosf a
r|imd) = 7]

T = |[a bl
6 = atan2(b, a)

we have

where atan2(y, x) is the four-quadrant inverse tangent that
returns the angle of the vector (x, y) respecting its quadrant.

From the exponential stability of the tracking errors it
follows that the tracking errors z; and zp converge to zero
and trajectory tracking is achieved.

Notice that Theorem 3 does not prescribe any conditions on
a or Jy except for ad, # m~1J. This means that neither d; nor
a has a restriction on their signs. However, negative J, or a can
lead to nondesirable transients and steady-state modes for the
hovercraft system and lead to conditions on which the dynamic
model (8) ceases to be valid, such as leading the hovercraft
to follow the trajectory with its stern facing the direction of
movement.

A. Analysis of the Zero Dynamics

The proposed trajectory tracking controller in Theorem 3
ensures that the errors z; and z; converge to zero. However,
to conclude about the internal stability of the dynamic system
we must analyze its zero dynamics and ensure that inner
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states such as the linear and angular velocities do not grow
unbounded.

We proceed to analyze the dynamic evolution of the veloc-
ities by considering the angular kinetic energy of the system

Z = lr2.
2

Substituting 7 for the explicit dynamics (11) with the closed-
loop control law (22) results in the following closed-loop time
derivative for the angular kinetic energy

7 = rJfl(—dro signr —d,r +a (nf1 — Jfléxa)f1
- (m~ Y (=dyo signv — dyv)
—J! (dro signr + dyr)oy
+ eI R (kiz1 + kaza — o).
From the definition of z> in (16) and recalling that § = e
we have the relation
v = el RT (22 + pa) — dir-
Substituting the sway velocity v into the energy derivative one
gets
Z=rJ! ( —dyosignr —d,r +a (nf1 — Jfl(5xa)71
) (m_l( — dyosignel RT (zp + pa) — 0ur
—d (€ R (22 + ) - o0r)
— J Ydyo signr + dyr)ox
+ eoRT (k1z1 + kozo — pd)))
Further simplifications and gathering all terms with 72 at the
beginning leads to the final expression
7 =—J"'dy signrr + [—J ld, —I—J_la(m_1 — J_léxa)_1
x (m~'d, — J7'd.)d,1r?
+rJ7! (a(m_1 —J %) !
) (m_l( —dyosignel RT (22 + Pa) — Our
- dvezTRT(ZZ + Pd)) - JﬁldrO sign rdy
+ exRT (kiz) + kozo — pd)))

At this point, we are able to state a formal result on the
stability of the zero dynamics of the closed-loop system.
Theorem 4 states conditions for which it can be shown that
escape to infinity of the velocities is impossible.

Theorem 4: Consider the hovercraft dynamics (8) in closed
loop with the trajectory tracking controller (22). For any arm
length a of the vehicle there exists a constant A > 0 such that
if the control point satisfies ||J,|| < A and ad, # m~'J, then
the linear velocity v = [u v]7 and angular velocity r of the
vehicle are bounded.

Proof: From Theorem 3, it follows that the tracking errors
z) and z, are bounded and so are the parameters gathered
in ¢, the mass and inertia moment, as well as the reference
trajectory and its derivatives. For large velocities, the time
derivative of the angular kinetic energy Z, expressed in (23),
is dominated by the term in 72, given that all the other terms

are bounded and multiply r linearly. We can thus conclude
from (23) that boundedness of r is achieved if the condition

J . > Seam™ = T 6 a) Y m ™y — T V) (24)

(23)
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is verified. This condition can always be satisfied either by

choosing a small enough rudder arm length a (at the vehicle

design phase) or a sufficiently small control point distance J;

(at the controller design phase). From the definition of the

tracking error z; and boundedness of z; and r it follows also

that the linear velocities u# and v are also bounded. U
It should be noticed that the product

aoy (m_1 — J_laéx)_1

goes to zero as either a or J, goes to zero. This allows the
right-hand side of (24) to be arbitrarily close to zero, choosing
suitable a and Jy, and to verify (24) since J and d, are positive.

VII. INTERCONNECTION STABILITY ANALYSIS

The control law (22) can be expressed in terms of the
parameters (12) as

|:cos 6} 1 ( [(1 signu + (zui|

T . = —-B — .

sinf (3signo + 4o
— (&5 signr + Cer)oyer
- RTr’d - 5xr2el

+ R (kyzy + km)) (25)

with B, defined in (21), also rewritten in terms of (12) as

_|& 0
B_[O G—&%}

To study the overall closed-loop system that results from the
proposed controller and proposed parameter estimator we start
by determining the actuation error, obtained using the estimate
¢ for the parameters ¢, with regard to the ideal feedback
actuation. The error is given by

T |:cgs 6i| _F |:Cf)S €i|
sin @ sin @
where the hat terms are obtained using (25) and (26) with the
estimates £ instead of the real parameters &.

During a normal run of the hovercraft the only parameters
that are expected to change are the ones related to friction,
{1 to (g, which can depend on the terrain. The actuation para-
meters are well-determined a priori and do not change during
the experimental run. The closed-loop Lyapunov function time
derivative resulting from the mismatch between the estimated
and real parameters is then given as

where we used £ = ¢ — ¢ for the parameter error. Making
use of Theorems 3 and 4 we can summarize the closed-loop
interconnection stability analysis as follows.

Theorem 5: Consider a hovercraft with dynamics (8) in
closed loop with the control law (22) and with online esti-
mation of the drag related parameters (7 to ¢ from (12) such
that the control point § = [J, 0]7 satisfies the conditions of
Theorem 4 for stable zero dynamics. In these circumstances,
if the functions (14a)-(14c) are linearly independent, uniformly
in time, the vehicle-controller-estimator interconnection is
locally asymptotically stable. Additionally, both the trajectory
tracking and parameter estimation errors converge to zero and
the linear and angular velocities are bounded.

(26)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

CABECINHAS et al.: HOVERCRAFT CONTROL WITH DYNAMIC PARAMETERS IDENTIFICATION 7

Proof: The estimation errors of ¢ through ¢ are indepen-
dent of the chosen controller and are globally exponentially
stable. The parameters scaling the inputs, ¢7 and (3, are kept
constant and guarantee that the controller is always well-
defined as the inverse B~! exists throughout the maneuver.
From (23) and employing the same arguments as in
Theorem 4 it follows that the velocities v and r are bounded
for sufficiently small estimation errors. Since the estimator can
run before the controller is active and is exponentially stable
there is a time 7 after which the loop can be closed and
the velocities remain bounded. The closed-loop system can be
regarded as a perturbed system with state (z1, z>) and pertur-
bations (1 through (g. Since the velocities remain bounded for
all time the perturbed system is locally Lipschitz in the state
and perturbations. Recall the Lyapunov function (17) and its
time derivative for the closed-loop system (27), as shown at
the bottom of this page. To simplify the presentation of the
final result consider

171 = max(|Z11, 1221, 1831, 12al, 1551, 1Z6l)

and notice the definite positive function W(z1, z») is quadratic
and is lower bounded by

W(zi,22) > kll(z1, 22) 12

where the new gain k > 0 depends on k{, k, and /. An upper
bound on the time derivative of the Lyapunov function can
therefore be expressed as

V < k|1, ) 1(I(z1, 22) | — BO)

where B is a positive constant. For sufficiently large tracking
errors the time derivative is negative definite. We are then in
the conditions of [10, Theorem 5.2] and the closed-loop system
is locally ISS with respect to perturbations (¢, .. ., (g). Since
the external perturbations arising from the estimation errors
are exponentially stable, the interconnection of the estimator
and controller is locally asymptotically stable. ([

It should be noticed that the local-ISS property for the
interconnected system from Theorem 5 is stronger than simply
local asymptotic stability. Since the parameter errors converge
exponentially, and independently of the convergence of the
trajectory tracking errors, then if the estimator is allowed to
be turned ON before the controller, there will always be a time
T after which the parameters errors are sufficiently small and
stability of the overall system can be achieved, for any initial
conditions. Furthermore, if a good initial estimate is avail-
able for the unknown parameters then the initial parameters
estimates can be chosen so that the interconnected system is
within the region where the local-ISS property is verified, and
then will remain there for all time.

VIII. EXPERIMENTAL RESULTS
A. Numerical Simulations

The proposed integrated solution for trajectory tracking
and online estimation was first tested in simulation to assess

TABLE I
PARTITION OF THE NUMERICAL SIMULATION
Time (s) H System Dynamics | Controller Parameters | Estimator
0-15 Nominal Nominal —
15-30 Altered Nominal —
30-50 Altered Estimator estimates Active

its viability for a real hovercraft model and to analyze the
response of the ensemble controller and estimator to time-
varying parameters. The trajectory tracking simulation is com-
prised of three distinct parts. First, the proposed controller
is tested by considering that all the parameters are perfectly
known and the trajectory tracking error is driven to zero.
In the second part, starting at r = 15 s, the friction and viscous
drag parameters for the hovercraft simulation are changed
to half their initial value but the controller parameters are
maintained. These parameters changes cause the trajectory
tracking error to increase as there is a mismatch between the
actual hovercraft dynamic coefficients and the ones assumed
by the controller. Finally, at r = 30 s, the estimator is brought
into the loop and the online parameters estimates are used for
feedback by the controller. This greatly improves the perfor-
mance of the overall system and the trajectory tracking error is
brought to zero again. Vertical markers highlighting the phase
commutations have been added to all the figures presented
in Section VIII. The partition of the simulation experiment is
summarized in Table I.

The controller gains used for simulation are k; = 2 and
ko = 2. The rudder arm is set at ¢ = 0.14 (m) and
the point of the vehicle that is tracking the trajectory is
§ =102 O]T (m). The simulated vehicle mass and inertia
are 0.585 (kg) and 0.01 (kg m), respectively. The parameter
estimator was implemented as a Kalman filter for LTV systems
with parameters R = 1071 for the output noise covariance
and Q = diag(10’4I3, 10’218) for the state disturbance
covariance matrix. The covariances were chosen empirically
based on the noise of each measured variable and tuned
through repeated simulations. The reference trajectory for
simulation is an ellipse described by

1.5 sin(?)
Pd = |:2.5 cos(t):| (m)
corresponding to a period of 2z s. A 2-D view of the reference
and hovercraft trajectories is shown in Fig. 2. After an initial
transient, the trajectory tracking performance is good and
the hovercraft is brought to the reference trajectory. The
modification of the simulation parameters at t = 15 s causes
the trajectory tracking error to increase and the hovercraft
follows an oval trajectory but with a larger radius than the
reference, due to the mismatch between the parameters used
for control and the actual parameters. Once the estimator is
active in closed loop, at + = 30s, the hovercraft immediately

steers toward the desired reference trajectory, which it then
follows closely.

V=-Wi,2)+ Bz + Zz)TR[

(7 — ¢80y) ! (4:3 signo + 4:41) + 55 signrdy + 56r5,()

& (&signu + Su) } @7
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Fig. 2. Position of the hovercraft and reference position. The initial positions
are marked with an x.
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Fig. 3. Error of the online parameter estimation.

The parameter estimation error and the parameter estimates
are presented in Figs. 3 and 4, respectively. The initial transient
and the reaction to the parameter change are clearly visible
in Fig. 3 when, at ¢+ = 15 s, the hovercraft’s dynamics are
modified so that all the friction and drag parameters vary
instantaneously by 50%. At t = 30 s the estimator is brought
online in closed loop with the controller and quickly adapts
and tracks the correct parameters with the overall parameter
error converging to zero.

It can be noticed in Fig. 3 that the convergence is con-
siderably slower for parameters ¢3 and (4, associated with
the lateral friction and linear drag coefficients. This happens
because the chosen oval trajectory is not rich enough in lateral
movements for the hovercraft and, as such, the adaptation of
the parameters is slower. For trajectories where the relative
orientation of the hovercraft and the trajectory has more
variation the estimation of (3 and ¢4 will also converge faster
to the real value.

The tracking errors during the simulation are presented
in Fig. 5. When using the correct parameters the proposed
controller performs well, with an initial transient that quickly
vanishes. Once the hovercraft dynamics change, at t = 15 s,
the controller no longer guarantees a zero tracking error and its
performance worsens. During the parameter mismatch phase
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Fig. 4. Online parameter estimation.
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Fig. 5. Trajectory tracking error.

the tracking error enters a stable steady-state but the tracking
error is high, around 60 cm. Finally, at # = 30 s, the controller
loop is closed with the online estimates from the proposed
estimator. Fed with more accurate parameter estimates the
controller reduces the tracking error gradually to zero as the
estimates also get more accurate, corroborating the result from
Theorem 5.

Fig. 6 displays the hovercraft velocity during the trajectory
tracking simulation. The ellipse maneuver is aggressive, in the
sense that the velocity changes continuously and at a fast pace.
Throughout the maneuver, even when the parameters estimator
is running, the velocities are stable, as predicted by the result
in Theorem 4.

For the sake of completeness, the actuation signals are
shown in Figs. 7 and 8. From these figures it can easily be
concluded that both thrust and rudder actuations are kept at
reasonable values throughout all the maneuver.

B. Experimental Setup

Once the trajectory tracking controller and the parame-
ter estimator have been assessed in simulation, the rapid
prototyping and testing setup at the SCORE laboratory,
University of Macau, was used to experimentally validate the
proposed estimation and control laws. The experiments are
developed in a MATLAB/Simulink environment that seam-
lessly integrates an optical motion capture system and radio
communication with the vehicle. The integrated MATLAB
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Fig. 6. Body velocity of the hovercraft.
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Fig. 7. Thrust actuation of the hovercraft.
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Fig. 8. Rudder actuation of the hovercraft.

environment allows for an effortless iteration from simulation
to real experiments.

The vehicle used for the experiments is the radio controlled
Ikarus hovercraft [11] depicted in Fig. 9. The vehicle has a
length of 45 cm, a width of 25 cm, and a total weight of 585 g
(batteries and RC receiver included). Two brushed motors
move a continuous propeller that feeds the air cushion that
lifts the hovercraft and a 130-mm propeller that generates the
thrust force. The thrust force attacks a rudder located 16 cm
behind the center of mass which is capable of reaching angles
of +£26°. This hovercraft is very agile, readily available, and
inexpensive, making it the ideal platform for this paper.

Fig. 9. Hovercraft with batteries, radio receiver, and motion capture markers.

MATLAB
SIMULINK

Fig. 10. Hovercraft integrated measurement and command architecture.

Due to the lack of payload for on-board sensors, the state of
the vehicle must be estimated through external sensors. In our
setup we use a VICON motion capture system [12], compris-
ing 12 cameras, together with markers attached to the hover-
craft. The set of markers is defined as a VICON object and
accurate measurements are obtained for the vehicle’s position
and orientation. The performance of the motion capture system
is such that the linear velocity can be well estimated from the
position measurements by a simple backward Euler difference,
with relatively low noise level. The state measurements from
the motion capture system are obtained at 100 Hz.

We tested a scale model hovercraft on a laboratory setting
as a proxy for a full scale hovercraft in an outdoor environ-
ment. In such conditions the attitude and angular rates are
provided by an inertial measurement unit and the position and
linear velocity are obtained via a global navigation satellite
system, typically GPS. The use of carrier-phase enhancement
solutions, such as GPS RTK, increases the typical position
measurement accuracy of GPS from tens of meters to tens
of centimeters and the linear velocity measurement accuracy
to centimeters per second. This high accuracy allows the
implementation of the proposed control solution in an outdoor
environment without the use of an external camera setup.
A navigation system can also be used to fuse GPS RTK
measurements with the remaining inertial sensors, thereby
providing even higher accuracy and lower noise levels.

A graphical representation of the overall architecture is pre-
sented in Fig. 10. We use two computer systems, one running
the VICON motion tracking software and the Simulink model
that generates the command signals sent to the other computer
through Ethernet; and a second one that receives the command
signals and sends them through serial port to the RF module
at intervals of 22.5 ms. The decision to separate control and
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TABLE 11
PARTITION OF THE EXPERIMENTAL TEST

Time (s) H Dynamics | Controller Parameters | Estimator
0-30 Nominal Nominal —
30-60 Altered Nominal —
60-100 Altered Estimates Active

communications was made to avoid jitter in the transmission of
the serial-port signals to the RF module, which occurs when
running all the systems in the same computer, and leads to
erratic communication with the vehicle.

C. Closed-Loop Estimation and Control

This section presents the experimental analysis of the tra-
jectory tracking controller by itself and then introduces the
proposed estimator in closed loop. For the experimental eval-
vation of the proposed controller we used an oval trajectory,
with varying velocity, described as in the following equation
and depicted in Fig. 12:

_ [ 1.15cos(0.71)
Pd =15 00sin(0.7¢) |’

The controller gains for the experimental run were adjusted to
k1 = 1.75, kp = 1.5, and the Kalman filter parameters of the
estimator were R = diag(0.1, 0.1, 0.01) and Q = 0.11. The
parameters used when the estimator is not active were obtained
using the proposed estimator on a prior run of the vehicle and
are (1 =1.35,0,=0,3=0,0 = 1.20, 5 = 0.83, 76 = 0.48
for the drag parameters and ¢7 = 0.75, ¢g = 3.66 for the input
coefficients, throughout all the maneuvers.

The maneuver was prepared as follows: the trajectory track-
ing controller is used with constant parameters for the initial
section of the maneuver. At + = 30 s the drag conditions
are modified by reducing the air flow in the air cushion
supporting the hovercraft. Finally, at + = 60 s, the estimator
is switched on and the parameters estimates are used for the
trajectory tracking controller feedback. The time instants when
the vehicle dynamics change and when the estimator is enabled
are marked by vertical black bars in the figures. The portion of
the experiment when the estimator is active is clearly visible
in Fig. 11 as it corresponds to the interval where the estimates
related to the drag coefficients are changing. A summary of
the different experiment conditions is presented in Table II.

During the first 30 s of the experiment, the vehicle is
sliding on a smooth uniform ground surface with a nominal
air cushion pressure. This results in nominal constant drag
coefficients and hence good results are obtained for tracking,
with a mean error around 10 cm as confirmed by the position
error plot in Fig. 13. When the air cushion pressure is reduced,
from 30 to 60 s, the parameters are no longer adjusted to the
vehicle reality and the position error increases to almost 20 cm.
However, once the estimator is turned ON and connected in
closed loop, from ¢ = 60 s onward, the error is greatly reduced
to under 5 cm, leading to better performance, even though the
vehicle dynamics are now different due to the reduced airflow
to the hovercraft skirt. Notice that the parameter adaptation
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afforded by the estimator enables the closed-loop controller
to outperform the nominal controller (without estimator) by
adjusting even to the minute parameter variations arising from
the small nonuniformities in the terrain surface.

The velocity profile of the vehicle during the maneuver is
presented in Fig. 14 and varies substantially along each lap.
The velocity is high for the proposed indoor application,
allowing to explore the performance envelope of the vehicle,
and its variation has the double advantage of forcing the
thrust actuation to change during each lap and to allow all the
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Fig. 14. Velocity profile of the trajectory.
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Fig. 16. Rudder actuation of the hovercraft.

parameters to be estimated since a changing velocity excites
more of the estimator modes and makes the observability
Grammian matrix positive definite.

The evolutions of the yaw angle and the respective rate,
as well as the corresponding control actuation are shown
in Figs. 15 and 16. The periodicity of the maneuver is clearly
visible with the only exception being the initial transient
when the vehicle is not close to the desired trajectory. The
axis symmetry of the desired elliptical trajectory can also be
observed in Fig. 15. During a complete lap (yaw angle chang-
ing by 360°) it can be noticed that the yaw rate comes close to
zero twice and has two peaks. This cyclic change corresponds
to the vehicle steering along the ellipse alternating between

4 ]
3 ]
ol
1 . ) .
0 20 40 60 80 100
Time (s)
Fig. 17. Thrust actuation of the hovercraft.

moving along the long axis (lower curvature, lower yaw rate)
and short axis (larger curvature, larger yaw rate). The evolution
of the rudder angle follows closely the yaw rate, but with
opposite signs, since large changes in heading require large
rudder angles. The physical rudder angle saturates at £26°,
which is seldom attained.

The thrust command was identified by the current the
propeller motor draws when running. The current is linearly
related with the generated thrust force by the scaling coeffi-
cient by which is computed by the estimator. The thrust also
evolves periodically and the commanded actuation, as seen
in Fig. 17, is almost always below the physical motor limita-
tion current of 6.1 A. Even in the nonideal conditions when
the control parameters do not match reality both actuations
are reasonably within their saturation limits and do not differ
much from the nominal actuations. The higher periodic spikes
in T, as well as the two outliers above 6.1 A, correspond to
noisy measurements due to the vehicle crossing a region where
it is less visible by the VICON motion capture system and the
measurements are ill-conditioned and especially noisy.

It should also be noticed that the proposed controller is able
to handle the measurement noise. The position and angle mea-
surements are obtained by an optical motion capture system
resulting in noise levels that are relatively low and comparable,
at the same scale, with measurement noise from RTK GPS and
attitude measurements obtained from an attitude and heading
reference system. However, measurement noise is noticeable
in the velocity states measurements, plotted in Figs. 14 and 15,
since they are determined by a finite difference approximation
wherein the high frequency noise is amplified.

IX. CONCLUSION

This paper presented an integrated parameter estimator and
trajectory tracking controller for a nonholonomic hovercraft.
A parameter estimator for generic time-varying systems that
are linear in the unknown parameters was devised and then
particularized for the vehicle at hand in order to estimate the
unknown parameters related to the drag forces, inputs, mass,
and inertia. A trajectory tracking controller was proposed
for the hovercraft, which makes a fixed point in the body
frame follow a predefined trajectory. The tracking error system
is exponentially stable and its zero dynamics are stable.
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Furthermore, the closed-loop interconnection of the estimator
and controller was deemed to be locally asymptotically stable.
The experimental results attested the stability of the intercon-
nection as well as the performance and robustness of the pro-
posed solution. The experimental results also corroborate that
the introduction of the closed-loop parameter estimator greatly
reduces the trajectory tracking error in non-nominal conditions
without any adverse side effects. This greatly increases the
performance of this kind of vehicle, which has the ability to
move on very different surfaces that can drastically change the
vehicle drag profile.
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