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This paper proposes a novel integrated navigation filter based on a combined long baseline/ultra short baseline acoustic
positioning system with application to underwater vehicles. With a tightly coupled structure, the position, linear velocity,
attitude, and rate gyro bias are estimated, considering the full nonlinear system dynamics without resorting to any algebraic
inversion or linearisation techniques. The resulting solution ensures convergence of the estimation error to zero for all
initial conditions, exponentially fast. Finally, it is shown, under simulation environment, that the filter achieves very good

performance in the presence of sensor noise.
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1. Introduction

Navigation systems are vital for the successful operation
of autonomous vehicles. For aerial and ground vehicles,
the much celebrated global positioning system (GPS) is the
usual choice, warranting aided navigation solutions such as
the ones presented in Sukkarieh, Nebot, and Durrant-Whyte
(1999), Vik and Fossen (2001), and Batista, Silvestre, and
Oliveira (2009), see also the references therein. In under-
water scenarios, other solutions must be devised due to the
high attenuation that the electromagnetic field suffers. In
particular, long baseline (LBL) and short baseline (SBL)
acoustic positioning systems have been employed, see e.g.
Whitcomb, Yoerger, and Singh (1999), Jouffroy and Opder-
becke (2004), Kinsey and Whitcomb (2003), Larsen (2000),
Vaganay, Bellingham, and Leonard (1998), Ricordel, Paris,
and Opderbecke (2001), and references therein. Another
commercially available solution is the GPS Intelligent Buoy
(GIB) system, see Thomas (1998). Further work on the GIB
underwater positioning system can be found in Alcocer,
Oliveira, and Pascoal (2007). Position and linear veloc-
ity globally asymptotically stable (GAS) filters based on
an Ultra-Short Baseline (USBL) positioning system were
presented by the authors in Batista, Silvestre, and Oliveira
(2010a), while the extended Kalman filter (EKF) is the
workhorse of the solution presented in Morgado, Oliveira,
Silvestre, and Vasconcelos (2006). For interesting surveys
on underwater navigation, please see Leonard, Bennett,
Smith, and Feder (1998) and Kinsey, Eustice, and Whit-
comb (2006).

The GPS, LBL, SBL, USBL, or GIB positioning sys-
tems are essentially employed in the estimation of linear
motion quantities (position, linear velocity, acceleration)
and other sensors are usually considered for the problem
of attitude estimation, which is still a very active area
of research, as evidenced by numerous recent publica-
tions, see e.g. Metni, Pflimlin, Hamel, and Soueres (2006),
Tayebi, McGilvray, Roberts, and Moallem (2007), Cam-
polo, Keller, and Guglielmelli (2006), Choukroun (2009).
The EKF has been instrumental to many stochastic so-
lutions, see e.g. Sabatini (2006), while nonlinear alterna-
tives, aiming for stability and convergence properties, in
deterministic settings, have been proposed in Sanyal, Lee,
Leok, and McClamroch (2008), Vasconcelos, Cunha, Sil-
vestre, and Oliveira (2007), Rehbinder and Ghosh (2003),
Mahony, Hamel, and Pflimlin (2008), Thienel and Sanner
(2003), Grip, Fossen, Johansen, and Saberi (2012), and
Martin and Salaun (2010), to mention just a few, see Cras-
sidis, Markley, and Cheng (2007) for a thorough survey
on attitude estimation. Recently, the authors have proposed
two alternative solutions in Batista, Silvestre, and Oliveira
(2012a) and Batista, Silvestre, and Oliveira (2012c). In the
first, the Kalman filter is the workhorse, where no lineari-
sations are carried out whatsoever, resulting in a design
which guarantees globally asymptotically stable (GAS) er-
ror dynamics. In the latter, a cascade observer is proposed
that achieves globally exponentially stable (GES) error dy-
namics and that requires less computational power than the
Kalman filter, at the expense of the filtering performance.
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Common to both solutions is the fact that the topological
restrictions of the Special Orthogonal Group SO(3) are not
explicitly imposed, though they are verified asymptotically
in the absence of noise. In the presence of sensor noise, the
distance of the estimates provided by the cascade observer
or the Kalman filter to SO(3) remains close to zero and
methods are proposed that give estimates of the attitude
arbitrarily close to SO(3). In Batista, Silvestre, and Oliveira
(2012b) an alternative additional result gives attitude es-
timates explicitly on SO(3), at the possible expense of the
continuity of the solution during the initial transients, hence
not violating the topological limitations that are thoroughly
discussed in Bhat and Bernstein (2000).

For underwater vehicles, the usual sensing devices
employed for attitude determination are two triads of
orthogonally mounted accelerometers and magnetometers,
coupled with a triad of orthogonally mounted rate gyros,
used for filtering purposes. Essentially, the magnetometers
and the accelerometers provide direct measurements, in
body-fixed coordinates, of known vectors in inertial coor-
dinates. Hence, an attitude estimate can be readily obtained
from the solution of the Wahba’s problem. With additional
angular velocity measurements, it is then possible to design
attitude filters, possibly including the estimation of rate
gyro bias. The disadvantage of the use of magnetometers
is that they are subject to magnetic field anomalies,
such as the ones that can be encountered nearby objects
with strong magnetic signatures, rendering the magnetic
field measurements position dependent and therefore
useless. This can be particularly dangerous in underwater
intervention scenarios and as such alternatives need to be
devised.

In previous work by the authors, see Batista, Silvestre,
and Oliveira (2011a), a novel complete navigation system
was proposed based on a combined Long Baseline / Ultra-
short Baseline (LBL/USBL) acoustic positing system. With
an LBL acoustic positioning system, an underwater vehicle
has access to the distances to a set of known transponders,
which are usually fixed in the mission scenario. Under some
mild assumptions on the LBL configuration, it is possible
to determine the inertial position of the vehicle. With an
Ultra-Short Baseline acoustic position system installed on-
board the vehicle, in the so-called inverted configuration,
see Morgado, Batista, Oliveira, and Silvestre (2011), the
vehicle has access to the distance to a fixed transponder
in the mission scenario and the time (or range) differences
of arrival between each pair of receivers of the USBL ar-
ray. From those measurements, and under some mild as-
sumptions on the USBL array configuration, the position of
the external landmark relative to the vehicle, expressed in
body-fixed coordinates, is readily available. Using spread
spectrum techniques, see Morgado, Oliveira, and Silvestre
(2010), it is possible to combine LBL and USBL acous-
tic positioning devices, which gives, in essence, both the
distance between the vehicle and each of the external land-

marks and the time (or range) differences of arrival between
pairs of receivers, for each landmark. In this way, with an
LBL/USBL it is not only possible to determine the inertial
position of the vehicle but also the positions of the external
LBL landmarks with respect to the vehicle, expressed in
body-fixed coordinates. In Batista et al. (2011a), and for
attitude determination purposes, the latter were employed
to obtain body-fixed vector measurements of known con-
stant inertial vectors, hence allowing for attitude estimation,
while the inertial position was used to the estimation of the
linear motion quantities.

The actual measurements of an LBL/USBL acoustic
positioning system are acoustic signals, which when pro-
cessed yield ranges and range differences of arrival (RDOA)
between the acoustic receivers of the USBL. In Batista et al.
(2011a) these were used, resorting to inversion or algebraic
optimisation techniques, to obtain the inertial position of
the vehicle and the body-fixed positions of the landmarks.
However, it would be beneficial if the actual range and
RDOA could be directly employed in the estimation solu-
tion, avoiding intermediate nonlinear computations that can
distort noise and allowing for better tuning of the estima-
tor parameters. Additional benefits would be the possibility
of inclusion of outlier detection algorithms at the range or
range-difference of arrival levels and better coping with
loss of some of these measurements.

The main contribution of this paper is the design of a
tightly coupled integrated navigation solution based on an
LBL/USBL acoustic positioning system. In contrast with
the solution proposed in Batista et al. (2011a), the range
and RDOA are used directly in the observers feedback
loop, hence avoiding intermediate computations, and no
linearisations are carried out whatsoever. First, an attitude
observer, that includes the estimation of rate gyro bias, is
proposed, which is independent of the linear motion quan-
tities. The proposed observer achieves GES error dynamics
and it is computationally efficient. Topological limitations
are avoided by relaxation of the constraints of the special
orthogonal group, which are nevertheless verified asymp-
totically. Additional references are provided that yield esti-
mates on SO(3) based directly on the output of the proposed
observer with meaningless additional computational bur-
den. Afterwards, a position and linear velocity observer is
proposed assuming exact angular data information, which
also yields GES error dynamics. Finally, the cascade struc-
ture is analysed and it is shown that the error converges
exponentially fast to zero for all initial conditions. This is,
to the best of the authors’ knowledge, the first contribu-
tion on the design of tightly coupled integrated LBL/USBL
navigation system. Previous work by the authors can be
found in Batista, Silvestre, and Oliveira (2013a) and Batista,
Silvestre, and Oliveira (2013b), where the solutions for
the estimation of the linear and angular motion quantities
were presented independently. This paper improves those
results by providing detailed proofs and by considering the
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complete interconnected estimation structure, including its
stability analysis.

The paper is organised as follows. The problem state-
ment and the nominal system dynamics are introduced in
Section 2. The problem of attitude estimation is considered,
independently, in Section 3, while that of estimating the lin-
ear motion quantities is addressed in Section 4. The com-
plete integrated navigation system is proposed and analysed
in Section 5 and simulation results are presented in Sec-
tion 6. Finally, Section 7 summarises the main conclusions
and results of the paper.

1.1. Notation

Throughout the paper, the symbol 0,,, denotes an nxm
matrix of zeros, I,, an identity matrix with dimension nxn,
and diag(Ay, ..., A,) a block diagonal matrix. When the
dimensions are omitted, the matrices are assumed of appro-
priate dimensions. For x € R* and y € R, xxy and x - y
represent the cross and inner products, respectively. Finally,
the Dirac delta function is denoted by ().

2. Problem statement

Consider an underwater vehicle moving in a scenario where
there is a set of fixed landmarks installed in an LBL configu-
ration and suppose that the vehicle is equipped with a USBL
acoustic positioning system, which measures not only the
distance between the vehicle and each landmark but also
the RDOA between the acoustic receivers of the USBL,
from each landmark, as depicted in Figure 1. For further
details on the USBL, please refer to Morgado et al. (2011),
Morgado et al. (2010), and references therein. Further as-
sume that the vehicle is equipped with a Doppler velocity
log(DVL), which measures the velocity of the vehicle rela-
tive to the water, and a triad of orthogonally mounted rate
gyros, which measures the angular velocity up to some off-
set. Finally, it is considered that the vehicle moves in the
presence of a constant unknown ocean current. The problem
considered in the paper is the design of a highly integrated
tightly coupled estimation solution for the inertial position

[ landmarks

(b)

Figure 1. Mission scenario. (a) AUV and LBL array. (b) AUV
with USBL array.

of the vehicle and its attitude, the ocean current velocity,
and the rate gyro bias, with convergence guarantees.

2.1. System dynamics

To set the problem framework, let {I} denote a local iner-
tial reference coordinate frame and {B} a coordinate frame
attached to the vehicle, usually called the body-fixed ref-
erence frame. The kinematics of the vehicle are described
by

{ p() = R()v(1) (1
R(7) = RS (w(1))

where p(¢) € R? denotes the inertial position of the vehicle,
v(t) € R3 is the velocity of the vehicle relative to {/} and
expressed in body-fixed coordinates, R(f) € SO(3) is the
rotation matrix from {B} to {I}, w(t) € R? is the angular
velocity of {B}, expressed in body-fixed coordinates, and
S (w) is the skew-symmetric matrix such that S () x is the
cross product @ x x.

The DVL provides the velocity of the vehicle relative
to the water, expressed in body-fixed coordinates, denoted
by v,(t) € R3, such that

V(t) = Vr(t) + Vc(t)’ (2)

where v.(t) € R? is the ocean current velocity expressed in
body-fixed coordinates, while the triad of rate gyros gives

wm(t) = w(t) + bw(t)’ (3)

where b, (¢) € R? denotes the rate gyro bias, which is as-
sumed constant, i.e.,

b, (1) = 0. “)
Lets; e R3, i=1,...,N, denote the inertial positions of
the landmarks, and a; e R, i = 1,... , M, the positions

of the array of receivers of the USBL relative to the ori-
gin of {B}, expressed in body-fixed coordinates. Then, the
range measurement between the i-th landmark and the j-th
acoustic receiver of the USBL is given by

rij(t) = lIsi —p(t) = R(®)a;| € R. )

Define u(?) :=R(#)v,(¢) and let 'v,(f) :=R(f)v.(r) denote
the ocean current velocity expressed in inertial coordinates.
Assuming it is constant, and combining (1)—(5), yields the
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nonlinear system

p(r) = "ve(t) +u()

R(7) = R(1)S (@n (1) — bu(1))

(1) = 0(1)

bo(t) =0 . (6)
rii() = st = p(t) — R(ay ||

Fow(®) = I8y — p(t) — Ry

The problem considered in the paper is the design of an
estimator for Equation (6) with global convergence guar-
antees.

2.2. Long baseline/ultra short baseline
configuration

LBL acoustic configurations are one of the earliest meth-
ods employed for underwater navigation. These are char-
acterised by the property that the distance between the
transponders is long or similar to the distance between the
vehicle and the transponders. This is in contrast with USBL
systems, where the distance between the transponder and
the vehicle is much larger than the distance between re-
ceivers of the USBL system. In common is the fact that,
under standard assumptions, both the inertial position of the
vehicle (for the LBL) and the position of the landmarks with
respect to the vehicle, expressed in body-fixed coordinates,
(for the USBL, in the so-called inverted configuration) are
uniquely determined. This happens with the following stan-
dard assumptions, which are considered in the remainder
of the paper.

Assumption 1: The LBL acoustic positioning system in-
cludes at least four non-coplanar landmarks and the dis-
tance between the landmarks of the LBL is much larger
than the distance between the receivers of the USBL acous-
tic positioning system.

Assumption 2: The USBL acoustic positioning system in-
cludes at least four non-coplanar receivers and the distance
between the landmarks of the LBL is much larger than the
distance between the receivers of the USBL acoustic posi-
tioning system.

Remark 1: When there exist at least four noncoplanar
landmarks (receivers), it is always possible to determine
the inertial position of the vehicle (the position of the land-
mark with respect to the vehicle, expressed in body-fixed
coordinates) from the range measurements from each land-
mark to the vehicle (from the range and RDOA between
the landmark and the receivers of the array of the USBL).
When there are fewer measurements that is not always pos-
sible and certain observability conditions must be met, see
e.g. Batista, Silvestre, and Oliveira (2011b) for the case of
single range measurements. The scope of this paper is on
the combination of the USBL and the LBL measurements,

taking full advantage of the large data set to improve per-
formance and robustness to temporary sensor failure, while
still guaranteeing convergence of the error to zero. As such,
particular cases that do not satisfy Assumptions 2.1 and 2.2
are not treated, though it is rather straightforward to extrap-
olate the results presented herein to other cases considering
the analysis that is detailed in Batista et al. (2011b).

3. Attitude and rate gyro bias estimation

This section details the design of an attitude observer that
uses directly the ranges and RDOA and that achieves GES
error dynamics. The proposed approach builds vaguely on
two different methodologies previously proposed by the au-
thors. First, a sensor-based observer for the rate gyro bias is
developed by appropriate state definition, which bears some
resemblance to the design proposed in Batista etal. (2011b),
where the problems of source localisation and navigation
based on single range measurements were addressed. Sec-
ond, a cascade attitude observer is proposed assuming that
the rate gyro bias is known. Finally, the overall cascade
observer is proposed and its stability is analysed. The cas-
cade design is similar, at large, to that proposed in Batista
et al. (2012¢). However, the structures of each individual
observer are very different as they now rely on range and
RDOA measurements instead of vector measurements.

3.1. Rate gyro bias observer

The dependence of the attitude observer (and, consequently,
the bias observer) on the inertial position of the vehicle is
highly undesirable and in fact it should not be required. In-
deed, inan LBL/USBL framework, the positions of the LBL
landmarks with respect to the vehicle, expressed in body-
fixed coordinates, are indirectly available (after some com-
putations). If one takes the difference between pairs of these
vectors, one obtains a set of body-fixed vectors that corre-
spond to constant known inertial vectors, obtained from the
differences of the inertial positions of the LBL landmarks.
As such, this information suffices to determine the attitude
of the vehicle without the need of the inertial position of the
vehicle. In fact, this is the idea of the approach proposed
in Batista et al. (2011a). This section aims at achieving the
same result but using directly the ranges and RDOA, hence
achieving a tightly coupled structure.

Let Cg denote a set of 2-combinations of elements of the
set{1,...,N}, e.g.

Co = {(1,2), (1,3),...(1, N), (2,3), ...,
(2, N),....(N —1,N)},

and let C, denote a set of 2-combinations of elements of the
set{1,..., M}, eg.

Ca = 1{(1,2),(1,3),...(1, M), (2,3), ..., (2, M), ...,
(M — 1, M))}.
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Define

[m,(t) rai(0)]

qg(m,n,i,j,t):=—

[ra O —r2. ] (D

for all (m, n, i, j) € Cs x C,. First, notice that g(m, n, i, J, t)
is a direct function of the ranges and RDOA, as it is possible
to rewrite it as

1
q (mv n,i, ja t) = E[rn,i(t) + rn,j(t)][rn,i(t)

_rn,j(t)]

1
= 5 rmi(O) 1 (O i (1) = 7 (0]

Next, substituting Equation (5) in Equation (7) gives
Q(ms n,i,J, t):(sm_sn)T R(t) (ai _aj)~ (8)

As it can be seen, the inertial position of the vehicle does
not influence g(m, n, i, j, t). Yet, it depends on the attitude of
the vehicle and, considering all two-combinations of LBL
landmarks and all two-combinations of USBL receivers, it
is related to the entire geometric structure of the LBL/USBL
positioning system. The idea of the bias observer is to use
q(m,n,i,j,t), forall m, n, i, j) € Cs x C,, as system states,
which are measured, to estimate the rate gyro bias b, (),
which is unknown.

Before proceeding some additional definitions are re-
quired. In partlcular define, for all (i, j) € C,, additional
unit vectors a e R3 and aLZ € R? such that

a;—a; 1y

e > % = %)

1 a;,—a;

B, —nm ol - ©)
1, a;—a; _

B3 Tl = %)

In short, the sets of vectors [m

i ”} for all
(i, j) € C,, form orthonormal bases of R3. Next, notice
that under Assumption 2.2, it is always possible to express
all additional vectors al and a > as a linear combination

of vectors a; — a;. Let these be deﬁned as

all= Y ¢ j.kD(a—a)

(kDeCa

.. 10

ai= Y ¢ j.k D@ —a) (10
(kDeCy

forall (i, j) € Cy,where o, (i, j, k, 1), ¢ (i, j, k, 1) € Rare
the linear combination coefficients.

The nominal system dynamics of the rate gyro
bias observer are now derived. Taking the derivative of

Equation (8), and using Equation (6), gives

q (m’ n, iv jv t) = (Sm - sn)T R(I)S ((x)m(t)) (ai - a])
— (5 — $) " R(D)S(by(1))(a; — a;).

QY
Express @,,(¢) as the linear combination
(a; —a;) (a; —ay)
")m(t) = ")m(t) .
l(a; — aj)|| l(a; — aj)||
Fou(t) 2t + o, (1) 2282 (12)

Using Equation (12) firstand then Equation (9), it is possible
to write

wn(t) x (a; — ;) = @u (1) - ai{} [af} x (a; — a;)]

Lofal

+on(r) - a; 327 x (a; —a))]
L 1

= w,(1) - a;jlla; —ajla;;

— (1) a2 —aylla;2. (13)
Substituting Equation (10) in Equation (13) gives

On(1) X (a; — a))
= on(0)- a3l —a;ll D i G, j. kD) (ax — a)

(k,1)eCa

all Y pai ok D) (e — ).

(k,1)eCy

— (1) - a; 2 —
(14)

Substituting Equation (14) in the first term of the right side
of Equation (11), and using Equation (8), gives

(50— s)" RS (@,,(1)) (a; — a;)

= on(0)-a; 22 —a;| Y ¢1 (. j.k.Dg(m.n k.1,1)
(k,1)eCy

—on()a; tla —a; 1Y ¢2G. jok,DgOm,n k1 1).
(k.1)eCq

(15)

Following the same circle of ideas, it is possible to rewrite
the second term of the right side of Equation (11) as

(Sm = $)" R(1S (by(1)) (a; — a;)

=bo(0)atlla; —a;ll Y ¢1G. j.kDg(m n k1)
(k,1)eCq
—by(1)-a; tlai —a;ll D ¢a (i j.k.Dgm.n k. 11).
(k.l)eCq

(16)
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Substituting Equations (15) and (16) in Equation (11) gives
the nonlinear dynamics

g(m,n,i,j,t)

= on(0)-a; 22 —a;| Y 1 (. j.k.Dg(m.n k.11)
(k,1)eCq
—on()-a; la —a;| Y ¢ j.k.Dg(m.n k.1 1)
(k,1)eCq
+bo(t)-a; Hla —a;ll Y ¢ jik,Dg(m n k1 1)
(k.1)eCy
—bo(t)-a;2lla; —ajll > i (. j k1) g (m.n k1 1)
(k.1)eCq

(17)

for all (m, n, i, j) € Cs x C,. Notice that Equation (17) de-
pends only on the USBL array geometry, the rate gyro
measurements ®,, (), the additional quantities g(m, n, i, j,
1), the linear coefficients ¢,(i, j, k, I) and ¢,(i, j, k, [), all
available, and the unknown rate gyro bias by,(?).

Consider the rate gyro bias observer dynamics given
by

(}(m, n,i,j,t)
= wn(t)-a; 22 —a;1Y " 1 G j k. DG m.n k.1, 1)
(k.))eCy

—on(t) a2 —a; Y $2Gi. j kDG m.n k. 1.1)
(k,1)eCy

+bo(r)a;Ha —a;ll Y ¢ j. k. Dg(m.n k,11)
(k,1)eCq

—bo(t)a%lla; —ajll > ¢1G.j. k. Dgm n k. 11)
(k.)eCq

+oa(m,n,i, j)g(m,ni jt)—q@mnijnl (18)

for all (m, n, i, j) € Cs x C,, and

l;\)w(t) = Z

(m,n,i,j)eCsxCy
[q (m9n7 i5 j’ t) _q’\(myn7 i9 j’ t)]

[a,%;- Y b2 jk, D g mon k1 1)

(k,1)eCa

ﬂ(ma n,i,j)”ai _aj”

—a2 Y i, j. k. D)g(m,n kL, r)}, (19)

(k,1)eCa

where a(m, n, i, j) > 0 and B(m, n, i, j) > 0, for all
(m, n,i, j) € Cs x C,, are observer tuning parameters.

Let gm,n,i, j,t)y:=q(m,n,i, j,t)—qim,n,i,
j, 1), for all (m,n,i,j) e Csx Cy and by(t) := by(r) —
bo(7) denote the observer error. Then, the observer error

dynamics are given by

G(m,n,i,jt)
= ou()-a;3lla; —a;l Y ¢, j kDG Om,n k1 1)

(k.1)eCy
—on(0)-ap lla; —a;| Y ¢, j kDG (m,n, kL, 1)
(k,1)eCq
+bo()-atlla; — a1 ¢2i. j k. Dg(mn k1 1)
(k,1)eCy
—bo(t)alla; —ajll > $1G.j k. Dgm n k. 11)
(k.I)eCq

—a(m,n,i,j)g(m,n,i, j,t)

for all (m, n, i, j) € Cs x C,, and

Sw(t) = - Z

(m,n,i, j)eCsxCy

la; — a;| [a,%; D g kD)

(k,1)eCa

B(m,n, i, j)g(m,n,i,j,t)

q(mvnvkslvt) - aIJ—jZ Z ¢1 (lv js kvl)
(k,1)eCy

q(m,n,k,l,t)].

The following theorem establishes that the resulting rate
gyro bias observer has GES error dynamics.

Theorem 3.1: Suppose that Assumptions 1 and 2 are sat-
isfied and consider the rate gyro bias observer given by
Equations(18) and (19), where a(m, n, i, j) > 0 and B(m,
n, i,j) > 0 forall (m,n, i, j) € Cs X Cy. Then, the origin of
the error dynamics is a GES equilibrium point.

Proof: Let X(¢):=[...G(m,n,i,j,t)...bL(")]" €
R2CICH3 (m,n,i, j) € Cs x Ca, denote the estimator
error, in compact form, where 9’ C=NWN-1)/)2
and YC =M (M —1)/2 denote the number of two-
combinations of N and M elements, respectively. Define

1
@) =5 Y. Blnni plaemni j.0F

(i, j,k,1)ECs xCy

1 .
— by (D
+51ba(®)]
as a Lyapunov function candidate. Clearly,
nIEOIF < V@) < 1501, (20)

where

1
Y = Emin(l,ﬂ(m,n,i,j)),(m,n,i, Jj) € Cs x Cy
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and
1 . ..
Y= Emax(l, B(m,n,i,j)),m,n,i,j)eCs x Cy.

The time derivative of V| (¥(¢)) can be written, after some
computations, as

Vi (&1(1)) = —%{ (NC{ C1%1(7)
= — Z a(m,n,i, j)B(m,n,i, j)
(i, j k. 1)eCyxCy
[g (m,n, i, j, DO,
where C = [diag(\/a(m, n, i, j)B(m,n,i,35)) 0].

Hence,
Vi (%1(1) <0. (21

Now, notice that the error dynamics can be written as the
linear time-varying (LTV) system

x1(t) = A% (1), (22)
where

A= | e A0

and each row of the matrix .A,(¢), corresponding to the
state error g (m, n, i, j, t), is given by

T
lai = ajl Y ¢20.jk gm0 (a))

(k,1)eCy

T
—llai —ajl Y. &Gk DgOmon kL (a7)

(k.1)eCy

The definitions of A;1(¢) and A3 (¢) are omitted as they
are not required in the sequel. If in addition to Equations
(20) and (21), the pair (\A;(#), C;) is uniformly completely
observable, then the origin of the LTV system (22) is a
GES equilibrium point, see Khalil (2001, Example 8.11).
The remainder of the proof amounts to show that the pair
(A (), Cy) is uniformly completely observable. For any
piecewise continuous, bounded matrix K;(#), of compati-
ble dimensions, uniform complete observability of the pair
(A;(?), Cy) is equivalent to uniform complete observability
of the pair (A(¢), Cy), with A;(¢) := A (t) — K (t)C}, see
Toannou and Sun (1995, Lemma 4.8.1). Now, notice that,
attending to the particular forms of C; and A, (), there ex-
ists a continuous bounded matrix K; (), which depends ex-
plicitly on the observer parameters, the rate gyro readings,
(1), the USBL structure, the linear coefficients ¢ (i, j, &,
) and ¢5(i, J, k, 1), and g(m, n, i, , 1), (m, n, i, j) € Cs X Ca,

such that

wo=[§ 40]

The expression of K (7) is not presented here as it is evi-
dent from the context and it is not required in the sequel. It
remains to show that the pair (A(#), C;) is uniformly com-
pletely observable, i.e., that there exist positive constants
€1, €5, and § such that

al Wi (1,1 +98) 2 el (23)

forall 7> ty, where W (fo, 1) is the observability Gramian
associated with the pair (A(f), C;) on [to, t]. Since the
entries of both A;(7) and C; are continuous and bounded, the
right side of Equation (23) is evidently verified. Therefore,
only the left side of Equation (23) requires verification. Let

T1T NeMe4s
d:['wdm,n,i,j'wdz] eR:™2 +,

dunij €R, (m,n,i, j)eCsxCa, dy € R?
be a unit vector and define

f(r,0):=[.. funij(@1)...1" e RICYNC,
(mv naiyj) € CS X Ca’

where

fm,n,i,j ('L', t) L= \/Ol (m, n, i1 ])ﬂ(m’ n, i9 .])

T
(dm.n,i,j +f ”ai - aj”
t

> $2G.j k. Dgm.n k. 1.0)a]

(k,1)eCa

dado— [ o= al Y 416 gk
/ (k.))eCa

q(m.n k1 0)a; dzdﬁ), (24)

T e[t,t + 8], 1> ty. It is easy to show that

t+6
W, (r,r+a)d=f If(z, DI d.
t

Reversing the train of thought used to obtain Equation (15)
but considering d, instead of w,,(?), i.e., substituting Equa-
tion (8) in Equation (24), and then using Equations (10) and
(9), it is possible to rewrite £,  ; j(T, f) as

fm,n,i,j (T’ t) = \/Ol (m, n, i7 ])ﬂ(m’ n, iv J)

dm,n,i.j - / (sm - sn)T R(G)S (dZ) (ai - aj) dU
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The derivative of £, ,, ; (T, ) with respect to 7 is given by

3
Efm,n,,,_,. (1.1): = —Ja(m,n,i, j)B(m,n,i,j)
(sm — $2)" R(1)S(d2) (a; — a)).

Under Assumptions 2.1 and 2.2, one can conclude that there
exists a positive constant u such that H %f (z, t)H > ulda]l
for all non-null vectors d, and ¢ > #,. Fix § > 0. Resorting
to Batista et al. (2011b, Proposition 2), it follows that there
exists v; > 0 such that

t+68 3
/—J@UM'>wMﬁ
T

t

for all non-null vectors d, and ¢ > fy. Fix € > 0 sufficiently
small such that

|dm,n,i,j| <€ (25)

for all (m, n, i, j) € Cs x C, and

1
—vy |yl
€ <zvildl

Notice that this is always possible as the smallest € is the
largest ||d,|| is, as d is a unit vector. Then, it is clear that
there exists v, such that ||f(r + &, £)|| > v, for all ¢t > £
and all unit vectors d that satisfy Equation (25). Resorting
to Batista et al. (201 1b, Proposition 2) again, it follows that
there exists vz > 0 such that, for all unit vectors d that
satisfy Equation (25), (23) holds for all ¢ > #, with €; =
v3. Suppose now that there exists d,,, , ; ; such that

|dm,n,i,j| > €. (26)

In that case, it is possible to see that || f(z, 7)|| > € for all >
to. Hence, resorting to Batista et al. (2011b, Proposition 2)
again, it follows that there exists v4 > 0 such that, for all unit
vectors d that satisfy Equation (26) for some (m, n, i, j) €
Cs X C,, Equation (23) holds for all # > ¢y, with €| = v4. But
then it follows that Equation (23) holds for all ¢ > #, and
unit vectors d, with €| := min (v3, v4), which means that the
pair (A(?), C,) is uniformly completely observable, hence
concluding the proof. O

3.2. Attitude observer
Let

x(1) = [2F (1) £ (1) 2 (1)]" e R’

be a column representation of R(?), where

z (1)
R(1) = |2 |,
z; (1)

with z;(t) e R®, i = 1, 2, 3. Then, it is easy to show
that x,(t) = —S;3 (@, (t) — be(2)) x2(f), where S;(x) :=
diag (S (x), S(x), S (x)) € R?.

From Equation (8), it is possible to write g(m, n, i,
Jj, t) as a linear combination of elements of x;(¢), i.e.,
g(m,n,i, j,t)=Cyn,;-X2(t), where

(a,» — aj) 0 0
cm,n,i,j L= 0 (3,‘ — aj) 0
0 0 (a,- — aj)
(Sm —s,) € R.

Let q(t):=[...q(m,n,i,j,1)...]17 e R'C (m, n,i,
J) € Cs x Cy. Then, it is possible to write q(t) = Cax(?),
where C, € R2€2'Cx9 is omitted as it is evident from the
context. Under Assumptions 2.1 and 2.2 it is possible to
show that C, has full rank.

Consider the attitude observer given by

£2(1) = =S5 (@ (1) — bo(t)) £2(t)
+CIQ ' [q(r) — Caxa(1)]. 27)

where Q = Q7 € R2€Y'Cx1'CYC g g positive definite ma-
trix, and define the error variable X¥,(¢) = x,(¢) — X2(¢).
Then, the observer error dynamics are given by

X2(1) = Ax(D)F2(1), (28)

where A, (1) := —[S3 (@ (?) — bo(t)) + CTQ7IC,].
The following theorem is the main result of this section.

Theorem 3.2: Suppose that the rate gyro bias is known and
consider the attitude observer (27), where Q>0 is a design
parameter. Then, under Assumptions 2.1 and 2.2, the origin
of the observer error dynamics (28) is a GES equilibrium
point.

Proof: The proof follows by considering the Lyapunov
candidate function

Va (al0) = 5 1201

It is similar to that of Batista et al. (2012¢, Theorem 2) and
therefore it is omitted. The only difference is, in fact, in the
definition of C,, which is nevertheless full rank, the only
requirement for the proof. (I
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3.3. Cascade observer

This section presents the overall cascade observer and its
stability analysis. In Section 3.1, an observer was derived,
based directly on the ranges and RDOA, that provides an
estimate of the bias, with GES dynamics. The idea of the
cascade observer is to feed the attitude observer proposed
in Section 3.2 with the bias estimate provided by the bias
observer proposed in Section 3.1. The bias observer remains
the same, given by Equations (18) and (19), whereas the
attitude observer is now written as

'éZ(t) = _S3(wm(t) — Bw(t))i?z(t)
+CIQ 7 [q(r) — G2 (1)]. 29)

The error dynamics corresponding to the bias observer
are the same and, therefore, Theorem 3.1 applies. Evidently,
the use of an estimate of the bias instead of the bias itself in
the attitude observer introduces an error, and the stability
of the system must be further examined. In this situation,
the error dynamics of the cascade observer can be written
as

{;l(t) =Ai(OX1(1) (30)
X5(1) = [Ax(1) — S5 (bo(1))1%2(1) + ua(2),

where u (1) := S3 (bo(1)) x2(2).
The following theorem is the main result of this section.

Theorem 3.3: Consider the cascade attitude observer
given by Equations (18), (19), and (29). Then, in the con-
ditions of Theorem 3.1 and Theorem 3.2, the origin of the
observer error dynamics (30) is a GES equilibrium point.

Proof: The proof follows exactly the same steps of Batista
et al. (2012c, Theorem 3) and, therefore, it is omitted, even
though the specific system dynamics are different. It is
omitted due to space limitations.

3.4. Further discussion
3.4.1. Estimates on SO(3)

The attitude solution previously proposed does not yield
estimates on SO(3) as the special orthogonal group restric-
tions have been relaxed, in a similar fashion to the ap-
proaches proposed in Batista et al. (2012a) or Batista et al.
(2012c¢). In the absence of noise, the estimates converge
asymptotically to elements of SO(3), while in the presence
of noise their distance to SO(3) remains close to zero. Ad-
ditional refinements are possible such as those discussed in
Batista et al. (2012c, Section 3.4). This is not the focus of
the paper and as such it is omitted. Furthermore, explicit
estimates on SO(3) could be obtained, based in the attitude
observer here proposed, resorting to Batista et al. (2012b,
Theorem 7).

3.4.2.  Computational complexity

The design herein proposed consists in a cascade observer
where the number of states of the second observer is 9 and
the number of states of the first observer is N(N — 1)M(M
— 1)/4 + 3, with a total number of states of M(N — 1)M(M
— 1)/4 4 12. For a typical LBL/USBL configuration with
four landmarks and four acoustic receivers in the USBL
array, that corresponds to 48 states. While this number may
seem relatively high, it is very important to stress that the
resulting observer is computationally efficient and of simple
implementation. Indeed, all the observer coefficients are
computed offline and no differential equations are required
to compute the observer gains.

4. Position and linear velocity estimation

This section addresses the design of an estimation solution
for the inertial position and inertial ocean current veloc-
ity based on the LBL/USBL positioning system assuming
exact angular information, i.e., assuming that both the at-
titude and the angular velocity are available. First, state
and output augmentation are performed, in Section 4.1, to
attain a nominal system that, although nonlinear, can be
regarded as linear for observability analysis and observer
design purposes. Afterwards, the observability of that sys-
tem is analysed in Section 4.2. Finally, in Section 4.3, a
Kalman filter for the resulting system, with GES error dy-
namics, is briefly discussed.

4.1. State and output augmentation

In the recent past, a novel observer analysis and design
technique has been proposed by the authors for navigation
systems based on nonlinear range measurements, which
consists basically of: (1) including the range measurements
in the system state; (2) identifying the nonlinear terms
of the dynamics of the range measurements as additional
state variables; (3) defining augmented outputs, when ap-
propriate, to capture the structure of arrays of landmarks
or receivers; and (4) working with the resulting nonlinear
system, which can actually be regarded as LTV, for ob-
servability analysis and observer design purposes. This ap-
proach has been successfully employed considering single
measurements, see Batista et al. (2011b), LBL configura-
tions, see Batista, Silvestre, and Oliveira (2010b, 2014), and
USBL configurations, see Morgado et al. (2011), where dif-
ferent auxiliary sensors were considered, for example DVLs
or triads of accelerometers. The design presented herein
consists of the integration of both LBL/USBL measure-
ments with this approach.
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The time derivative of the range measurements (5) is
given by

Fij(1) = u() + lt’ff?(st)(w(t)) & (0
LJ
—S; + R(t)aj , ! 1
T . Vc(t) + ri’j(t)p(t) . Vc(t)
+uy, (1), o
where
(1) = u’(HR(1)a; —u’ ()s; — sTR(®)S (0(1)) a; .

ri j(t)

Identifying the nonlinear term p(?) - 'v.(¢) in Equation (31)
with a new variable and taking its time derivative gives

d
o [p@) - V@] = u@)- V) + | V)|, (32)

Finally, identifying the nonlinear term || ‘v.(¢)|? in Equation
(32) and taking its time derivative gives %[H Iv. )21 =0.
For the sake of clarity of presentation, let x; ;(¢) :=

(), oo Xyu(t) = ry (), x3(0) :=p(2) - Ivc(t)a and x4(%)
:= || 'v.(#)||?, and define the augmented state vector as

x3(t) = [p" (@) 'VE@)x11(0)x1 () - . Xy ()

X3(t)X4(t)]T e R3+3+NM+1+1,
Then, the system dynamics can be written as
X3(1) = As(t)x3(r) + B3u(2),

where Asz(r) € ROHNM+2x(6+NM+2)

B 0 I 0 0 07
0 0 0 0 0
u’ (t)—al S(w())R” () —s! +al R7 (1) 0o
ria(t) ria(t) rii(t)
As(r) = : N
u’ (t)—al, S(w())RT(t) —sk+al R (1) 9
rnm(t) rn.m(t) rym(t)
0 uT(t) 0 0 1
| 0 0 0 0 0]
10
00
B;=|01I]¢ RE+NM+2)x(B+N M)
00
00
and

w,(t) == [0 () (1) -ty ()] € RPNV

To define the output, notice first that the states
x1.1(t), ..., xyu(t) are measured. Note, however, that the
RDOA between pairs of receivers to the same landmark are
measured more accurately with the USBL when compared
to the distance between the landmark and any given receiver
of the USBL. Selecting a reference sensor on the array, for
instance receiver 1 for now, all the other ranges are easily
reconstructed from the range measured at receiver 1 and the
RDOA between receiver 1 and the other receivers. Hence,
the first set of measurements that is considered is

rii(t)

ria(t) — ria(?)

r1,1(t) _.rl,M(t)

yi(t) = e RVM, (33)

rN,l.(t)

| rN,I(t) - rNAM(t) _
However, if that was the only output to be considered, the
LBL/USBL structure would not be encoded in the out-

put. To capture the LBL/USBL structure, consider first the
square of the range measurements, which is given by

20y = IpOI* + lIsiII* + lla; 1> = 2[s; — R()a;] - p(¢)
— 257 R(t)a;

foralli=1,...,N,j=1,...,M. Then,

ro (O =17 () = llswll® = lIsalI*> — 2 (s — s4)

-[p(t) + R(t)a,] (34)
and
2@ — 12, (0) = lanl* — la, > — 2[R() (a, — a,)]
[si — p()]. 35)

Breaking the differences of the squares, using a> — b*> =
(a + b)(a — b), it follows from Equations (34) and (35)
that
(sm - sn)T
rm,j(t) + rn,j(t)
l$ll* = lIsn 1> = 2 (s, — )" R(1)a;

P(1) + X j (1) = xn,j (1)

= 36
O+ 1oy 0) (36)
and
(am - an)T RT(t)
_2 ri,m(t) + ri,n(t) p(t) + xi,m(t) - xi,n(t)
2 _ 2 _ T oT )
_ lanll” = llal 2(a, —a,)’ R (t)s,’ (37)

r[,m(t) + ri,n(t)
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which capture the LBL/USBL structure. The augmented
output can then be written as

y3(t) = C3(t)x3(2),

with Cs(1) € R(NMAM Y C+N Y C)x(+3+NM+141)

0 0 Cs3 0 0
Cu) 0 Cx3 0 0],
Cu(t) 0 Ci3 0 0

Gs(t) =

where Cj3 := diag (C;. ..., CJ;) € RN wyith

10 ... ... 0
-
Ch=|1 0 -1 e R,
o
10 ... 0 -1

C%l(t)

Czl(t) = = R(M QIC)X3’

i)

(s1—s9)"
ri(t)+r2,;(1)
(s1—s3)’

r1i(0)+r3,i (1)

Chy(1) =2 eR¥C,

(sv—1—sn)"
ry—1,i(t)+rni(t)

Cl (1)

Cyi(1) = e RWO)3,

1
1 1

)

(a—2y)"R7(1)
ri(t)+ria(t)
(a—a3)"RT (1)

i (t)+ris(t)

CL(t) = =2 e RIC3,

(ay—1—ay)" R7 (1)
rim—1 () +rim(1)

where YC =N (N —1)/2and ¥'C =M (M — 1) /2 cor-
respond to the numbers of two-combinations of N and M
elements, respectively, and C,3 and Cs3 encode the differ-
ences of range measurements in Equations (36) and (37),
respectively, which are omitted as they are evident from
the context. In short, C3; encodes Equation (33), matrices
C,1(?) and Cy; encode Equation (36) forallj € {1,..., M}

andm,n € {1,...,N}, with n # m, and matrices C3;(¢) and
Cs; encode Equation (37) foralli e {1,...,N} andm, n €
{1,..., M}, with n # m.

Considering the augmented system state and outputs,
the final augmented system dynamics can be written as
{-7273([)2AB([)x3(t)+B3ua(t) (38)
y3(1) = C3(1)x3(7) ‘

4.2. Observability analysis

The observability of the nonlinear system (38) and its rela-
tion with the original nonlinear system

p(1) = "ve(r) +u(r)
Ve(r) = 0(7)
ria(t) = list —p() — R@a| (39)

Fon(®) = I8y — p(t) — Ry

is analysed in this section.

Even though the system dynamics (38) resemble an
LTV system, it is, in fact, nonlinear, as the system matrices
depend both on the output and the input. However, this is not
a problem for observability and observer design purposes
and the results for LTV systems still apply, see Batista et al.
(2011b, Lemma 1). Before presenting the main results, it is,
therefore, convenient to compute the transition matrix asso-
ciated with A3(7) and the observability Gramian associated
with the pair (Az(?), C5(f)). Long, tedious but straightfor-
ward computations allow to show that the transition matrix
associated with As(?) is given by

$,(,%)0 0
G, (1, 10) Ly (1,0) |
¢CA (f, tﬂ) 0 ¢Cc (t9 tO)

$(1.1) =

where

R e
¢BA (tv tO) = [¢BA1 (tv tO) ¢BA2 (f, tﬂ)] € RNMXG’

¢RA1(1A]) (tv to)
c RNMX3

¢B/\] (l, tu) = :
¢BA](N,M) ([, to)

‘u” (o) — 7S (@ ()R (o)
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¢BA2(1.1) (t7 tO)

e RNMXS’

¢BA2 (l, to) = :
¢RA2(N.M) (t1 tO)

P, Batista et al.

for all #+ € Z. Taking the time derivative of Equation (42)
gives ||C; (1) ¢ (¢, t,)d||?> = 0 for all # € Z, which in turn
implies that

Co@.1,)d=0 (43)

u(o) +R(o)S@ (o) a;]" + [ u” (o) do

1 —sT +alRT (o)) 1o —1)|
P az.j) (1. 10) = / ———————da /
Iy

1o rij (o)

t 1 t o—ty
ffo rl,l(tf)do j;o fl‘l(U)dO
e RNMXZ’

¢BC (t, t(,) =

1 1 t a;to
fo VN.M(G)delo rNM(G)dU

_ Of,:) u’ (0)do 2%6
¢CA(t7t0)_ |:0 0 :|€R y

and
1t—t N
¢cc(t’t0): [O 1 0] ERZ 2»

It is, however, easy to verify that ¢ (¢,7) =1 and
%qﬁ (t,t,) = As()@ (¢, t,). The observability Gramian as-
sociated with the pair (A3(7), C3) is simply given by

Wi (0. 17) = / "7 (1. 1) CL(OC3(1) (1. 10) . (40)

The following theorem addresses the observability of
Equation (38).
Theorem 4.1: Under Assumption 2.1 or 2.2 (or both), the
nonlinear system (38) is observable on I := [to, t7], to < t5
in the sense that, given the system input {u,(t),t € I} and
the system output {y3(t), t € L}, the initial condition x5 (1))
is uniquely determined.
Proof: The proof follows by contradiction. Suppose that
the nonlinear system (38) is not observable in Z. Then,
the observability Gramian W(t, t5) is not invertible, see
Batista et al. (2011b, Lemma 1), which means that there
exists a unit vector

d= [le dZT d3T dzds]T c R3+3+NM+1+1’

with d; € R3, dy € R3, d3 € R¥M and d4, ds € R, such
that

dW(t,Nd=0 (41)

for all r € Z. Substituting Equation (40) in Equation (41)
yields

/ 1C3 () (r. ) d]I> = 0 42)

o1,

rij (o)

for all + € Z. With ¢ = ¢, in Equation (43) gives

Cizds =0
Cy (fo)d; + Cp3d; = 0. (44)
Cs1(f9)d; + C33d; = 0

Notice first that C;3 has full rank, which means that d; =
0. On the other hand, under Assumption 2.1 matrix C;; (%)
has full rank, while under Assumption 2.2 matrix Cz;(f)
has full rank. Hence, under the conditions of the theorem,
it has been shown so far that the only solution of Equation
(44) is d; = 0 and d; = 0. Taking in the time derivative of
Equation (43) gives Z—ZC3 B¢ ((t,t,)d=0forallr € Z.In
particular, for # = ¢y, and considering d; = 0 and d; = 0, it
is possible to write that

[—si + R(f0)a;]"dy +ds =0 (45)

foralli € {1,... ,N} and j € {1,... ,M}. Now, under
Assumption 2.1 or 2.2 (or both), it is possible to show that
the only solution of Equation (45) is d, = 0 and d4 = 0.
Finally, taking the second time derivative of Equation (43),
for t = £y, and consideringd; =d, =0,d; =0,and ds =0,
it is possible to show that it must also be ds = 0. However,
this contradicts the hypothesis of existence of a unit vector d
such that Equation (41) holds. Hence, by contradiction, the
observability Gramian W(to, ;) is invertible and hence the
nonlinear system (38) is observable in the sense established
in the theorem, see Batista et al. (2011b, Lemma 1). O

The fact that Equation (38) is observable does not im-
mediately entail that the nonlinear system (39) is observable
nor that an observer for Equation (38) is also an observer for
Equation (39), as there is nothing in the system dynamics
(38) imposing the nonlinear algebraic relations that were
at its own origin. Moreover, the range measurements as a
nonlinear function of the state were also discarded. How-
ever, all that turns out to be true, as shown in the following
theorem.

Theorem 4.2: Under Assumption 1 or 2 (or both), the
nonlinear system (39) is observable on I := [ty, t7], ty <
t; in the sense that, given the system input u(t) and the sys-
tem output v, \(t), ..., ryu(t) for t € Z, the initial condi-
tion p(ty) and "v.(ty) is uniquely determined. Moreover, the
initial conditions of the augmented nonlinear system (38)
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match those of Equation (39) and hence an observer with
globally asymptotically stable error dynamics for Equation
(38) is also an observer for Equation (39), whose error
converges to zero for all initial conditions.

Proof: Let

[ (10) ]
v (10)
x1,1 ()

x1,2 (fo)

X3 (tO) = i e R3+3+NM+1+1
Xym (t0)
x3 (to)

| x4(t0) |

be the initial condition of Equation (38), which, from The-
orem 4.1, is uniquely determined, and let p(¢) and ‘v.(ty)
be the initial condition of Equation (39). First, notice that
it must be X1.1 (th) = ri (t0), ..., Xyu(t0) = 1y (to) as
these states are actually measured. Moreover, evaluating the
outputs of the nonlinear system (38) that capture the LBL
and USBL structure, given by Equations (36) and (37), at
t=ty, gives

(S —$0)"
P, j (o) 4 1, j (o)
_iswll? = lIsall* = 2 (s —s,)" R(10) a;
B Tm.j (10) + 7 j (f0)

P’ (t0) + xpm,j (t0) — X, (10)

and

(an —a,)" R (1) ,
-2 ! im (T0) — Xin (&
ri,m(t0)+ri,n(t0)p (fo) + im (f0) = i (o)
_ lanl? = llal® — 2 (an —a)" R” (o) s;

Vim (IO) + Vin (IO)

or, equivalently,

2(sw —s0)" P (10) + 1 (t0) — . ; (10)
= ”sm”2 - ”511”2 _2(sm —S,,)TR(I()) a; (46)

and

—2(an —a,)" R” (1) p' (t0) + 17, (t0) — 2, (t0)
= [la,[* — 2, l> — 2 (a, —a,)" RT (t0)s;.  (47)

Substituting Equations (34) and (35) in Equations (46) and
(47), respectively, gives

2 (sm - sn)T [p/ (tO) —Pp (tO)] =0 (48)

forallm,ne {l,...,N},n+#n, and
2(an —a,)" RY (1) [p' (1)) — p(8)] = 0 (49)

for all m, n € {1,... ,M}, n # n. Now, it is possible to
show that, under Assumption 1 the only solution of Equa-
tion (48) is p/(fy) = p(y), while under Assumption 2 the
only solution of Equation (49) is also p'(#) = p(%). Thus,
so far it has been shown that

p’ (to) = p (%)
x1,1 (to) = r1,1 (fo)
) (50)
T (10) = P (1)

As a function of the initial state of Equation (39), the square
of the range readings can actually be written as

/;tu(r)dr

+2(t —19) |:—S,' +R(t)aj +/tll(0)d0’:|

fo

2

rl i) = +2[u(®) + R()a;] - p ()

v () +2(t — 1) p (o) - v (1)
+ (= 10)* [ Ve (t0) 7 + 17 (20)
—2p" (to) R(to) a; + 2s] R(t9) a; — 2s] R(?)a;

—2[s; — R(1)a;] - /t u(r)dr, (51

while as a function of the initial states of Equation (38), it
is possible to write

/ttu(r)dr

+2(t —to) I:—S,' +R(t)aj +/tu(0)d0i|

Iy

2

RO +2[u () + R(®)a;] - p' (t0)

AV () + 2t — t0) x3 (t0) + (¢ — 10)* x4 (£0)
+x7; (o) — 2x] (t0)R(t0)a; + 2s] R (1) a;

—2s/ R(t)a; — 2[s; — R(1)a,] - / u (t)dr.

)

(52)

Now, comparing the differences of the squares of the ranges
r2 (1) —r2(1) and r? (t) — r2 (1), using Equations (50)—

(52), it is possible to write

[si =17 [V (t0) = 've(19)] = 0

[a, — a,]" R ()) [ 'V, (t0) = "ve (10)] = 0 9

foralli,je{1,...,N},i#j,andallm,ne{l,... ,M},m#
n. Under Assumption 2.1 or 2.2, or both, the only solution
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of Equation (53) is
v (1) = "ve (10). (54)

Now, comparing Equations (51) with Equation (52) and
using (50) and (54) it follows that

2(1 —10) [x3 (1) — p (10) - "V (10)]
+ (t — 1) [xa (t)) — | 've (1) 1’1 = 0. (55)

As the functions 2(t — t) and (¢ — t,)* are linearly inde-
pendent, it follows from Equation (55) that
{ x3 (fo) = p(t0) - Ve (10)

xq(t0) = [l 've () |7~
However, this concludes the proof: (1) it has been shown
that the initial conditions of Equation (39) match those of
Equation (38), which are uniquely determined as shown in
Theorem 4.1, hence concluding the proof of the first part
of the theorem; and (2) the second part of the theorem
follows from the first: the estimation error of an observer
for Equation (38) with globally asymptotically stable error
dynamics converges to zero, which means that its estimates
asymptotically approach the true state. However, as the true
state of Equation (38) matches that of the nonlinear system
(39), that means that an observer for Equation (38) is also

an observer for the original nonlinear system, whose error
converges to zero for all initial conditions.

4.3. Kalman filter

As a result of Theorem 4.2, a filtering solution for the
nonlinear system (39) is simply obtained with the design
of a Kalman filter for the augmented system (38), which
can be regarded as LTV for this purpose as the output and
input are available. The design is trivial and therefore it is
omitted. Notice that the proposed solution is not an EKF,
which would not offer global convergence guarantees, and
no approximate linearisations are carried out.

To guarantee that the Kalman filter has GES error dy-
namics, stronger forms of observability are required, in
particular uniform complete observability, see Sastry and
Desoer (1982) and Jazwinski (1970). The pair (A3(?), C3(¢))
can be shown to be uniformly completely observable fol-
lowing the same reasoning as in Theorem 4.1 but consid-
ering uniform bounds. The proof is omitted due to the lack
of space.

5. Integrated LBL/USBL navigation system

In Section 3, a cascade observer was proposed for the at-
titude based on the measurements provided by the rate gy-
ros and the LBL/USBL system, which gives in addition

estimates of the rate gyro bias. The error dynamics were
shown to be GES and the estimation system does not de-
pend on any other quantities. In Section 4, the problem
of estimating the linear motion quantities (inertial position
and ocean current velocity) was addressed assuming per-
fect angular information, i.e., assuming that the attitude and
the angular velocity are known. In practice, these quantities
are provided by the estimator developed in Section 3 and
as such the overall LBL/USBL navigation system consists
in a cascade system, where the attitude observer feeds the
position and velocity filter, as depicted in Figure 2. In short,
the rate gyro bias estimate is employed to obtain an esti-
mate of the angular velocity, which is fed, together with the
estimate of the attitude, to the estimator for linear motion
quantities.

The fact that the exact values of R(¢) and @(¢) are not
available for the Kalman filter proposed in Section 4.3 in-
duces errors in the system matrices Az(¢) and Cs(?), as well
as in the system input u,(?), and only estimates of these
quantities are available, i.e., the Kalman filter for the esti-
mation of linear motion quantities has available

B 0 | 0 0 07
0 0 0 0 0
W7 ()—-al S@U)RT (1)  —sT+alR7(1) 0 1
ri(t) ri1(t) ()
As(n) = s ]
W ()—al S@ORT (1) —sL+al R (1) 0 1 0
rn.m(t) ry.m(t) rn.m(t)
0 aly 0 0 1
L 0 0 0 0 0
instead of As(%),
0 0 Cs 0 0
Ct)=|Cu(r) 0 Cy 0 0
Cu(r) 0 Ci3 0 0
LBL / . (f ) R{t)
USBL " | Attitude and Rate Gyro Bias o
= Estimator h_.li_l
Rate k - } w(t)
Cyros o > —T
:f ) plt)
= - Position and ——b
DVL S
Ocean Current Velocit . (4
= I':~:1i:u:|ll-u' N Vel
b 4 v(t)
> '—."

Figure 2. Integrated LBL/USBL navigation system.
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instead of C;(¢), with

ChL
C(t) = e RWVHC)3,

Ch @)

@—a) "R’ ()
ria(t)+ria(t)
(a—a3)"R7(1)

ria(t)+ris(t)

CL() =2 e RO,

(ay—1—ay)" R (1)
rim—1()+ri m(t)

and

ﬁrN.M(t)

instead of u,(¢), with a(z) := li(t)v,(t) and

. @’ (OR(Da; — 0" (1)s; — sT RS (®(1)) a;

iy, (1) = .

’ ri ()

Moreover, the augmented measurements are also estimated,
and

yi(?)
lIscll®=lIs2ll*—2(s1 —s2)" R()ay
ri(E)+r2()
lIscll®=lIssll>—2(s1 —s3)" R()ay
rL(@)+rs ()

lsv—2 > =llsn II>—=2(sy—2—sn)" R(*)ay
rn—2,m(@)+ra m(t)
lsw—t 1> =llsn 1> =2(sy—1 —sn)" R(*)ay
rn—1m(@)+ra m(t)
llagll®=llaz ] —2(a; —a)"RY (1)s
ria(t)+r1 (1)
llagll>=llas]* —2(a; —a3)" R (1)s,
ri(t)+r13(t)

Vi) =

lay—2 12 —llam 1> —2(an—2—au) R (t)sy
v m—2()+rn m(t)
lay—1 12— llam 1> —2(au—1 —au)" R (t)sy
L N m—1()+rn m(t) _

is employed instead of y3(%).

Let w(#) denote the system disturbances, assumed as
zero-mean white Gaussian noise, with E[w () w' (t — 7)] =
&4 (1), and n(?) be the output noise, assumed as zero-mean
white Gaussian noise, with E[n (t)n” (t — 7)] = 4 () and
E[w (t)nT (t — 7)] = 0. The resulting Kalman filter is given

by
x3(1) = As(D)%3() + B3tia (1) + K([F3() — C3(0)%3(1)],
where K(¢) is the Kalman gain,
K@) =P@)C] (O™,
where f'(t) is the covariance matrix, which satisfies

P()=As(OP()+P(Al (1) + E
—P()CI (O 'C3(0)P (1).

Naturally, it is necessary to show that the error of the
perturbed Kalman filter converges to zero for all initial con-
ditions. This is a theoretical problem, that of the study of
the convergence of the error of the Kalman filter when the
system matrices A(7) and C(?), as well as the system output
y(?), are perturbed by exponential decaying errors. Assum-
ing (1) bounds on the system matrices; (2) that the nominal
system is uniformly completely observable; and (3) that
the system state is bounded, it can actually be shown that
the error of the Kalman filter converges exponentially fast
for all initial conditions. This falls out of the scope of this
paper and will be detailed in a future article. However, all
required assumptions are verified, in practice, for the pro-
posed LBL/USBL setup, as the mission scenario is bounded
in space and the linear and angular velocities must also be
bounded due to the actuation bounds of any real system.

6. Simulations

This section provides simulation results to demonstrate the
achievable performance with the proposed solution. In the
simulations, the three-dimensional kinematic model for an
underwater vehicle was employed. It is not necessary to
consider the dynamics as the estimators are purely kine-
matic, hence the results apply to all underwater vehicles,
regardless of the dynamics. The trajectory described by
the vehicle is shown in Figure 3. The LBL configuration
is composed of four acoustic transponders and their iner-
tial positionsares; = [0 0 0](m),s; = [0 0 250 ](m),s; =
[1000 0 250 ](m),ss = [0 1000 250 ](m), while the posi-
tions of the USBL array receivers, in body-fixed co-
ordinates, are a; =[0 0 0](m),a; =[0 0.3 0](m),a3 =
[0.20 0.15 0.15](m),as = [0.20 0.15 —0.15](m), hence
both Assumptions 2.1 and 2.2 are satisfied.

Sensor noise was considered for all sensors. In partic-
ular, the LBL range measurements, the USBL RDOA, and
the DVL relative velocity readings are assumed to be cor-
rupted by additive uncorrelated zero-mean white Gaussian
noise, with standard deviations of 1 m, 6 x 103 m, and
0.01 m/s, respectively. The angular velocity measurements
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Trajectory described by the vehicle.

Figure 3.

are also assumed to be perturbed by additive, zero mean,
white Gaussian noise, with standard deviation of 0.05 °/s.

To tune the Kalman filter for the estimation of the linear
motion quantities, the state disturbance intensity matrix was
chosen as

diag(10721, 107%1, 1072, ..., 1072, 1072, 107%)
and the output noise intensity matrix as

diag (Qo, Qo, Qo, Qo, 1, ..., 1),

where Qg := diag (1, 0.6, 0.6, 0.6). The parameters of the
attitude observer were chosen as «(m, n, i, j) = 0.1, B(m, n,
i,j)=5x1078 forall (m, n, i, j) € Cs x Ca, and Q = 10*L.
All initial conditions were set to zero but the initial attitude
estimate, which was set with a large error, with a rotation
of 180 degrees about the z-axis.

Attitude error
o

0 60 120 180
t(s)

Figure 4.

P, Batista et al.

The convergence of the attitude observer error is very
fast, as it is possible to observe from the evolution of the
errors of the components of the rotation matrix and the rate
gyro bias error, which are depicted in Figure 4. The error
of the additional states of the attitude observer, () also
converges and is not shown here only because it corresponds
to intermediate states with no use in practice.

The initial evolution of the position and velocity errors
are depicted in Figure 5. As it can be seen from the various
plots, the convergence rate of the filter for the estimation of
the linear motion quantities is quite fast.

To evaluate the performance of the attitude observer,
and for the purpose of performance evaluation only, an
additional error variable is defined as ﬁp(t) = R7(")R(),
which corresponds to the rotation matrix error. Using the
Euler angle-axis representation for this new error variable,

R, (1) = Icos (A(t)) + [1 — cos (6(r))1d(r)d" (1)
— S (d(1)) sin (6(2)),

where 0 < A() < 7 and d(r) € R?, ||d(¢)|| = 1, are the an-
gle and axis that represent the rotation error, the perfor-
mance of the observer is identified with the evolution of
6. After the initial transients fade out, the resulting angle
mean error is around 0.06°.

Finally, to better evaluate the performance of the pro-
posed solution, the Monte Carlo method was applied, and
1000 simulations were carried out with different, randomly
generated noise signals. The standard deviation of the er-
rors were computed for each simulation and averaged over
the set of simulations. The results are depicted in Table 1.
The mean attitude angle error is 0.05°. As it is possible to
observe, the standard deviation of the errors is very low,
adequate for the sensor suite that was considered.
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Figure 5. Initial convergence of the position error p(¢) and the current velocity error V(7).
Table 1. Standard deviation of the steady-state meaning that it is possible to exclude some measurements
e.stlmlatllon error, averaged over 1000 runs of the while still operating with the others; (4) study of the con-
simulation. vergence of the error of the Kalman filter when the system
Variable Standard deviation matrices, as well as the system output, are perturbed by ex-
; ponential decaying errors; and (5) experimental validation
p.(m) 3.6x10™ of the proposed estimation solution.
p,(m) 4.0x1072
p.(m) 4.4x1072
Vi(m/s) 2.3x1073 Funding
Vy(m/s) 2.4x107° This work was supported by the FCT [grant number PEst-
V:(m/s) 3.0x1073 OE/EEI/LA0009/2013].
Bos (°/5) 1.2x1073
b, (°/s) 0.9%1073
h o -3
bo: (°/s) 2.0x10 Notes on contributors

7. Conclusions

This paper proposed a novel integrated tightly coupled nav-
igation filter for autonomous vehicles based on a combined
LBL/USBL positioning system. First, a rate gyro bias ob-
server is proposed, which feeds a second attitude observer
that yields estimates of the rotation matrix from body-fixed
to inertial coordinates. The error of the cascade rate gyro
bias and attitude observer was shown to be GES. Second,
a framework for the estimation of the position of the ve-
hicle and the ocean current velocity was proposed, which
also features GES error dynamics assuming perfect knowl-
edge of the attitude of the vehicle. This quantity is actually
provided by the previous observer, which results in an over-
all cascade system. The structure is tightly coupled in the
sense that the actual measurements of the LBL/USBL are
directly employed in the estimator dynamics. Simulation re-
sults were carried out, including Monte Carlo simulations,
that evidence excellent performance of the proposed solu-
tion in the presence of realistic sensor noise. Future work
includes: (1) explicitly account for measurement delays;
(2) comparison with the EKF, which does not offer global
convergence guarantees; (3) design of an outlier rejection
algorithm that takes advantage of the fact that each range
or range difference of arrival is used directly in the filter,
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