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Benchmarking the Grasping Capabilities of the iCub
Hand With the YCB Object and Model Set

Lorenzo Jamone, Alexandre Bernardino, and José Santos-Victor

Abstract—The letter reports an evaluation of the iCub grasping
capabilities, performed using the YCB Object and Model Set. The
goal is to understand what kind of objects the iCub dexterous hand
can grasp, and with what degree of robustness and flexibility, given
the best possible control strategy. Therefore, the robot fingers are
directly controlled by a human expert using a dataglove: in other
words, the human brain is employed as the best possible controller.
Through this technique, we provide a baseline for researchers who
want to evaluate the performance of their grasping controller. By
using a widespread robotic platform and a publicly available set of
objects, we believe that many researchers can directly benefit from
this resource; moreover, what we propose is a general methodol-
ogy for benchmarking of grasping and manipulation that can be
applied to any dexterous robotic hand.

Index Terms—Grasping, Dexterous Manipulation, Humanoid
Robots, Multifingered Hands.

I. INTRODUCTION

B ENCHMARKING is fundamental for any activity of
research and development, to evaluate intermediate

results and to guide innovation. While this is a common prac-
tice in many fields, ranging from automated reasoning (e.g.
for planning [1]) to computer vision (e.g. for object recogni-
tion [2, Chapter 12.1] or pedestrian detection [3]), it is still not
widespread in robotics [4].

A common approach in computer vision benchmarks is to
compare the machine performance to the human performance
in a specific task, given the same visual input (i.e. the same
images). For example, the images of a pedestrian detection
dataset are labeled by a human to determine whether a pedes-
trian is present in each image and where; the performance of a
computer vision algorithm is then compared to this baseline.

In the robotics domain the definition of a human baseline
is more challenging, because the tasks do not involve only
perception, but also action: decision, planning, control. The
mechanical properties of the hardware are critical: it would be
unfair (and not very useful) to simply compare to the human
performance in the same task, since the robot hardware and the
human hardware are too different. Moreover, it is hard to pro-
pose benchmarks that can be performed by a large number of
researchers, mainly because of the lack of common hardware
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Fig. 1. Experimental setup. The fingers of the iCub robot hand (on the left)
are controlled by a human operator with the CyberGlove-II dataglove (on the
right).

and the scarce availability of public datasets. For example,
while the digital images used for computer vision benchmarks
can be easily made available to many researchers (e.g. on the
web), it might be hard to retrieve exactly the same objects used
in a robotic manipulation experiment.

Recently, a notable effort was made in this direction, with the
creation of the YCB (Yale-CMU-Berkeley) Object and Model
Set [5], [6]. Differently from previous attempts, this dataset
does not only include 3D models of a large number of objects,
but also the real physical objects are made available. This
is very important for the benchmarking of robotic grasping
and manipulation, because it allows to replicate the real world
experiments, and not just the simulations.

In terms of common robotic platforms, one renowned exam-
ple is the iCub humanoid robot [7], shown on the left side of
Fig. 1 while grasping a tennis ball with its anthropomorphic
hand. The robot is the outcome of the EU Project RobotCub
(2005-2010), and it has been designed to be a shared robotic
platform to study embodied cognition. Currently, more than
25 laboratories worldwide have their own iCub robot, and use
it for research. Moreover, many ongoing EU Projects employ
this humanoid robot as experimental platform (e.g. Poeticon++,
TacMan, CoDyCo).

Although many research groups are currently working on the
development of grasping and manipulation strategies using the
iCub [8]–[15], still no benchmark is available to test the perfor-
mances of the proposed controllers. The evaluation is therefore
performed each time with different objects, procedures and
performance metrics.

How to claim that a controller is good or very good? How to
replicate the experiments to drive future development?

The objective of this letter is to define a baseline for grasp-
ing control by fixing both the hardware (the iCub hand) and
the dataset (the YCB objects). A human user directly controls
the fingers of the iCub using a dataglove, to grasp the YCB
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objects (as in Fig. 1). The user is familiar with the robot, with
the dataglove and with the objects, and can see both the target
object and the robot hand during the grasping actions. This pro-
vides a human baseline for the control, since the human brain
is employed to solve the problems that an automatic controller
would need to solve: e.g. how to use the visual feedback to drive
the finger motion, how to coordinate the motion of the different
fingers, how to select the best grasping strategy. We argue that
this methodology could be applied to other widespread dexter-
ous robot hands (e.g. Allegro, Shadow, Shunk SVH), using the
same set of objects, both to compare the different robots and
to define specific baselines for researchers who are testing their
controllers with such robots.

Overall, we provide three main contributions. First, we
restrict the YCB Object and Model Set to the set of objects that
the iCub can physically grasp; this allows researchers to effi-
ciently use the YCB objects for any manipulation task involving
the iCub. Second, we perform an adaptation of the Gripper
Assessment Benchmark proposed in [5] with the iCub hand
on two sets of objects (a basic set and an extended set); this
provides researchers who want to evaluate the performance of
their grasp controllers on the iCub with a baseline to compare
to. Third, we perform a more in-depth evaluation on a single
object, to test the robustness with respect to object displace-
ments and rotations; we aim to show how the large number of
DOFs of the iCub hand (19 joints actuated by 9 motors) offers a
high grasping flexibility, that can be very useful even in simple
grasping tasks, for example to compensate for reaching errors
that may arise from imprecise robot calibration.

The rest of the letter is organized as follows. In Section II
we describe the experimental setup, providing details about the
robot, the dataglove and the objects set. The protocols followed
in the evaluation experiments are discussed in Section III, and
in Section IV we summarize the results. Finally, we provide
some concluding remarks in Section V.

II. EXPERIMENTAL SETUP

In this Section we outline the setup used in our experi-
ments (see Fig. 1). We first introduce the iCub humanoid robot
(Section II-A) and in particular its dexterous hand. Then, we
present the dataglove that we use to control the iCub fingers
(Section II-B), and we describe the objects of the YCB Object
and Model Set (Section II-C).

A. The iCub Humanoid Robot

The iCub is the main outcome of the EU Project RobotCub
(2005-2010): a common open-source platform for researchers
in cognitive robotics. All mechanical and electronics CAD files
and the associated documentation are released under the GPL,
while the software and middleware infrastructure (YARP [16])
is licensed either as GPL or LGPL. Also, a large number of
YARP-based software modules are available as open source,
due to the constant effort of a growing community of robotics
researchers, practitioners and enthusiasts [17]. The robot
mechanical and electronic design is described in detail in [18].

The hand of the iCub has been designed to enable dexterous
manipulation, as this capability is crucial for cognitive devel-
opment. It is sized 50 mm in length, 60 mm in width and 25
mm in thickness, making it one of the smallest and most dex-
terous of its kind. It has 19 joints, but it is driven by only 9
motors: this implies that group of joints are under-actuated and
their movement is obtained with mechanical couplings. The
motion of the proximal phalanx and medial and distal phalanges
are independent for the thumb, the index and the middle fin-
ger. The ring and small finger motions are coupled and driven
by a single motor. Finally, two motors, placed directly inside
the hand assembly, are used for thumb opposition and fingers
adduction/abduction. The angles between the phalanxes (i.e.
joint angles) are sensed by 17 small custom magnetic angu-
lar position sensors. The palm and the fingertips are covered
by a pressure sensitive skin. More details about the design of
the iCub hand, including sensing and actuation, can be found
in [19].

B. The Cyberglove-II Dataglove

Datagloves have been used since about 30 years to mea-
sure human hand movements for a number of applications [20],
including the control of robot hands [10], [21]–[23]. In our
experiments we use the Immersion CyberGlove-II dataglove
[24], which is considered the state-of-the-art input device for
recording human hand postures [20]. The feasibility of using
datagloves for robot hand control has been demonstrated both
for the CyberGlove [10], [21], [22] and for custom devices that
use the same sensing technology [23].

Our version of the CyberGlove-II has a total of 15 sensors
(versions with 18 or 22 sensors also exists), with two flex-
ure sensors per finger (total of ten sensors), three abduction
sensors placed between the fingers, one sensor for the thumb
opposition and one palm-flexure sensor (we do not use this
latter sensor). Most of the sensors measurements are directly
mapped to the 9 robot hand motors: 3 for the thumb (flexure of
the two phalanxes and thumb opposition) and 2 for both the
index and the middle fingers (flexure of the two phalanxes),
for a total of 7 motors. Then, the measurements from the ring
and little fingers (4 measurements) are combined together and
mapped to the single motor that actuates the robot ring and
little fingers. Finally, the measurements from the fingers abduc-
tion (3 measurements) are combined together and mapped to
the single motor that actuates the robot fingers abduction. A
user-dependent calibration is performed to optimize the map-
ping coefficients, which is described in detail in [10]. In short, a
number of finger movements toward pre-defined hand postures
are performed (e.g. hand fully open, hand fully closed), and the
collected data is used to estimate the coefficients through least
squares regression.

Clearly, the robotic mimicking of the human hand postures
cannot be perfect, not only because of mapping inaccuracies,
but mainly because of the structural differences between the
human hand and the robot hand. However, the exact reproduc-
tion of human hand postures is not the goal of our system; the
goal, instead, is to grasp and manipulate objects effectively.
Therefore, the required feature is to be able to control all the
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joints of the robot fingers simultaneously over their entire range
of motion, in a natural way. During the grasping actions the
human user can see both the robot hand and the target object,
both from their own perspective and from the robot perspective
(images from one of the robot cameras are displayed on a screen
behind the robot), and therefore they can exploit such visual
feedback to shape the robot fingers on the object as desired,
and also to correct the posture after grasping if slippage is visu-
ally detected. Moreover, all the experiments are performed by
the same human user, who is very experienced in the use of the
setup (both concerning the glove and the robot hand).

C. The YCB Object and Model Set

The YCB Object and Model Set [6] is a collection of daily
life objects with different shape, size, texture, weight and
rigidity. The associated dataset includes high-resolution RGBD
scans, physical properties and geometric models of the objects.
In addition, some example of benchmarking protocols are pro-
vided [5]. A total of 69 objects (or objects assortments) are
divided in four main categories: food items (e.g. cracker box,
chips can, plastic banana), kitchen items (e.g. sponge, fork, skil-
let), tool items (e.g. scissors, hammer, screwdriver) and shape
items (e.g. tennis ball, foam brick, rope, an assortment of cups).
An additional category, task items, comprises 6 objects that can
be used for specific tasks (e.g. a 9-peg-hole test, an airplane toy
to assemble); we do not consider these objects in this letter. The
set is freely distributed to research groups worldwide at inter-
national workshops (our group acquired one for free at a ICRA
2015 workshop), or delivered at a reasonable cost.

III. BENCHMARKING TESTS

We perform three experiments, that are described in detail
hereinafter. The first one aims to determine what objects within
the YCB Object and Model Set can be grasped by the iCub
(Section III-A); the outcome is a subset of the original YCB
Set tailored to the iCub hand. The second one is an adapta-
tion to dexterous hands of the Gripper Assessment Benchmark
proposed in [5] (Section III-B); it provides a baseline for
researchers who want to evaluate the performance of their
grasping controller with the iCub. The third one consists in
grasping one object under a wide range of pose uncertain-
ties (Section III-C); the goal of this test is to benchmark the
flexibility offered by the many DOFs of the dexterous iCub
hand.

In all the experiments, the object to be grasped is placed
on a table in front of the robot (see Figure 1). The surface
of the table is 15 cm lower with respect to the origin of the
robot root reference frame, which is located on the axis of rota-
tion of the torso pitch in the middle of the legs (as defined in
http://wiki.icub.org/wiki/ICubForwardKinematics). The object
pose with respect to the robot is chosen so as to permit a suc-
cessful arm reaching movement that does not approach joint
limits or singular configurations. Before each grasping action
the arm is in a fixed configuration, with the hand palm fac-
ing down, at a distance of about 25 cm from the table; we
refer to this arm configuration as rest pose. For each object

a default grasp pose is selected (i.e. position and orientation
of the hand palm with respect to the object). In each grasp-
ing action, the robot automatically moves the arm from the rest
pose to the grasp pose; then, the human user controls the robot
fingers using the dataglove, to perform the grasping. While the
rest pose is the same in all experiments, the grasp pose depends
on the object. Videos of the experiments can be found online
(http://limoman-project.blogspot.pt/p/videos.html).

Clearly, there are many hand poses that allows to grasp the
object, and the selection of the default hand pose for a specific
object has a large influence on the grasp success, robustness
and flexibility. For example, the type and amount of object pose
uncertainties the hand can deal with, are strongly affected by
the default hand pose. The choice of the best hand pose depends
on many variables: not only the kinematic and dynamic proper-
ties of the robot hand, but also the object properties (e.g. shape,
weight, texture) and the strategy that will be employed to con-
trol the robot fingers. Since in our experiments the strategy to
control the fingers will be selected in real-time by the human
user, which is very familiar with the properties of both the hand
and the objects, we exploit the human knowledge also for the
selection of the default hand pose. The user physically moves
the robot arm during an offline phase, until the best hand pose
for the object is manually identified (i.e. kinesthetic demonstra-
tion); the correspondent arm configuration is stored as the grasp
pose for that object, and it will be used for all the grasping
actions directed to that object in that pose.

A. Definition of the iCub YCB Object SubSet

Each object of the original YCB Set [6] is placed on a table
in front of the robot, in a pre-defined reachable pose for which
a grasp pose was previously identified. For each object, the arm
moves automatically from the rest pose to the grasp pose; then,
the finger motion to grasp the object starts, controlled by the
human user with the dataglove. Fingers control lasts 10 sec-
onds at most. Then, the arm automatically moves back to the
rest pose. If the object is successfully grasped, the user keeps
controlling the robot fingers to hold the object in the hand while
the arm is in the rest pose, for 5 seconds. Finally, the arm auto-
matically moves back to the grasp pose, and the user opens
the fingers to release the object. If the object is successfully
held in the hand for at least 5 seconds, without any visible in-
hand displacement, it is considered as graspable; otherwise, it
is considered as non-graspable.

The image in Fig. 2 shows the objects of the YCB Set that
are graspable with the iCub hand; the image in Fig. 3 shows the
non-graspable ones. The representative grasp types employed
are shown in Fig. 5; the grasps used with the other objects are
small variations of these ones. Detailed information on each
object (e.g. mass, size) can be found in [6].

B. Gripper Assessment

This experiment is an adaptation to dexterous robot hands
of the Gripper Assessment Benchmark (GAB) described in [5,
Appendix B.2].



JAMONE et al.: BENCHMARKING GRASPING CAPABILITIES OF iCub HAND 291

Fig. 2. Objects of the YCB Set that can be grasped with the iCub hand. On
the left, food items. In the middle, kitchen items. On bottom right corner, tool
items. On top right corner, shape items.

Fig. 3. Objects of the YCB Set that cannot be grasped with the iCub hand.

The grasp procedure is the same of the previous experiment.
However, each object is grasped in four different positions (SP1
= default position; SP2 = 1 cm displacement on the X axis; SP3
= 1 cm displacement on the Y axis; SP4 = 1 cm displacement
on the Z axis). The grasp pose is the same for all SPs. For each
grasp, 2 points are given if the objects is held in the hand for at
least 3 seconds without visible motion, 1 point is given if some
motion is detected, 0 points are given if the object drops. For
articulated objects (rope and chain), the object is grasped and
held for 20 times, each time from a random position around
SP1; for each grasp, 0.5 points are given if no part of the object
is touching the table while it is held (0 points otherwise).

The original GAB described in [5] is applied to robotic grip-
pers; here we introduced a few differences to better fit the
benchmark to dexterous hands.

In [5] the pose and motion of the gripper is the same in all
SPs; instead, in our case the hand pose (i.e. the grasp pose)
is the same, but the fingers motion can be different. This is
meant to show that a dexterous hand with many joints/DOFs
can cope with many object pose offsets, if supported by a smart
controller. In our case the smart controller is provided by the
human user, who is controlling the fingers with the dataglove,
to provide the human baseline performance.

Moreover, differently from [5], in our test each grasp is per-
formed with two different object orientations (90◦ apart around
the Z axis); this leads to a total of eight grasps for each object.

Fig. 4. Objects used for the Basic GAB (left image) and for the Extended GAB
(right image). Left image, from left to right, top to bottom: chain, set of clamps
(S to XL), rope, large marker, flat screwdriver, tennis ball, racquetball, golf
ball, set of marbles (from XL to S) . Right image, from top to bottom, left to
right: pudding box, foam brick, colored wood block, dice, plastic strawberry,
plastic nut, plastic bolt, plastic pear, plastic wine glass, large cup (100x78mm),
medium cup (80x70mm), small cup (55x60), chips can.

TABLE I
SCORING OF THE ICUB HAND IN THE BASIC GRIPPER ASSESSMENT

BENCHMARK (A.O. STANDS FOR ARTICULATED OBJECTS). TOTAL

SCORE WAS 173 (MAXIMUM: 228)

TABLE II
SCORING OF THE ICUB HAND WITH THE ADDITIONAL OBJECTS

INCLUDED IN THE EXTENDED GRIPPER ASSESSMENT BENCHMARK.
TOTAL SCORE ON THESE OBJECTS WAS 164. ADDED TO THE SCORE IN

THE BASIC GAP, THE OVERALL SCORE OF THE ICUB HAND WAS 337
(MAXIMUM: 436)

This allows to benchmark the robustness not just to position
offsets (as it is done in [5]), but also to orientation offsets.

In [5], after the object is grasped and lifted, it is also rotated
by 90◦ to prove grasp stability during motion. However, details
about speed and acceleration of the object are not provided;
even if they were provided, it would be difficult for researchers
to replicate them exactly. Therefore, we removed this part in
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our experiments, and instead we test the grasp stability only by
lifting the object from the table of about 25 cm and holding it
against gravity for 3 seconds. The lifting movement is executed
applying a bell-shaped velocity profile to the arm joints, that
was resulting in a slow and smooth motion of the object, with a
maximum speed in the middle of the motion of about 0.10 m/s.
Any motion which is slow and smooth enough not to generate
big and sudden accelerations would be appropriate to replicate
the experiment: the only relevant source of perturbation of the
object stability is the object weight. We perform two versions
of the benchmark. The first one uses a subset of the objects used
in [5], excluding the ones that are non-graspable for the iCub;
we call this Basic GAB. The objects are shown in the left image
in Fig. 4 and their names are reported in Table I. With respect to
the GAB described in [5], we excluded all the flat objects (too
thin), two round objects (soccer ball, too big, and softball, too
heavy) and three tools (scissors, too thin and complex, hammer
and driller, too heavy). The second version of the benchmark
includes additional objects; we call this Extended GAB. We add
three shape categories to the Basic set: cubic objects (pudding
box, foam brick, colored wood block, dice), cylindrical objects
(chips can, plastic wine glass, small cup, medium cup, large
cup) and complex objects (plastic pear, plastic strawberry, plas-
tic bolt, plastic nut). These objects are shown in the right image
in Fig. 4 and their names are listed in Table II.

C. Grasping Flexibility

This test is similar to the GAB, but is conducted with only
one object, that is grasped 100 times after different pose off-
sets are applied with respect to the default pose (SP1); we call
it Grasping Flexibility Benchmark (GFB). The object is first
grasped at SP1, and then displaced on either X, Y or Z, at each
successive grasp attempt, with steps of 1 cm. Maximum dis-
placements are ±5 cm on X and Y, and ±2 cm on Z. For each
position (in total, 25 different positions), the object is grasped in
4 different orientations around the Z axis, separated 45◦ apart;
this makes a total of 100 grasps. All the other details of this test
are the same as in the GAB, including the scoring.

IV. RESULTS AND DISCUSSION

In this Section we start by providing a few general con-
siderations on the grasping capabilities of the iCub hand
(Section IV-A), focusing in particular on the main reasons for
grasp failures of the non-graspable object in Fig. 3. Then
we show the results of the Gripper Assessment Benchmarks
(Section IV-B) and of the Grasping Flexibility Benchmark
(Section IV-C), and discuss them.

A. General Considerations on Object Graspability

Based on our experiments, it is typically a combination of
different object properties that determines the object graspabil-
ity. However, weight and size appear to be the most important
ones. Shape, texture and hardness also might play a role, when
size and weight are close to the limits: compact shapes, rough
textures and soft bodies are easier to grasp.

The main categories of non-graspable objects are discussed
hereinafter.

1) Heavy Objects: Objects heavier than 350 g are typically
not graspable with the iCub hand, even if their size would allow.
The force exerted by the fingers is not enough to hold them
against gravity. From Fig. 3 (left to right, top to bottom): cereal
box, wood block, hammer, bleach cleanser, Windex bottle, skil-
let, skillet lid, Master Chef can, potted meat can, sugar box,
power drill, mustard bottle.

2) Big Objects: Although the maximum distance that can
be obtained between the tip of the thumb and the tip of the index
or middle fingers is about 120 mm, objects larger than 100 mm
in all the dimensions are typically not graspable, even if light
enough. From Fig. 3: soccer ball.

3) Thin Objects: Since we are considering the grasping
of objects from the table, a minimum thickness of the object
is required (about 15 mm, according to our experiments).
Objects that are too thin cannot be grasped. From Fig. 3
(left to right, top to bottom): adjustable wrench, scissors,
nails, washers, small marker, spoon, blank credit card, fork,
knife.

4) Other Nongraspable Objects: The yellow softball (191
g, 96 mm, on the rightmost side in Fig. 3) has a size and a
weight that should allow grasping (even if close to the limits),
but it is too hard and smooth, and therefore it slips easily. The
padlock (304 g) is also too hard and smooth to be held steadily
against gravity.

The red plate and bowl (in the middle of Fig. 3) do not exceed
in size and weight, but have shapes that are difficult to grasp:
because of the excessive diameter they can only be grasped
from one of the edges, and after grasping the center of mass
of the object is too far from the hand, causing the object to slip
(also because of the very smooth texture).

5) Borderline Objects: Despite the binary classification
into graspable and non-graspable, some objects are more dif-
ficult than others to grasp, and some might be considered
borderline (they might be graspable under some conditions).
For example, some objects that were successfully grasped in
a few occasions (but that were typically not held steadily in
the hand) have not been included in the graspable set because
of their excessive weight, that can easily damage the hand: the
skillet lid, the crackers box, the sugar box and the potted meat
can. The padlock cannot be grasped from its body, and there-
fore it was not included in the graspable set; however, the hook
could be caged by the index and medium fingers and the thumb
to safely lift the object.

Among the graspable objects, the pitcher base and pitcher
lid can be grasped only using the appropriate handles (they
cannot be grasped, for example, with a pinch grip on one of
the edges). Thin elongated objects (e.g. the large marker, the
banana, the spatula, the screwdrivers) can be grasped with the
hand approaching from the top, with a complex motion that
starts as a prismatic 5-fingers grip and then becomes a cylindri-
cal wrap, after the object slips inside the fingers; the sequence of
finger movements for the grasping of the large marker is shown
in Fig. 6. Small thin objects that are very light and compact can
be grasped with a 2-fingers precision grip, for example the plas-
tic nut (8x15 mm, 1 g) , the smallest marble (14 mm, 4 g) and
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Fig. 5. Different grasp types used for different objects. From left to right,
top to bottom: lateral cylindrical wrap (tomato soup can), lateral prismatic
5-fingers grip (pudding box), top cylindrical wrap (banana), 2-fingers preci-
sion grip (dice), top prismatic 5-fingers grip (tuna can), 3-fingers precision grip
(strawberry).

the dice (16 mm, 5 g) ; however, in these cases high precision
is required in the hand positioning.

B. Gripper Assessment Benchmarks

Table I presents the scores measured on the Basic GAB: the
total score is 173 (maximum score would be 228). The scores
for the additional objects that are included in the Extended GAB
are displayed in Table II. The total score considering also these
objects is 337 (173+164); maximum score would be 436. These
benchmarks provide a more in-depth analysis on the grasping
robustness with respect to representative objects of the set.

The iCub hand can reliably grasp round, cubic and cylindri-
cal objects that fit the size and weight constraints. The bigger
spheres (tennis ball and racquetball) can be grasped with a 3-
fingers wrap (as in Fig. 1), the medium ones (golf ball and XL
marble) with a 3-fingers precision grip (similar to the one used
for the strawberry in Fig. 5) and the smaller ones (marbles of
size L, M and S) with a 2-fingers precision grip (similar to the
one used for the dice in Fig. 5). The 2-fingers grip is indeed
used for all very small objects. Big cubic objects can grasped
with lateral prismatic grips (e.g. the pudding box in Fig. 5).
Cylindrical objects can be grasped with a lateral cylindrical
wrap (similar to the one used for the tomato soup can in Fig. 5)
or with a 3-fingers grip, if they are light enough (e.g. cups).
Objects with complex shapes can be more challenging, but they
are typically grasped if not too big or heavy (e.g. the strawberry
in Fig. 5). Elongated objects (marker and screwdriver) can be
grasped using the strategy described in Fig. 6. While the rope
can be consistently wrapped by the fingers (with a top wrap),
the chain very often cannot, due to its larger size.

For thin and/or small objects, displacements on the Z axis
cannot be accommodated; the hand positioning needs to be
very precise on the Z axis. Instead, small displacements on the
X and Y can be compensated also for very small objects, by
using different fingers for the grips (e.g. the index finger instead
of the middle finger). However, objects that are closer to the
maximum graspable size (chips can, glass and large cup) may

Fig. 6. Sequence of fingers movements to grasp the large marker. First the
thumb and middle finger are used to raise the object from the table, then all
the fingers are used to wrap it. Top row: images from one robot camera. Bottom
row: external views.

TABLE III
SCORING OF THE ICUB HAND IN THE GRIPPER FLEXIBILITY

BENCHMARK PERFORMED ON THE FOAM BRICK OBJECT.
TOTAL SCORE IS 126 (MAXIMUM: 200)

not allow for displacements on the X or the Y axis. Objects
that have a preferential grasping orientation (e.g. marker, screw-
driver, XL clamp) or that are too large on one dimension (e.g.
pudding box, pear) might not be successfully grasped when
rotated 90◦.

C. Grasp Flexibility Benchmark

The results of the GFB experiment are reported in Table III.
The scores on the X and Y rows are relative to object displace-
ments from -5 cm to +5 cm, while the ones on the Z row are for
displacements from -2 cm to +2 cm. The total score is 126 (the
maximum score would be 200). We executed the benchmark on
the foam brick object because it has the average size and weight
that the iCub can easily grasp, and its cubic shape allows to pre-
cisely set the position and orientation at each grasp; moreover,
its softness allows to test the dexterity of the iCub hand with
no risks of breakages. Some of the object poses used in the
experiment are shown in Fig. 7.

The scores we obtained show that considerable displace-
ments of the object from the nominal pose can be accounted
for. In particular, we observed that displacements of 3 cm or
less did not typically jeopardize the grasping performance, and
that in a few cases successful (or partially successful) grasps
were achieved even in presence of larger displacements. In real
world tasks, these displacements can be either real displace-
ments of the object (undesired and/or unexpected), errors in the
object pose estimation (due to sensor noise and/or occlusions)
or errors in the hand positioning (due to inaccurate calibration
and/or noise in the actuation). Similar considerations hold for
the changes in the object orientation.

Depending on the actual pose of the object, different fingers
and different grasp types were used, exploiting the flexibility
offered by the 9 DOFs of the iCub hand (some of the grasps are
shown in Fig. 8).
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Fig. 7. Some of the object poses used in the GFB. From left to right. First row:
displacements of -2 cm, 0 cm, 2 cm on Z (the middle image corresponds to
SP1). Second row: maximum displacements on X and Y (±5 cm). Third row:
the four orientations used for each position: 0◦, 45◦, 90◦ and 135◦.

Fig. 8. Some exemplar grasps used in the GFB experiment.

This is a clear advantage with respect to simple grippers;
however, the presence of many DOFs must be supported by
a sophisticated controller to be a real advantage in practical
situations.

V. CONCLUSIONS

In this letter we perform an evaluation of the grasping capa-
bilities of the iCub hand using the YCB Object and Models
Set. We experimentally identify a subset of the YCB Set com-
prising objects that are graspable with the iCub hand, and we
perform three different benchmarks on some of those objects,
showcasing the grasping capabilities of the robot. An expert
human user controls the fingers motion using the CyberGlove-II
dataglove; ideally, this provides the robot with the best pos-
sible controller (i.e. the human brain), and therefore it allows
to generate a performance baseline that researchers can com-
pare to. We offer a useful resource for the iCub community,
and also suggest a general methodology for benchmarking in
grasping and manipulation research. Based on our experiments
we also discuss how the use of articulated hands with many

DOFs may impact the robustness and flexibility of grasping, if
a smart controller is available.
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