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Abstract-Algorithms in robotics typically tend to expose 
several parameters for the user to configure. This allows both re­
usability and fine tuning of the algorithm to a particular setup, 
but at the expense of significant effort in tuning, since this task 
is typically done manually. However, recent results in parameter 
optimization have shown to be quite successful, namely in 
automatic configuration of boolean satisfiability problem solvers, 
contributing to a significant increase in scalability. In this paper 
we address the applicability of these methods to the area of mobile 
robot localization. In particular, we applied a sequential model­
based optimization method to the automatic parameter tuning 
of the well-known Adaptive Monte Carlo Localization algorithm. 
Our results show a statistically significant improvement over 
the default algorithm values. We also contribute with an open 
source experimental setup, based on the popular Robot Operating 
System ROS, which can be easily adapted to other algorithms. 

Index Terms-Model based optimization robotics, black box 
optimization, algorithm configuration, automatic algorithm op­
timization, multi objective parameter optimization, automatic 
parameter tuning. 

I. INTRODUCTION 

As algorithms for real robots become more complex, the 
amount of parameters available that tune their performance 
tend to increase. Since these parameters are typically hand 
tuned, this increase turns manually tuning a very tedious 
task. This difficulty becomes larger whenever the algorithm 
is being reused by someone other than the original authors. 
In particular, code reuse, which is an widespread practice 
observed for instance in the robotics community, may be 
hindered by these difficulties. 

However, in other domains, such as algorithms for boolean 
satisfiability (SAT), this profusion of parameters have been 
dealt with significant success by using automatic configuration 
systems. These methods aim to find the optimal set of param­
eters that maximize the performance of an algorithm (or a set 
of algorithms, in case of portfolio approaches) over a given set 
of instances. The success of this methods have allowed very 
large problems to become tractable in reasonable time [1]. 

The goal of this paper is to study the applicability of these 
methods to the domain of mobile robotics. In particular, we 
contribute with a case study on mobile robot localization, 
choosing the well known Adaptive Monte Carlo Localiza­
tion (AMCL) algorithm [2], which implementation is freely 
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available here I thanks to the Robot Operating System (ROS) 
community. Encouraging code re-usability, their implementa­
tion exposes 47 parameters to con figure and although some 
of these can be experimentally estimated, their interaction and 
etlects given the stochastic nature of MCL methods are hard 
to predict. 

To perform the automatic parameter tuning of AMCL, we 
have chosen a sequential model-based optimization algorithm 
and in particular its implementation in the open sourced SMAC 
software2. This package is one of the state-of-the-art global 
optimization methods used by the SAT community. 

This paper is organized as follows: in section 11 we briefly 
explore the relevant related work to parameter optimization 
algorithms, then in III we describe the system architecture 
that we have developed for our experiments, in IV we describe 
the specifics of how the experimental data was collected and 
in V, VI, VII we present obtained results, discussion and 
conclusions. 

11. RELATED WORK 

In the Automated Algorithm Configuration problem (AAC), 
given a parameterized algorithm A( e), a set P of instances and 
a error metric E(A(e), P), the problem is described as finding 
a vector e of parameters for A so that they minimize E [1]. 

In this constrained optimization problem, the global min­
imum is searched, having as main challenge to overcome 
getting stuck in local minimum. Usually the cost function is 
unknown, but can be discretely sampled. For our case study 
the algorithm is stochastic and it has an expensive (time con­
suming) cost function calculation. Therefore the importance 
of having global optimization methods with heuristics that can 
train the parameters in a reasonable amount of time. 

In literature we find several automated optimization algo­
rithms, such as F-Race [3], ParamILS [1], SMAC [4] and 
genetic algorithm based in [5]. A survey paper for this last 
mentioned approach can be found in [6]. 

A. ParamILS: Iterated Local Search 

ParamILS [1] is a parameter optimization algorithm based 
on local search. Similar to simulated annealing, ParamILS 
switches between local descend and jumps, in an attempt to 

1 https://github.com/ros-planning/navigation/tree/indigo-devel/amc1 
2http://www.cs.ubc.callabs/betaIProjects/SMACI 
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find the best global configuration. It has been successfully 
applied to ditlerent domains such as Propositional Satisfiability 
SAT, Mixed Integer Programming CPLEX, AI Planning [7], 
Protein folding [8], etc. Unlike our case study, where the goal 
is to minimize the error of the cost function, for SAT the target 
is to reduce the CPU time of highly parameterized algorithms 
such as CPLEX (159 parameters). Their results show speed­
ups ranging from 2 to 23 over the default set. 

B. Sequential Model-Based Optimization for General Algo­

rithm Configuration (SMAC) 

SMAC [4], the improved version of ParamILS (from the 
same authors), is a tool for optimizing algorithm parameters 
based on predictive models (to select promising parameter 
configurations). The cost function model is estimated based on 
random forests [9], a well-known machine learning regression 
method based on domain dependent features. For new domains 
with no defined features, SMAC can be applied with a set 
of empty or domain independent features, for instance the 
default's target algorithm parameter set. 

SMAC supports both numerical and categorical parameters 
along with multiple algorithm instances. The authors claim that 
SMAC is a general configuration tool, non domain specific and 
therefore can be used for many different algorithms. 

The current implementation of SMAC does not support 
parallelization and runs are evaluated separately. In SMAC the 
algorithm configuration is treated as a black-box optimization 
problem. 

C. Parameter optimization applied to Localization 

In [10] we find a similar work to the one presented in 
this article: an automatic parameter optimization algorithm 
applied to Monte Carlo Localization (MCL). In this paper from 
2010 the authors automatically tune all relevant parameters 
of the filter by using the Particle Swarm Optimization (PSO) 
algorithm [11]. This well known method is useful for multi­
objective optimization of non-linear functions. The algorithm 
configuration process is performed offiine by using recorded 
log data. To rate each parameter set, a benchmark function is 
used to estimate the mean error based on euclidean distance 
between the estimated and the reference position, which comes 
from a camera image based system named SSL-Vision [12]. 
The approach is evaluated on a humanoid soccer player robot, 
in the scope of the RoboCup competition. The results are 
produced faster than with evolutionary algorithm approaches. 
According to the authors the system was able to find parameter 
sets that led to a more precise position estimate than the 
manually tuned set. 

1) Differences with our approach: Unlike this work [10], 
which automatically configures a single algorithm, we claim 
a general approach. Our framework can be used to offiine 
configure other (ROS based) mobile robot algorithms. To use 
our framework the user would need to develop a score function 
and record their own data. 

In our work we provide with a better statistical result 
analysis and cross-validation by testing the trained parameters 
in a separate data set. 
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Ill. SYSTEM ARCHITECTURE 

At the core of the optimization system we use SMAC[4], 
which is a Java based general tuning software. A client-server 
ROS wrapper was implemented to interact via linux shell with 
the third party tuning software. 

SMAC requires a scoring function to evaluate the quality of 
each run. For AMCL the selected metric measures the average 
distance between the robot ground truth pose and the best 
AMCL particle. 

The complete cycle is shown in Algorithm 1. The first 
step is to load the algorithm configurator C (SMAC for our 
case) selected parameters into the server and to select the 
instance i that will be used. Then we run algorithm A and 
initial conditions are provided. For AMCL this step provides 
with a pose estimate based on motion capture system data. 
Next step is to playback the previously recorded robot sensor 
data, being in our case odometry and laser scanner readings 
of a robot moving around the environment. Afterwards the 
quality score function E is started and the system waits until 
the playback is finished. Finally the scoring function result 
is collected together with the CPU time and the algorithm is 
terminated. SMAC will continue the loop until the maximum 
amount of runs is reached, selecting in each step a new 
promising algorithm configuration. At the end the current best 
configuration obtained is returned. 

Algorithm 1 Automatic parameter optimization pseudocode 

I: procedure ALGORITHM CONFIGURATION 
2: best configuration +- initial configuration 

3: i +- O. 

4: do 

5: C selects promising A config. and instance i 
6: Run A 
7: A +- initial conditions 

8: Playback P(i) sensor data set 
9: Wait until sensor data playback is finished 

10: Terminate A 
11: C +- Compute E, CPU time. 

12: i +-i + 1. 
13: while i < max. allowed runs 

14: return best configuration 

For deterministic algorithms SMAC always selects a differ­
ent configuration for the next run (Algorithm 1, line 5). For 
AMCL we use the non-deterministic option to perform several 
runs with the same parameters, considering the median quality 
score to select the next configuration. 

In Fig. 1 we present a component diagram of our work 
showing the specifics of how the developed components inter­
act with each other. 

To encourage re-usability, the architecture was design in a 
modular way. To plug-in a new algorithm a score function 
must be developed along with configuration files. 
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Fig. 1: Automatic algorithm optimization 
component diagram. 

IV. EXPERIMENT SETUP 

The experimental data was collected by teleoperating the 
MOnarCH robot (Fig. 2a) in the ISRoboNet@Home Testbed3 

(Fig. 2b). 

(a) MOnarCH robot. (b) ISRoboNet@Home testbed. 

Fig. 2: Experiment setup, a service robot (2a) 
and a testbed with a motion capture system (2b). 

A. The testbed 

The lab is an apartment-like environment with a Motion 
Capture System (MCS), designed to benchmark service robots. 
The Testbed has, among many other sensors and actuators, 12 
OptiTrack® "Prime 13" cameras (1.3 MP, 240 FPS). 

The system provides real-time tracking data of rigid bodies 
with sub mm precision in 6 dimensions with low latency 
( 4.2ms). 

B. The Robot 

The MOnarCH robot4, originally designed to interact with 
children in hospitals [13], has an omni-directional mobile base 
equipped with four mecanum wheels actuated by four indepen­
dent motors. It also features 5/30 m laser rage finders installed 
13.5 cm above ground level and two on-board computers with 
i7 processor, one PC is dedicated for navigation and one for 
human robot interaction. The robot has a weight of 24 Kg 
and a maximum velocity of 2.5 mls with 1 mls2 acceleration. 

3http://weIcome.isr.tecnico.uIisboa.ptlisrobonetl 
4http://monarch-fp7.eul 
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The 19 mm diameter, S marker pattern located on top of the 
head, allows to track the robot in real time by using the 
motion capture system earlier described. A more detailed robot 
specification can be consulted here [14]. 

C. Experiment description 

The robot is teleoperated around a previously mapped envi­
ronment, while ground truth information (with the pose of the 
robot), odometry and laser scanner readings are recorded. The 
collected open sourced data setS is later on used to (offline) 
tune the localization algorithm. 

The recorded sensor log (280 sec.) was divided into training 
and test data set (30 sec.) by selecting different intervals of the 
file for playback. The AMCL pose estimate is provided based 
on the first available MCS pose. The algorithm was trained in 
approximately 4.2 hours with a single instance, limited to 500 
runs max. 

In Fig. 3 we show a graphic representation of the collected 
sensor data on RViz. The error function calculates the average 
of all transformations between the robot (base_link) and the 
ground truth frame provided by MCS. 

-- o 
• 

Fig. 3: Processed sensor data visualization, 
frames : global frame, ground truth and robot estimated pose, 

blue dots : laser scanner readings, 
orange arrows : AMCL particles. 

D. Parameter description 

A subset of all configurable parameters was carefully chosen 
from the total amount (22 out of 47), with intervals selected 
based on dynamic reconfigure ranges (suggested by the algo­
rithm author in the code). The complete code used for the 
experiment is available in this6 website. 

In table I. we show the 22 selected configurable parameters 
for our experiment with their admissible ranges and default 
values. The remaining 25 parameters were fixed to their default 
values. A brief description of all AMCL parameters and their 
default values can be found here7 

5http://www.github.com/oscar-limallocalization_dataset 
6http://www.github.com/oscar-limalautom_param_optimization 
7http://wiki.ros.org!amc1 
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TABLE I: AMCL selected parameter ranges to configure 

Parameter Type 
laser_max_beams int 

Min. value 
5 

Max. value 
100 

Default 
30 

min_particles int 
max_partic1es int 
kid_err real 
kld_z real 
odom_alphal real 
odom_alpha2 real 
odom_alpha3 real 
odom_alpha4 real 
odom_alpha5 real 
laser_z_hit real 
laser_z_short real 
lasecz_max real 
laser_zjand real 
lasecsigma_hit real 
laseclambda_short real 
laser_likelihood_max_dist real 
update_min_d real 
update_min_a real 
resample_interval int 
recovery_alpha_slow real 
recovery_alpha_fast real 

5 
1000 
0.001 
0.5 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
0.001 
I 
0.001 
0.001 

980 
10000 
0.5 
0.999 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
10 
20.0 
0.5 
1.0 
5 
0.5 
1.0 

V. EXPERIMENT RESULTS 

A. AMCL consistency check 

lOO 
5000 
0.01 
0.99 
0.005 
0.005 
0.010 
0.005 
0.003 
0.95 
0.1 
0.05 
0.05 
0.2 
0.1 
2.0 
0.2 
0.5236 
2 
0.001 
0.1 

An algorithm is candidate for automatic configuration. only 
if there are pairs of configurations for which the quality 
score function is able to obtain statistically significant ditlerent 
scores across a number of runs. 

In Fig. 2a. we show an example of this condition satisfied. In 
this experiment we randomize the algorithm parameters and 
perform several runs (10 ditlerent parameter sets, tested 50 
times), looking for consistency and variance. 

Fig. 4: AMCL consistency check experiment, 
for several runs with random parameters 

ditlerent quality scores are obtained. 

B. Automatic algorithm configuration results 

In Fig. 5a we present the results of the automatic AMCL 
optimization for 500 runs using SMAC. 
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The automatically configured parameters outperform the 
default set. At first the tuning software went for the obvious 
choice: to increase the number of particles in the filter, at the 
expense of an increase in the computational load. To be fair 
with the default set, we fixed the max. amount of particles 
to the default value (5000) and we tuned for the remaining 
parameters. The result still shows better performance on both 
training and test data set with similar CPU time consumption. 

In Fig. 6 we show a plot of all the configurations tried 
out by the optimization algorithm against their associated 
error. Although it was limited to 500 runs, due to the non­
deterministic nature of AMCL, only 134 ditlerent configura­
tions were selected. 

500 
Parameter set 

Fig. 6: AMCL optimization trajectory for 5000 particles 
max. Figure is trimmed to show the region of interest. 

A robot position path plot is shown in Fig. 7. with a visual 
comparison of which parameter set is closer to the ground 
truth path. 

c 0 "' '� 0 0-
>-
'5 .0 
&. 

0 

-1 

-2 

Robot X position 

ground truth 
5000 particles 
9824 particles 

Fig. 7: Robot path comparison on test data set 
for dilferent parameters. 



2017 IEEE International Conference on 

Autonomous Robot Systems and Competitions (ICARSC) 

April 26-28, Coimbra, Portugal 

Fig. 5: Comparison between AMCL default parameter set and automatically optimized (2, 4) for 500 runs. 
(1) default parameters, (2) 9824 particles, (4) 5000 particles, (3, 5) trained parameters on test dataset. 

VI. DISCUSSION 

The optimized parameters (see Figure 5a param. set 2, 4) 
outperform the default set. However results could be better, we 
deliberately did not include expert knowledge into the system 
nor extra model features (only the default parameters). 

Although SMAC supports many instances, it was fed with 
a single training instance with mostly a linear trajectory. The 
results show an over fitting training, the obtained parameters 
are good for linear motions but partially fail at rotation (see 
Figure 7 at coordinates 0.5, -2). 

Some of the challenges of the automated tuning rise from 
the fact that we are running algorithms in real time with offline 
data, in other words while playing the previously recorded 
sensor data an online instance of AMCL is processing the 
offline readings. For this exercise it is crucial to have the 
time synchronized between all involved PC's (MCS & robot) 
while recording the sensor data. Furthermore a second time 
synchronization needs to be performed while running the 
algorithm to configure. 

We cannot assume sample normality for default set 
(W(50) = 0.71508,p < 0.001) and SMAC trained parameters 
(W(50) = 0.91762,p < 0.001) from the Shapiro-Wilk W test. 
The analysis of default set vs. SMAC trained parameters shows 
a statistically significant difference between default set and the 
parameters trained by SMAC (U = 2500,50 dof,p < 0.001), 
in two-tailed Mann-Whitney U test. The group with the lower 
error is the one with 9820 particles max (see Figure 5a). 

For future work we would like to investigate on multi­
criteria optimization, for instance CPU Time and Error, train­
ing with different instances and trying other optimization 
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algorithms. 

VII. CONCLUSIONS 

In this paper we have demonstrated by example the applica­
bility of automatic algorithm configuration methods originally 
designed for SAT solvers into the field of mobile robotics, in 
particular to the well known algorithm AMCL. 

Our experiments show that the result of the automatic 
configuration outperform the default set, having statistically 
significant better results with a p value less than 0.001 (99 % 

confidence). 
The algorithms involved in the process (SMAC and AMCL) 

were treated as a black box and expert knowledge was not 
applied in order not to bias the experiments. 

We contribute with a open-source ROS based Framework8 

to offline tune ROS based mobile robot algorithms. We present 
AMCL as a use case that demonstrates how the system can 
be used to automatically con figure algorithm parameters. 

In our experience optimization methods can be used to fine 
tune a particular algorithm by using ranges instead of fixed 
values. This allows for uncertainty during manual tuning, the 
author might not be sure about a specific parameter value but 
is sure that is confined in a certain range. 
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