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Abstract—We introduce a functional gradient descent tra-
jectory optimization algorithm for robot motion planning in
Reproducing Kernel Hilbert Spaces (RKHSs). Functional gra-
dient algorithms are a popular choice for motion planning in
complex many-degree-of-freedom robots, since they (in theory)
work by directly optimizing within a space of continuous trajec-
tories to avoid obstacles while maintaining geometric properties
such as smoothness. However, in practice, implementations such
as CHOMP and TrajOpt typically commit to a fixed, finite
parametrization of trajectories, often as a sequence of waypoints.
Such a parameterization can lose much of the benefit of reasoning
in a continuous trajectory space: e.g., it can require taking an
inconveniently small step size and large number of iterations to
maintain smoothness. Our work generalizes functional gradient
trajectory optimization by formulating it as minimization of a
cost functional in an RKHS. This generalization lets us represent
trajectories as linear combinations of kernel functions. As a re-
sult, we are able to take larger steps and achieve a locally optimal
trajectory in just a few iterations. Depending on the selection of
kernel, we can directly optimize in spaces of trajectories that
are inherently smooth in velocity, jerk, curvature, etc., and that
have a low-dimensional, adaptively chosen parameterization. Our
experiments illustrate the effectiveness of the planner for different
kernels, including Gaussian RBFs with independent and coupled
interactions among robot joints, Laplacian RBFs, and B-splines,
as compared to the standard discretized waypoint representation.

I. INTRODUCTION & RELATED WORK

Motion planning is an important component of robotics: it
ensures that robots are able to safely move from a start to a
goal configuration without colliding with obstacles. Trajectory
optimizers for motion planning focus on finding feasible
configuration-space trajectories that are also efficient—e.g.,
approximately locally optimal for some cost function. Many
trajectory optimizers have demonstrated great success in a
number of high-dimensional real-world problems [13, 19–21].
Often, they work by defining a cost functional over an infinite-
dimensional Hilbert space of trajectories, then taking steps
down the functional gradient of cost to search for smooth,
collision-free trajectories [14, 26]. In this work we exploit
the same functional gradient approach, but with a novel ap-
proach to trajectory representation. While previous algorithms
are derived for trajectories in Hilbert spaces in theory, in
practice they commit to a finite parametrization of trajecto-

ries in order to instantiate a gradient update [6, 11, 26]—
typically a large but finite list of discretized waypoints. The
number of waypoints is a parameter that trades off between
computational complexity and trajectory expressiveness. Our
work frees the optimizer from a discrete parametrization,
enabling it to perform gradient descent on a much more
general trajectory parametrization: reproducing-kernel Hilbert
spaces (RKHSs) [2, 7, 18], of which waypoint parametriza-
tions are merely one instance. RKHSs impose just enough
structure on generic Hilbert spaces to enable a concrete and
implementable gradient update rule, while leaving the choice
of parametrization flexible: different kernels lead to different
geometries (Section II). Our contribution is two-fold. Our
theoretical contribution is the formulation of functional gradi-
ent descent motion planning in RKHSs, as the minimization
of a cost functional regularized by the RKHS norm (Sec-
tion III). Regularizing by the RKHS norm is a common way
to ensure smoothness in function approximation [5], and we
apply the same idea to trajectory parametrization. By choosing
the RKHS appropriately, the trajectory norm can quantify
different forms of smoothness or efficiency, such as preferring
small values for any n-th order derivative [23]. So, RKHS
norm regularization can be tuned to prefer trajectories that
are smooth with, for example, low velocity, acceleration, or
jerk (Section IV) [17].
Our practical contribution is an algorithm for very effi-
cient motion planning in inherently smooth trajectory space
with low-dimensional parametrizations. Unlike discretized
parametrizations, which require many waypoints to produce
smooth trajectories, our algorithm can represent and search
for smooth trajectories with only a few point evaluations. The
inherent smoothness of our trajectory space also increases effi-
ciency; our parametrization allows the optimizer to take large
steps at every iteration without violating trajectory smooth-
ness, therefore converging to a collision-free and high-quality
trajectory faster than competing approaches. Our experiments
demonstrate the effectiveness of planning in RKHSs using
synthetic 2D environment, with a 3-DOF planar arm, and using
more complex scenarios, with a 7-DOF robotic arm. We show
how different choices of kernels yield different preferences
over trajectories. We further introduce reproducing kernels



that represent interactions among joints. Sections V and VI
illustrate these advantages of RKHSs, and compare different
choices of kernels.

II. TRAJECTORIES IN AN RKHS

A trajectory is a function ξ ∈ H : [0, 1]→ C mapping time
t ∈ [0, 1] to robot configurations ξ(t) ∈ C ≡ RD.1 We can
treat a set of trajectories as a Hilbert space by defining vector-
space operations such as addition and scalar multiplication
of trajectories [8]. In this paper, we restrict to trajectories
in Reproducing Kernel Hilbert Spaces. We can upgrade our
Hilbert space to an RKHS H by assuming additional structure:
for any y ∈ C and t ∈ [0, 1], the functional ξ 7→ y>ξ(t)
must be continuous [16, 18, 22]. Note that, since configuration
space is typically multidimensional (D > 1), our trajectories
form an RKHS of vector-valued functions [9], defined by
the above property. The reproducing kernel associated with
a vector valued RKHS becomes a matrix valued kernel K :
[0, 1]× [0, 1]→ C × C. Eq. 1 represents the kernel matrix for
two different time instances:

K(t, t′) =


k1,1(t, t′) k1,2(t, t′) . . . k1,D(t, t′)
k2,1(t, t′) k2,2(t, t′) . . . k2,D(t, t′)

...
. . .

...
kD,1(t, t′) kD,2(t, t′) . . . kD,D(t, t′)

 (1)

This matrix has a very intuitive physical interpretation. Each
element in (1), kd,d′(t, t′) tells us how joint [ξ(t)]d at time
t affects the motion of joint [ξ(t′)]d′ at t′, i.e. its degree of
correlation or similarity between the two (joint,time) pairs.
In practice, off-diagonal terms of (1) will not be zero, hence
perturbations of a given joint d propagate through time, as
well as through the rest of the joints. The norm and inner
product defined in a coupled RKHS can be written in terms
of the kernel matrix, via the reproducing property: trajectory
evaluation can be represented as an inner product of the vector
valued functions in the RKHS, as described in (2) below. For
any configuration y ∈ C, andtimet ∈ [0, 1], we get the inner
product of y with the trajectory in the vector-valued RKHS
evaluated at time t:

y>ξ(t) = 〈ξ,K(t, ·)y〉H, ∀y ∈ C (2)

In our planning algorithm we will represent a trajectory in
the RKHS in terms of some finite support {ti}Ni=1 ∈ T . This
set grows adaptively as we pick more points to represent the
final trajectory. At each step our trajectory will be a linear
combination of functions in the RKHS, each indexed by a
time-point in T .

y>ξ(t) =
∑
ti∈T

y>K(t, ti)ai (3)

1Note that ξ ∈ H is a trajectory, a vector valued function in the
RKHS, while ξ(t) ∈ C is a trajectory evaluation corresponding to a robot
configuration.

for t, ti ∈ [0, 1], and ai ∈ C. If we consider the configuration
vector y ≡ ed to be the indicator of joint d, then we can cap-
ture its evolution over time as: [ξ(t)]d =

∑
i ed
>K(t, ti)ai,

taking into account the effect of all other joints.
The inner product in H of functions y>ξ1(t) =∑
i y
>K(t, ti)ai and y>ξ2(t) =

∑
j y
>K(t, tj)bj , for

y,ai, bj ∈ C is defined as:

〈ξ1, ξ2〉H =
∑
i,j

a>i K(ti, tj)bj (4)

‖ξ‖2H = 〈ξ, ξ〉 =
∑
i,j

a>i K(ti, tj)aj (5)

For example, in the Gaussian RBF RKHS (with kernel
kd,d′(t, t

′) = exp(‖t − t′‖2/2σ2), when d′ = d and 0
otherwise), a trajectory is a weighted sum of radial basis
functions:

ξ(t) =
∑
d,i

ai,d exp
(
‖t− ti‖2

2σ2

)
ed, ai,d ∈ R (6)

The coefficients ai,d assess how important a particular joint d
at time ti is to the overall trajectory. They can be interpreted
as weights of local perturbations to the motions of different
joints centered at different times. Interactions among joints,
as described in (1), can be represented for instance using a
kernel matrix of the form :

K(t, t′) = exp
(
‖t− t′‖2

2σ2

)
J>J ∈ RD×D (7)

where J ∈ R3×D represents the workspace Jacobian matrix
at a fixed configuration. This strategy changes the RKHS
metric in configuration space according to the robot Jacobian
in workspace. This norm can be interpreted as an approxi-
mation of the velocity of the robot in workspace [15]. The
trajectory norm measures the size of the perturbations, and
the correlation among them, quantifying how complex the
trajectory is in the RKHS, see Section IV. Different norms can
be considered for representing the RKHS; this can leverage
more problem-specific information, which could reduce the
number of iterations required to find a low cost trajectory.

III. MOTION PLANNING IN AN RKHS

In this section we describe how trajectory optimization can
be achieved by functional gradient descent in an RKHS of
trajectories.

1) Cost Functional: We introduce a cost functional U :
H → R that maps each trajectory to a scalar cost. This func-
tional quantifies the quality of a given a trajectory (function
in the RKHS). U trades off between a regularization term that
measures the efficiency of the trajectory, and an obstacle term
that measures its proximity to obstacles:

U [ξ] = Uobs[ξ] +
β

2
‖ξ‖2H (8)

As described in Section IV, we choose our RKHS so that
the regularization term encodes our desired notion of smooth-
ness or trajectory efficiency—e.g., minimum length, velocity,



acceleration, jerk. The obstacle cost functional is defined on
trajectories in configuration space, but obstacles are defined in
the robot’s workspace W ≡ R3. So, we connect configuration
space to workspace via a forward kinematics map x: if B is
the set of body points of the robot, then x : C ×B → W tells
us the workspace coordinates of a given body point when the
robot is in a given configuration. We can then decompose the
obstacle cost functional as:

Uobs[ξ] ≡ reduce
t,u

c (x(ξ(t), u)) (9)

where reduce is an operator that aggregates costs over the
entire trajectory and robot body—e.g., a maximum or an
integral, see Section V. We assume that the reduce operator
takes (at least approximately) the form of a sum over some
finite set of (time, body point) pairs T (ξ):

Uobs[ξ] ≈
∑

(t,u)∈T (ξ)

c (x(ξ(t), u)) (10)

For example, the maximum operator takes this form: if (t, u)
achieves the maximum, then T (ξ) is the singleton set {(t, u)}.
Integral operators do not take this form, but they can be
well approximated in this form using quadrature rules, see
Section V-5.

2) Optimization: We can derive the functional gradient
update by minimizing a local linear approximation of U in
(8):

ξn+1 =arg min
ξ
〈ξ − ξn,∇U [ξn]〉H +

λ

2
‖ξ − ξn‖2H (11)

The quadratic term is based on the RKHS norm, meaning that
we prefer “smooth” updates, analogous to Zucker et al. [26].

This minimization admits a solution in closed form:

ξn+1(·) =

(
1− β

λ

)
ξn(·)− 1

λ
∇Uobs[ξn](·) (12)

Since we have assumed that the cost functional Uobs[ξ]
depends only on a finite set of points T (ξ) (10), it is
straightforward to show that the functional gradient update has
a finite representation (so that the overall trajectory, which is
a sum of such updates, also has a finite representation). In
particular, assume the workspace cost field c and the forward
kinematics function x are differentiable; then we can obtain
the cost functional gradient by the chain rule [16, 18]:

∇Uobs(·) =
∑

(t,u)∈T

K(·, t) J>(t, u)∇c(x(ξ(t), u)) (13)

where J(t, u) = ∂
∂ξ(t)x(ξ(t), u) ∈ R3×D is the workspace

Jacobian matrix at time t for body point u, and the kernel
function K(·, t) is the gradient of ξ(t) with respect to ξ. The
kernel matrix is defined in Equation (1).

This solution is a generic form of functional gradient
optimization with a directly instantiable obstacle gradient that
does not depend on a predetermined set of waypoints, offering
a more expressive representation with fewer parameters. We
derive a constrained optimization update rule, by solving the
KKT conditions for a vector of Lagrange multipliers, see
Section III-3. The full method is summarized as Algorithm 1.

3) Constrained optimization: Consider equality constraints
(fixed start and goal configurations) and inequality constraints
(joint limits) on the trajectory h(ξ(t)) = 0, g(ξ(t)) ≤ 0,
respectively. We write them as inner products with kernel
functions in the RKHS (??). For any y ∈ C:

h(·)>y ← 〈ξ,K(to, ·)y〉H − qo>y = 0, (14)
qo ∈ C, for to = {0, 1}

g(·)>y ← 〈ξ,K(tp, ·)y〉H − qp>y ≤ 0, (15)
qp ∈ C, for tp = [0, 1]

Let, γo, µp ∈ RD be the concatenation of all equality
(γo) and inequality (µp) Lagrange multipliers. We rewrite the
objective function in (11) including joint constraints:

ξn+1(·) = arg min
ξ
〈ξ − ξn,∇U [ξn]〉H +

λ

2
‖ξ − ξn‖2H

(16)

+ γo>h[ξ] + µp>g[ξ]

Solving the KKT system for the stationary point of (16)
(ξ, γo, µp) with µp ≥ 0, we obtain the constrained solution
(17). Let dcj ≡ J>(tj , uj)∇c (x(ξn(tj), uj)) ∈ RD. The full
update rule becomes:

ξ∗(·) =

(
1− β

λ

)
ξn(·)− 1

λ

( ∑
tj∈T

K(·, tj)dcj (17)

+K(·, to)γo+K(·, tp)µp
)

This constrained solution, ends up augmenting the finite
support set (T ) with points that are in constraint violation,
weighted by the respective Lagrange multipliers. Each of the
multipliers can be interpreted as a quantification of how much
the points to or tp affect the overall trajectory over time and
joint space.

IV. TRAJECTORY EFFICIENCY AS NORM ENCODING IN
RKHS

In different applications it is useful to consider different
notions of trajectory efficiency or smoothness. We can do so
by choosing appropriate kernel functions that have the desired
property, and consequently desired induced norm/metric. For
instance, we can choose a kernel according to the topology of
the obstacle field, or we can learn a kernel from demonstra-
tions or user input, bringing problem specific information into
the planning problem. This can help improve efficiency of the
planner. Another possibility is to tune the resolution of the
kernel via its width. We could build a kernel with adaptive
width according to the environment, i.e., higher sensitivity
(lower width) in cluttered scenarios.
Additionally, it is often desirable to penalize the velocity,
acceleration, jerk, or other derivatives of a trajectory in-
stead of (or in addition to) its magnitude. To do so, we
can take advantage of a derivative reproducing property: let
H1 be one of the coordinate RKHSs from our trajectory



Algorithm 1 — Trajectory optimization in RKHSs
(
N, c,∇c, ξ(n)(0), ξ(n)(1)

)
1: for each joint angle d ∈ D do
2: Initialize to a straight line trajectory ξ0

d(t) = ξd(0) + (ξd(1)− ξd(0))t.
3: end for
4: while (U [ξn] > ε and n < NMAX) do
5: Compute Uobs[ξn] (13).
6: Find the support of time/body points T (ξ) = {ti, ui}, i = 1, . . . , N (10).
7: for (ti, ui)

N
i=1 ∈ T (ξ) do

8: Evaluate the cost gradient ∇c(ξ(ti), ui) and Jacobian J(ti, ui)
9: end for

10: Update trajectory: ξn+1 = (1− β
λ
)ξn − 1

λ

∑
(t,u)∈T

K(·, t) J>(t, u)∇c(x(ξ(t), u))

11: If constraints are present, project onto constraint set (16).
12: end while
13: Return: Final trajectory ξ∗ and costs ‖ξ∗‖2H,Uobs[ξ∗].

representation, with kernel k. If k has sufficiently many
continuous derivatives, then for each partial derivative operator
Dα, there exist representers (Dαk)t ∈ H1 such that, for
all f ∈ H1, (Dαf)(t) = 〈(Dαk)t, f〉 [25, Theorem 1].
(Here α is a multi-set of indices, indicating which partial
derivative we are referring to.) We can therefore define a
new RKHS with a norm that penalizes the partial derivative
Dα: the kernel is kα(t, t′) = 〈(Dαk)t, (D

αk)t′〉. If we use
this RKHS norm as the smoothness penalty for the corre-
sponding coordinate of our trajectories, then our optimizer
will automatically seek out trajectories with low velocity,
acceleration, or jerk in this coordinate. For example, consider
an RBF kernel with a reproducing first order derivative:
D1k(t, ti) = D1kti [t] = (t−ti)

2σ2 k(t, ti) is the reproducing
kernel for the velocity profile of a trajectory defined in an
RBF kernel space k(t, ti) = 1√

2πσ2
exp(−‖t− ti‖2/2σ2). The

velocity profile of a trajectory ξ(t) =
∑
i βik(t, ti) can be

written as D1ξ(t) =
∑
i βiD

1k(t, ti). The trajectory can be
found by integrating D1ξ(t) once and using the constraint
ξ(0) = qi.

ξ(T ) =

T∫
0

D1ξ(t)dt =
∑
i

βi

T∫
0

(t− ti)
2σ2

k(t, ti)dt (18)

=
∑
i

βi [k(T, ti)− k(0, ti)] + qi

The initial condition is verified automatically. The endpoint
condition can be written as qf =

∑
i βi [k(1, ti)− k(0, ti)] +

qi; this imposes additional information over the coefficients
βi ∈ C, which we can enforce during optimisation. Here
we explicitly consider only a space of first derivatives, but
extensions to higher order derivatives can be derived similarly
integrating p times to obtain the trajectory profile. Constraints
over higher derivatives (up to order n), can be enforced using
any constraint projection method, inside our gradient descent
iteration. The update rule in this setting can be derived using
the natural gradient in the space, where the new obstacle

gradient becomes:

∇Uobs(·) =

n∑
α

∑
(t,u)∈T

DαK(·, t) J>(t, u)∇c( x(ξ(t), u) )

(19)

Regularization schemes in different RKHSs may encode differ-
ent forms of trajectory efficiency. Here we proposed a different
norm using derivative penalization. Other RKHS norms may
be defined as sums, products, tensor product of kernels, or any
closed kernel operation.

V. COST FUNCTIONAL ANALYSIS

Next we analyze how the cost functional (different forms of
the reduce operation in Section III-1) affects obstacle avoid-
ance performance and the resulting trajectory (Section V). In
this paper, we adopt a maximum cost version (Section V-4),
and an approximate integral cost version of the obstacle cost
functional (Section V-5). Other variants could be considered,
providing the trajectory support remains finite, but we leave
this as future work. Additionally, in Section V-6, we compare
the two forms against a more commonly used cost functional,
the path integral cost [14], and we show our formulations do
not perform worse, while being faster to compute. Based on
these experiments, in the remaining sections of the paper we
consider only the max cost formulation, which we believe
represents a good tradeoff between speed and performance.

4) Max Cost Formulation: The maximum obstacle cost
penalizes body points that pass too close to obstacles, i.e.
high cost regions in workspace (regions inside/near obstacles).
This maximum cost version of the reduce operation, consid-
ered in Eq. (9), can be described as picking time and body
points (sampling) deepest inside or closest to obstacles, see
Figure 1(a). The sampling strategy for picking time points
to represent the trajectory cost can be chosen arbitrarily, and
further improved for time efficiency. In this paper, we consider
a simple version, where we sample points uniformly along
sections of the trajectory, and choose N maximum violating
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Fig. 1: a) At each iteration, the optimizer takes the current trajectory (black) and identifies the point of maximum obstacle cost ti (orange points). It then
updates the trajectory by a point evaluation function centered around ti. Grey regions depict isocontours of the obstacle cost field (darker means closest to
obstacles, higher cost).b) The integral costs after 5 large steps comparing using Gaussian RBG kernels vs. using the integral formulation (with waypoints). c)
Gaussian RBF kernel integral cost using our max formulation vs. the approximate quadrature cost (20 points, 10 iterations).

points, one per section. This max cost strategy allows us to
represent trajectories in terms of a few points, rather then a
set of finely discretized waypoints. This is a simplified version
of the obstacle cost functional that yields a more compact
representation [6, 11, 14].

5) Integral Cost Formulation: Instead of scoring a trajec-
tory by the maximum of obstacle cost over time and body
points, it is common to integrate cost over the entire trajectory
and body, with the trajectory integral weighted by arc length
to avoid velocity dependence [26]. While this path integral
depends on all time and body points, we can approximate it
to high accuracy from a finite number of point evaluations
using numerical quadrature [12]. T (ξ) then becomes the set
of abscissas of the quadrature method, which can be adaptively
chosen on each time step (e.g., to bracket the top few local
optima of obstacle cost), see Section A. In our experiments, we
have observed good results with Gauss-Legendre quadrature.

6) Integral vs. Max Cost Formulation: We show that the
max cost does not hinder the optimization— that it leads to
practically equivalent results as an integral over time and body
points [26]. To do so, we manipulate the cost functional for-
mulation, and measure the resulting trajectories’ cost in terms
of the integral formulation. Figure 1(b) shows the comparison:
the integral cost decreased by only 5% when optimizing for
the max. Additionally we tested the max cost formulation
against the approximate integral cost using a Gauss-Legendre
quadrature method. We performed tests over 100 randomly
sampled scenarios and measured the final obstacle cost after
10 iterations. We used 20 points to represent the trajectory in
both cases. Figure 1(c) shows the approximate integral cost
formulation is only 8% above the max approach.

VI. EXPERIMENTAL RESULTS

In what follows, we compare the performance of RKHS
trajectory optimization vs. a discretized version (CHOMP)
on a set of motion planning problems in a 2D world for a
3 DOF link planar arm as in Figure 3, and how different
kernels with different norms affect the performance of the
algorithm (Section VI-A). We then introduce a series of

experiments that illustrate why RKHSs improve optimization
(Section VI-B).

A. RKHS with Radial Basis vs. Waypoints
For our main experiment, we systematically evaluate the

two parametrizations across a series of planning problems.
Although Gaussian RBFs are a default choice of kernel in
many kernel methods, RKHSs can also easily represent other
types of kernel functions. For example, B-splines are a popular
parametrization of smooth functions [3, 10, 24], that are able
to express smooth trajectories while avoiding obstacles, even
though they are finite-dimensional kernels. The choice of ker-
nel should be application driven, and any reproducing kernel
can easily be considered under the optimization framework
presented in this paper. In the following experiment, we ma-
nipulate the parametrization (waypoints vs different kernels) as
well as the number of iterations (which we use as a covariate in
the analysis). To control for the cost functional as a confound,
we use the max formulation for both parameterizations. We
use iterations as a factor because they are a natural unit in
optimization, and because the amount of time per iteration
is similar: the computational bottleneck is computing the
maximum penetration points. We measure the obstacle and
smoothness cost of the resulting trajectories. For the smooth-
ness cost, we use the norm in the waypoint parametrization
as opposed to the norm in the RKHS as the common metric.
The RKHS parametrization results in comparable obstacle cost
and lower smoothness cost for the same number of iterations.
We use 100 different random obstacle placements and keep
the start and goal configurations fixed as our experimental
setup. The trajectory is represented with 4 maximum-violation
points over time and robot body points, at each iteration.
In the analysis we performed a t-test using the last iteration
samples, and showed that the Gaussian RBF RKHS represen-
tation resulted in significantly lower obstacle cost (t(99)=-2.63,
p<.01) and smoothness cost (t(99)=-3.53, p<.001), supporting
our hypothesis. We expect this to be true because with the
Gaussian RBF parametrization, the algorithm can take larger
steps without breaking smoothness, see Section VI-B. We
observe that waypoints and Laplacian RBF kernels with large
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Fig. 2: (a,b): Cost over iterations for a 3DoF robot in 2D. Error bars show the standard error over 100 samples. (c) Trajectory profile using different kernels
(5 time points in white) in order: Gaussian RBF, B-splines, Laplacian RBF kernels, and waypoints.

Fig. 3: Robot 3DoF in C-space. Trajectory after 10 iterations: top-left:
Gaussian RBF kernel, top-right: B-splines kernel, bottom-left: Laplacian RBF
kernel, bottom-right: waypoints.

widths have similar behaviour, while Gaussian RBF and B-
splines kernels provide a smooth parametrization that allows
the algorithm to take larger steps at each iteration. These
kernels provide the additional benefit of controlling the motion
amplitude, being the most suitable in the implementation of an
adaptive motion planner. Laplacian RBF kernels yield similar
results as the waypoint parametrization, since it is less affected
by the choice of the width of the kernel. Figure 3 provides a
qualitative evaluation of the effect of different kernel choices.
We compare the effectiveness of obstacle avoidance over 10
iterations, in 100 trials, of 12 randomly placed obstacles in a
2D environment, see Figure 3.

B. RKHSs Allow Larger Steps than Waypoints
One practical advantage of using a Gaussian RBF RKHS

instead of the waypoint parametrization is the ability to take
large steps during the optimization. Figure 4 compares the
two approaches, while taking large steps: it takes 5 Gaussian
RBF iterations to solve the problem, but would take 28
iterations with smaller steps for the waypoint parametrization –
otherwise, large steps cause oscillation and break smoothness.
The resulting obstacle cost is always lower with Gaussian
RBFs (t(99)=5.32, p<.0001). The smoothness cost is higher
(t(99)=8.86, p<.0001), as we saw in the previous experiment
as well. Qualitatively, however, as Figure 2(c) shows, the
Gaussian RBF trajectories appear smoother, even after just

Fig. 4: 1DOF 2D trajectory in a maze environment (obstacle shaded in grey).
top: Gaussian RBF, large steps (5 it.); middle: waypoints, large steps (5 it.);
bottom: waypoints, small steps (25 it.)

one iteration, as they do not break differential continuity. We
represented the discretized trajectory with 100 waypoints, but
only used 5 kernel evaluation points for the RKHS. We also
tested the waypoint parametrization with only 5 waypoints, in
order to evaluate an equivalent low dimensional representation,
but this resulted in a much poorer trajectory with regard to
differential continuity.

C. Experiments on a 7-DOF Manipulator
This section describes a comparison of the waypoint

parametrization (CHOMP) and the RKHS Gaussian RBF
(GRBF) on a 7-DOF simple manipulation task. We optimized
the obstacle cost weight λ and smoothness weight β for all
methods after 25 iterations (including the Waypoint method).
The kernel width is kept constant over all 7-DOF experiments
(σ=0.9). 6 (a and b) illustrate both methods after 10 and
25 iterations, respectively. Figure 6(a) shows the end-effector
traces after 10 iterations. The path for CHOMP (blue) is very
non-smooth and collides with the counter, while the Gaussian
RBF optimization is able to find a smoother path (orange) that
is not in collision. Note that we only use a single max-point
for the RKHS version, which leads to much less computation
per iteration, as compared to CHOMP. Figure 6(b) shows the
results from both methods after 25 iterations of optimization.
CHOMP is now able to find a collision-free path, but the path
is still not very smooth as compared to the RKHS-optimized
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Fig. 5: (a) Avg. time per iter. for GRBF RKHS with 1 max point (50 iter., λ=8,β=1) vs. waypoints (50 iter., λ=40) (b,c) (GRBF-JJ) GRBF with joint
interactions in orange, (GRBF-der-JJ) GRBF derivative with joint interactions in yellow, (GRBF) GRBF independent joints in red, waypoints in blue, 20 iter.

(a) Gaussian RBF (orange) vs. Way-
points (blue), 10 iter.

(b) Gaussian RBF (orange) vs. Way-
points (blue), 25 iter.

(c) coupled vs. indep. RKHSs, 50 iter. (d) indep. vs. coupled RKHS, 50 iter.

Fig. 6: 7-dof experiment, plotting end-effector position from start to goal.
(a) GRBF with 1 max point (10 iter., λ = 20, β = 0.5) vs. Waypoints
(10 iterations, λ = 200). (b) GRBF with 1 max point (25 iterations, λ =
20, β = 0.5) vs. waypoints (25 iterations, λ = 200)(c) in orange GRBF with
joint interactions (GRBF-JJ), in yellow GRBF derivative with joint interactions
(GRBF-der-JJ) (1 max point,λ=8,β=1.0), in red GRBF with independent joints
(GRBF) in red, (1 max point, λ=16,β=1.0). (d) in orange GRBF with joint
interactions (GRBF-JJ), in yellow GRBF derivative with joint interactions
(GRBF-der-JJ) (1 max point,λ=8,β=1.0), waypoints in blue, (λ=40).
path. These results echo our findings from the robot simulation
and planar arm experiments.

D. Optimization under Different RKHS Norms
In this section we experiment with different RKHS norms,

where each one expresses a distinct notion of trajectory
efficiency or smoothness. Here we have optimized obstacle
cost weight (λ) over 5 iterations. Figure 6(c) shows three
different Gaussian RBF kernel based trajectories. We show
the end-effector traces after 50 iterations for two kernels with

independent joints, with identity kernel matrix (1) (red) ,
and a Gaussian RBF derivative (yellow). We also consider
interactions among joints (orange), with a vector-valued RKHS
with a separable kernel. The kernel is composed of a 1-
dimensional time-kernel, combined with a D × D kernel
matrix, that models interactions across joints. We build this
matrix based on the robot Jacobian at the start configuration,
(see Equation (7)).
The Gaussian derivative kernel takes the form of a sum over a
Gaussian RBF kernel and its first order derivative. This kernel
can be interpreted as an infinitely differentiable function with
increased emphasis on its first derivative (penalizes trajectory
velocity more). We can observe that the derivative kernel
achieves a smoother path, when compared with its nominal
version. The Gaussian RBF kernel with joint interactions
yields trajectories that are also smoother than the independent
Gaussian RBF path. Figure 6(d) shows the end-effector traces
of the GRBF derivative, and the joint interaction kernel,
together with a CHOMP trajectory with waypoints (blue). We
observe the dependency on the choice of norm for the final
trajectory and end-effector traces after 50 iterations. This result
shows that Gaussian RBF RKHSs achieve a smoother, low-
cost trajectory faster. Figure 5(a) shows a time comparison
between the Gaussian RBF with join interactions and CHOMP
(waypoints) method. This shows that the kernel method is
less time consuming than CHOMP (t(49), p<.001) over 10
iterations.
E. 7-DOF Experiments in a Cluttered Environment

Next, we test our method in more cluttered scenarios.
We create random environments, populated with different
shaped objects to increase planning complexity (see Fig-
ure 7(a)). We place 8 objects (2 boxes, 3 bottles, 1 kettle,
2 cylinders) in the area above the kitchen table randomly
in x,y,z directions. We plan with a random collision-free
initial and final configurations. We report results for longer
runs (20 iterations). Figures 5(b) and 5(c), show obstacle and
smoothness cost per iteration, respectively. We compare all
results according to CHOMP cost functions. Smoothness is



(a) 30 iterations (b) Obstacle cost (c) Smoothness cost

Fig. 8: (a)7-DOF robot experiment, plotting the end-effector position from start to goal. waypoints (λ=40) (blue), Gaussian RBF-der (1 max point,λ=45,β=1.0)
(yellow), Gaussian RBF JJ (1 max point,λ=40,β=1.0) (orange) (b) Obstacle and (c) Smoothness cost in constrained environment after 20 iter.

(a) 6 iterations (b) 20 iterations

Fig. 7: 7-DOF robot experiment, plotting the end-effector position from start
to goal. waypoints (λ=40) (blue), GRBF (1 max point,λ=45,β=1.0) (orange),
GRBFder (1 max point,λ=25,β=1.0) (yellow)(a) after 6 iter. (left). (b) after
20 iter. (middle) (c) Obstacle and (d) Smoothness cost of random trajectories
in cluttered environment.

measured in terms of total velocity (waypoint metric), and
obstacle cost is given by distance to obstacles of the full
trajectory (not only max-points). The RKHS trajectory with
joint interactions (orange) achieves a smoother trajectory than
the waypoint representation (blue) (mww(40)=-4.4, p<.001),
and obtains comparable obstacle costs. The method performs
updates more conservatively and ensures very smooth trajec-
tories. The other two RKHS variants consider independent
joints, GRBF (red) and GRBF derivative (yellow). Both GRBF
and GRBF derivative kernels achieve lower cost trajectories
than the waypoint parametrization (mww(40)=-3.7,p<.001,
mww(40)=-4.04,p<.001), and converge in fewer iterations
(approx. 12it.). The smoothness costs are not statistically
significantly different that the waypoint representation, after
20 iterations. We show an example scenario with three vari-
ants of RKHSs (GRBFJJ(λ)=75-orange, GRB(λ)=45-yellow,
Waypoints(λ)=100-blue) after 6 iterations (Figure 7(a)), and
after 20 iterations (Figure 7(b)). The smoothness and obstacle
weights are kept fixed in all scenarios (β=1.0).

F. 7-DOF Experiments in a Constrained Environment
Next, we measured performance in a more constrained task.

We placed the robot closer to the kitchen counter, and planned
to a fixed goal configuration inside the microwave. We ran
over 40 different random initial configurations. Figure 8(a)
shows an example of Gaussian RBF with joint interactions
(GRBFJJ-orange), independent joints (GRBFder-yellow), and

waypoints (blue), after 30 iterations. We report smoothness
and obstacle costs per iteration, see Figures 8(c) and 8(b)
respectively. In more constrained scenarios, the RKHS vari-
ants achieve smoother costs than the waypoint representation
(p<.0.01, GRBF mww(40)=-3.04, GRBFJJ mww(40)=3.12,
GRBFder mww(40)=-3.8), for approximately the equivalent
obstacle cost after 12 iterations. The joint interactions are
smooth but take longer to converge (12 iter.), while the GRBF
kernels with independent joints converged to a collision free
trajectory approximately in the same number of iterations as
the waypoints experiments (4 iter.). In Figure 8(a) we observe
the end effector traces after 30 iterations. We optimized the
model parameters for this scenario (β=1.0, GRBF(λ)=45,
GRBFJJ(λ)=40, GRBFder(λ)=45, Waypoints(λ)=100). In Sec-
tion F we compare against a non-optimized model.

VII. DISCUSSION AND FUTURE WORK

In this work, we present a kernel approach to trajectory
optimization: we represent smooth trajectories as vector valued
functions in an RKHS. Different kernels lead to different
notions of smoothness, including commonly-used variants
as special cases (velocity, acceleration penalization). We in-
troduced a novel functional gradient trajectory optimization
method based on RKHS representations, and demonstrated that
this optimizer is efficient compared with another trajectory
optimization algorithm CHOMP. This method benefits from
a low-dimensional trajectory parametrization, that is fast to
compute. In the future, we are interested in extending the
model to a multi-resolution planner, that is sensitive to obstacle
shapes, by learning model parameters dynamically, such as
obstacle weight or kernel width. Another relevant research
direction is the extension of different kernel norms that ac-
count for robot interactions along the trajectory. Furthermore,
RKHSs enable us to plan with kernels learned from user
demonstrations, leading to spaces in which more predictable
motions have lower norm, and ultimately fostering better
human-robot interaction [4]. Our work is an important step in
exploring RKHSs for motion planning. It describes trajectory
optimization under the light of reproducing kernels, which
we hope can leverage the knowledge used in kernel based
machine learning, to develop better motion planning methods.



In the future, we are excited about the potential of this work
in trajectory optimization and motion planning.
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APPENDIX

A. Finite approximation of Path Integral Cost

Trajectory optimization in RKHSs can be derived for differ-
ent types of obstacle cost functionals, provided that trajectories
have a finite representation. Previous work defines an obstacle
cost in terms of the arc-length integral of the trajectory [26].
We approximate the path integral cost functional, with a finite
representation using integral approximation methods, such as
quadrature methods [12]. Consider a set of finite time points
ti ∈ T to be the abscissas of an integral approximation
method. We use a Gauss-Legendre quadrature method, and
represent ti as roots of the Legendre polynomial Pn(t) of
degree n. Let wi be the respective weights on each cost
sample:

Uobs[ξ] =

1∫
0

c [ξ(t)]
∥∥D1ξ(t)

∥∥ dt ≈ ∑
ti∈T

ωi c [ξ(ti)]
∥∥D1ξ(ti)

∥∥
(20)

with coefficients, and the Legendre polynomials obtained
recursively from the Rodriguez Formula:

Pn = 2n
n∑
j=0

tj
(
n

j

)(n+j−1
2

n

)
wi =

2

(1− t2i ) [D1Pn(ti)]2

We denote D1 ≡ d
dt the first order time derivative. Using this

notation, we are able to work with integral functionals, using
still a finite set of time points to represent the full trajectory.

B. Waypoint Parametrization as an Instance of RKHS

Consider a general Hilbert space of trajectories ξ ∈ Ξ,
(not necessarily an RKHS) equipped with an inner product
〈ξ1, ξ2〉Ξ = ξT1 Aξ2. In the waypoint representation [26], A
is typically the Hessian matrix over points in the trajectory,
which makes the norm in ξ penalize unsmooth and inefficient
trajectories, in the sense of high acceleration trajectories. The
minimization under this norm ‖ξ‖A =

√
ξTAξ performs

a line search over the negative gradient direction, where A
dictates the shape of the manifold over trajectories. This paper
generalizes the waypoint parameterization, we can represent
waypoints by representing the trajectory in terms of delta
Dirac basis functions 〈ξ, δ(t, ·)〉 = ξ(t) with an additional
smoothness metric A. Without A, each individual point is
allowed to change without affecting points in the vicinity.
Previous work, overcome this caveat by introducing a new
metric that propagates changes of a single point in the tra-
jectory to all the other points. Kernel evaluations in this case
become k(ti, ·) = A−1δ(ti, ·), where ξ(t) =

∑
i aiA

−1δ(ti, ·).
The inner product of two functions is defined as 〈ξ1, ξ2〉A =∑
i,j aibiA

−1δ(ti, ti).
Here δ(ti, ·) represents the finite dimensional delta function
which is one for point ti and zero for all the other points.
A trajectory in the waypoint representation becomes a linear
combination of the columns of A−1. Columns of A−1 dictate

how the corresponding point will affect the full trajectory.
For an arbitrary kernel representation the behaviour of these
points over the full trajectory are associated with the kernel
functions associated with the space. For radial basis functions
the trajectory is represented as Gaussian functions centered
at a set of chosen time points (fewer in practice) instead of
the full trajectory waypoints. In this sense, we have a more
compact trajectory representation using RKHSs.

C. Kernel Metric in RKHS

The norm provides a form of quantifying how complex a
trajectory is in the space associated with the RKHS kernel
metric K. The kernel metric is determined by the kernel
functions we choose for the RKHS, as we have seen before
(Section IV). Likewise, the set of time points T that support
the trajectory contribute to the design of the kernel metric:

‖ξ‖2H =
∑
d,d′

∑
ti,tj∈T

ad,ikd,d′(ti, tj)ad′,j (21)

=
∑

ti,tj∈T
a>i K(ti, tj)aj′ , ai,aj ∈ RD

= a>K(T , T )a,a ∈ RDN

Here a is the concatenation of all coefficients ai over
T , |T | = N .K(T , T ) ∈ RDN×DN is the Gram matrix for all
time points in the support of ξ, and all joint angles of the robot.
This matrix expresses the degree of correlation or similarity
among different joints throughout the time points in T . It can
be interpreted, alternatively, as a tensor metric in a Riemannian
manifold [1, 15]. Its inverse is the key element that bridges the
gradient of functional cost∇U (gradient in the RKHS, Eq.13 ),
and its conventional gradient (Euclidean gradient).This makes
the process covariant (invariant to reparametrization).

∇U = K−1(T , T )∇E U (22)

The minimizer of the full functional cost U has a closed form
solution in (12). Where the gradient∇U , is the natural gradient
in the RKHS. This can be seen as a warped version of the
obstacle cost gradient according to the RKHS metric.

D. Efficient Constraint Update

We consider the sets of max points in the support set
T , equality constraint violation points (endpoints) T o and
inequality violation points (joint limits) T p. We recover the
Lagrange multipliers in (17) by solving (23).[

K(T o, T o) K(T o, T p)
K(T o, T p)> K(T p, T p)

] [
γo

µp

]
(23)

=

[
(λ− β) ξn(T o) + dc>j K(T , T o)− qo
(λ− β) ξn(T p) + dc>j K(T , T p)− qp

]
≡
[
h(T o)
g(T p)

]
To solve the system efficiently we make use of the reproducing
property K(T o, T o) = K(T o, T p)K(T p, T p)−1K(T o, T p)>,
and the fact that we use use a separable kernel K(ti, tj) =



Fig. 9: 3DoF robot in 2D trajectory profile using different kernels. left: waypoints (blue), middle: Gaussian RBF with waypoints (red), right: Gaussian RBF
(brown).

(a) 30 iterations (b) Obstacle cost (c) Smoothness cost

Fig. 10: (a)7-DOF robot experiment, plotting the end-effector position from start to goal. Waypoints (λ=40) (blue), Gaussian RBF (1 max point,λ=45,β=1.0)
(orange), Gaussian RBF JJ (1 max point,λ=45,β=1.0) (yellow) (b) Obstacle and (c) Smoothness cost of random trajectories in constrained environment after
20 iterations

k(ti, tj)⊗ J>J .

K(T p, T p)−1 = k(T p, T p)−1 ⊗ (J>J)−1

µp = K(T p, T p)−1g(T p) (24)

γo = (T o, T o)−1 (h(T o)−K(T o, T p)µp)

E. RBF norm vs. Waypoint parametrization

In this section, we study the effect of using an RKHS norm
vs. the CHOMP norm. We perform an additional experiment,
where we compare against an RKHS norm with waypoints.
The trajectory becomes as weighted combinations of kernel
functions ξ(t) =

∑
i wik(ti, ·)∀ti∈T , evaluated at equally

spaced time points (waypoints) . We performed qualitative
experiments in a 2D setting with a 3-DOF planar arm.
Figure 9 shows the end-effector traces (coloured line) after
10 iterations. We kept the RBF RKHS parameters fixed and
optimized the obstacle weight, in order to achieve similar
convergence speeds. We compare the waypoint CHOMP (blue)
trajectory for the same number of waypoints (20) and only
4 max cost time points for the GRBF RKHS (brown). The
GRBF RKHS with equally spaced points (red) has a smooth
behaviour, similar to the GRBF RKHS norm with max points.
This qualitative example suggests that optimizing in the RKHS
norm yields smoother trajectories, independently of using
waypoints or max cost time points.

F. Parameter selection sensitivity

Here we show the results for the 7-DOF simulation in con-
strained environments, without performing hyper-parameter

optimization of the model (obstacle cost weight), §VI-F.
We use the same model parameters as in the high clutter
experiments §VI-E without optimizing for this particular task.
We measure performance over 40 different random initial
configurations. Figure 10(a) shows an example of Gaussian
RBF with joint interactions in yellow (GRBF-JJ), independent
joints in orange (GRBF), and waypoints in blue, after 30 iter-
ations. We show smoothness and obstacle costs per iteration,
see Figures 10(c) and 10(b) respectively. Without weight cost
tuning the RKHSs perform worse, but still achieve low cost
and smooth solutions. The updates with joint interactions are
smoother but take longer to converge, while the GRBF kernels
with independent joints converged approximately in the same
number of iterations as the waypoints experiments (12it.).
In Figure 10(a) we observe the end effector traces after 30
iterations. The joint interactions kernel is smoother compared
with the waypoint parametrization, however the full trajectory
smoothness is not statistically different when measured in
the waypoint smoothness metric. We observe that optimizing
the model parameters has a significant impact on the overall
method performance, see Section VI-F. An interesting research
extension could leverage this variability to produce planners
with multi-resolution capabilities according to the surrounding
environment (large motion in uncluttered scenes with high
obstacle cost and high kernel widths vs. localized changes
lower obstacle cost and with low kernel widths).
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