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1. Introduction
The concept of effective connectivity, de-
scribing the causal relation between activ-
ity in different brain areas, has been the 
subject of several works (and controversy) 
in the neuroimaging community over the 
last years [1]. A number of different ap-
proaches to modelling effective brain con-
nectivity have been proposed, which differ 
in their choice of observation equation 
(how brain states translate into a measured 
signal) and evolution of the brain states 
with time. Notably, Dynamic Causal Mod-
elling (DCM) is a biophysically inspired 
model-driven approach [2], which was 
 introduced as a generic formalism for  
studying effective connectivity based on 
 functional Magnetic Resonance Imaging 
(fMRI) and has since been the object of a 
number of extensions. Model inversion is 
achieved using Bayesian methods that ap-
proximate the evidence of each model by 
using a lower-bound to the model evi-
dence, the free-energy. This is then typi-
cally combined with Bayesian model com-
parison, in order to allow the selection of 
the connectivity model that best explains 
the data among a set of plausible com -
peting hypotheses. 

In DCM, the average neuronal activity 
representing each brain area within a net-
work is described by a bilinear dynamical 
system, which takes into account the in-
trinsic connectivity between brain areas as 
well as exogenous inputs both acting on re-
gional activities and modulating connec -
tivity strengths. A haemodynamic forward 
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Figure 1 Equation 2
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model is used to describe the system out-
put, that is the blood oxygenation level de-
pendent (BOLD) signal measured using 
fMRI, as a function of the underlying neu -
ronal activity. This is a single-input single-
output (SISO) state-space model based on 
the balloon model proposed by Buxton et 
al. [3], and further analysed and comple-
mented with the flow dynamics by Friston 
et al. [4]. It consists of four haemodynamic 
states (vasodilatory signal, blood flow, vol-
ume and deoxyhemoglobin content) that 
mediate between neuronal activity and the 
BOLD signal. 

In the original DCM formulation, all 
the uncertainty is in the model parameters, 
while the time-course of the states is deter-
ministic. This fails to take into account un-
modelled (stochastic) dynamics, which are 
not caused by the known exogenous inputs 
or by the brain regions in the specified net-
work. In order to address this, stochastic 
DCM (sDCM) was recently proposed [5]. 
The main departure from the deterministic 
DCM is the assumption of additive noise in 
the motion of the state variables, that is, the 
evolution of the states is given by stochastic 
differential equations. This introduces un-
certainty in the state values and inputs, 
which can be estimated by the procedure 
used to invert the system (Dynamic expec-
tation maximization (DEM) [6] or Gener-
alised filtering (GF) [7]). Using sDCM will 
therefore also allow the estimation of  
unknown inputs, that is, spontaneous ac-
tivity.

Different techniques for state estimation 
or model identification of stochastic dy-
namic systems have been developed. Under 
the assumptions of linearity and Gaussian-
ity, Kalman Filter (KF) is optimal in the 
sense of maximum likelihood for state esti-
mation [8]. When the model parameteri-
sation is not completely known, a single KF 
may fail to obtain the correct state esti-
mates [9]. An alternative consists of using 
several state observers in parallel, known as 
Multiple-Model Kalman Filtering (MMKF) 
[10]. In a MMKF approach, the relative 
probabilities of a number of pre-specified 
DCM models is computed. This feature 
makes this approach particularly suitable 
for addressing the problem of model selec-
tion in effective connectivity studies using 
DCM.

In this paper we present a MMKF algo-
rithm for effective connectivity estimation 
based on stochastic DCM. We evaluate the 
performance of MMKF for selection be-
tween two plausible competing connec- 
tivity structures, and assess the impact of 
assuming state noise in the estimation. 

2. Methods
In this Section, the integration of stochastic 
DCM equations is first presented, followed 
by the MMKF algorithm developed to per-
form model selection. Finally, we describe 
the Monte Carlo simulations performed in 
order to test the performance of the pro-
posed algorithm.

2.1 Stochastic Dynamic Causal 
Modelling
The stochastic formulation of a bilinear 
DCM, for a brain network of n regions and 
m exogenous inputs, is described by the 
following differential equations. For the 
neuronal state:

  (1)

where zn ¥ 1(t) is the vector of neuronal ac-
tivity in n regions; um ¥ 1(t) is the vector of 
exogenous inputs; An ¥ n is the intrinsic 
connectivity matrix, with negative diagonal 
terms (natural rate of decay of neuronal 
 activity in each area) and non-zero off-
 diagonal terms representing connection 
strengths; each of the m matrices B(j)

n ¥ n is 
the connectivity modulation matrix, con-
trolling the n × n modulation by input uj (t) 
on the connection strengths; Cn ¥ m repre-

sents the direct influence of the exogenous 
inputs on the activity of each brain region; 
W(v) and W(z) are Wiener processes cor-
responding to the noise in the inputs and 
the state motion, respectively; and σ (v) and 
σ(z) are the corresponding standard devi-
ations. In ▶Equation 1, the time index t is 
dropped for simplicity.
▶Equation 1 is discretized through the 

integration in short time-steps, T, known as 
the Euler- Maruyama method (see ▶Eq. 2 
in ▶Figure 1) where the σ values corre-
spond to the log-precisions suggested in 
[5]. The difference of a Wiener process at 
two different time steps has a well-known 
normal distribution  . The deter-
ministic part of the system is linearized by 
assuming that the input is constant during 
a time-step, and can thus be readily inte-
grated.

For the haemodynamic states and sys-
tem output (see ▶Eqs. 3–7 in ▶Figure 2) 
where s is the vasodilatory signal (with 0 
corresponding to steady-state); state vari-
ables f, v and q are the normalised blood 
flow, volume and deoxyhemoglobin con-
tent, respectively; ε is the neuronal efficacy; 
output y (i.e. the BOLD signal) is a nonlin-
ear function of these state variables; ks , kf , 
τ, α and E0 are the haemodynamic model 
parameters; V0 , k1, k2 and k3 are BOLD sig- 
 
nal parameters;  ,  ,  and 
 
  are the Wiener processes corre-
sponding to the noise in the respective hae-
modynamic states; and σ (h) is the corre-
sponding stand ard deviation. ▶Equation 3 
is linearized by a bilinear approximation 
[4], also assuming that inputs are constant 
in short time-intervals. The linearized 
equations are then discretized using the 
Euler- Maruyama method.
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Figure 2 Equations 3 –7

2.2  Multiple-Model Kalman 
 Filtering

The linearized and discretized sDCM 
neuronal and haemodynamic equations 
correspond to a linear state-space model 
with Gaussian white noise disturbances. A 
KF can then be used to estimate the noisy 
neuronal and haemodynamic states given  
a parameterized DCM. For the MMKF 
 approach, a number of KFs are designed, 
each relevant to a different model with pre-

assigned parameter values. The belief that 
each KF corresponds to the real system is 
updated recursively, according to:

where Pi [k + 1] is the probability of the i-th 
model  , after observing the (k + 1]th data 
point, and given the previous inputs u [k] 
and data points Y[k].

The fundamental assumption is that one 
of the models in the MMKF corresponds to 
the true model. In this case, the MMKF 
converges to the true model (i.e. the prob-
ability assigned tends to 1 as the amount of 
data tends to infinity). However, even if the 
true model is not in the set considered in 
the MMKF (which is almost certain to 
happen in a continuous parameter space), 
it will converge to the model that is closest 
to the real system in terms of the measure 
defined by Baram [11].

For each connectivity model structure 
belonging to the set of pre-specified plaus-
ible alternatives, the parameter space is dis-
cretized by sub-dividing each parameter 
interval into three equal parts. A subset of 
KFs is then generated for that connectivity 
structure corresponding to all the possible 
combinations of the discretized parame-
ters. The probability of a given connectivity 
structure is finally given by the sum of the 
probabilities of all the KF that belong to the 
corresponding subset.

2.3 Simulations
For the simulations, we considered a 
 previously reported scenario where two 
slightly different connectivity structures are 
compared [12] (▶ Figure 3). Each of them 

Figure 3 Connectivity models tested in the simulations: Model 1, with forward connections only, and Model 2, with both forward and reciprocal con -
nections (left); and corresponding input time courses to the three brain regions (right). The feedforward and feedback connection weights are displayed in the 
figure by example, and correspond to the ones used in the example datasets used in Figure 4.
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has three brain regions and represents one 
of two possible intrinsic connectivity struc-
tures, with and without reciprocal connec-
tions. The only difference between the 
models is hence that the second one ex-
hibits backward connectivity, while the first 
one has only forward connectivity. The 
corresponding input time courses to the 
three brain regions are also shown in 
▶ Figure 3.

For each of the two models, 25 simu-
lations were performed. Each simulation 
consisted of 200 s of data generated with an 
integration step of 0.1 s and subsequent 
under-sampling to a repetition time, TR = 
3 s. For each simulation, each of the neu -
ronal model parameters was sampled from 
a uniform distribution in the interval (0.1, 
0.9). Unless otherwise stated, the hae-
modynamic parameters were equal to the 
means of the priors in [2], as shown in 
▶ Table 1, and the neuronal efficacy was  
ε = 1. The sensitivity of the model selection 
results to the variability of the haemo- 

dynamic parameters was evaluated by per-
forming simulations with the respective 
values drawn from distributions around 
the mean priors with different standard 
deviations: σ = {0; 1; 10; 50; 100%}. 
 Gaussian and white noise was added to the 
inputs, the states and the outputs, with 
variance such that the generated data have 
a specific signal-to-noise ratio (SNR). The 
following values were first tested: SNR = 
{0.1; 1.0; 100.0}, and a value of SNR = 5 was 
then used for further comparisons.

All hidden states (neuronal and hae-
modynamic) were recorded as well as the 
system output. Both MMKF assuming state 
noise equal to 0 (deterministic) and MMKF 
with correct variance (stochastic) were then 

run. Their hidden states estimates and the 
probabilities of each connectivity model 
were recorded. Two types of final model es-
timation were performed: using the esti-
mates of the best KF (best), or the estimates 
of all KFs weighted by their probabilities 
(mixed).

In order to evaluate the accuracy of the 
estimated variables, the sum of squared er-
rors, SSE, was computed for the neuronal 
and haemodynamic states as well as the 
system output:

 

where i is the time-index, with Ntime equal to 
the number of time points in the data,  
j is the region-index, with Nregions = 3, and s(l) 
is the kth variable of region j of kind l, with 
Nl = 1 for the neu ronal state and system out-
put and Nl = 4 for the haemodynamic states. 
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ks 
0.650 s –1

kf

0.410 s –1 0.980 s 0.320
E0

0.340

Table 1 Haemodynamic model parameter prior 
values

Figure 4 Time courses of the signal output, the neuronal state and the four haemodynamic states (vasodilatory signal (at 0, in phase with neuronal 
changes), blood flow and volume (at 1, in phase with neuronal changes) and deoxyhemoglobin), obtained in two example simulated datasets using Model 1 
with different parameter settings, for the three brain regions (A1, A2 and A3).
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This quantity was normalised by the mean 
of each estimated variable kind, in order to 
have an adimensional value comparable 
across variables (output, haemodynamic, 
neuronal). In order to evaluate the model 
selection accuracy, the final probability, Pi , 
of each of the two possible models was clas-
sified as strong evidence (S) if 0.95 ≤ Pi , 
positive evidence (P) if 0.75 ≤ Pi < 0.95, or 
weak evidence (W) if 0.50 ≤ Pi < 0.75.

3. Results
The time courses of the signal output, 
neuronal states and haemodynamic states, 
obtained in two example simulated data-
sets using Model 1 with different parame ter 
settings, for the three brain regions (A1, A2 
and A3), are shown in ▶ Figure 4. The 
model selection results obtained for differ-
ent SNR values are shown in ▶ Figure 5. It 

can be observed that the SNR impacts the 
performance of the MMKF only for ex-
tremely low values (0.1), yielding reason-
ably similar results for SNR values between 
1 and 10, which renders the chosen value 
SNR = 5 representative of the performance 
of the proposed algorithm. The model se-
lection results obtained using different 
variances for the distribution of the hae-
modynamic parameters values are shown 

Figure 5 Distribution of the evidences (strong, S, positive, P, and weak, W ) assigned to Model 1 (S1, P1, W1) and Model 2 (S2, P2, W2), by stochastic MMKF, 
using the mean HRF parameter values and different SNR values, for simulations of Model 1 (left) and Model 2 (right).

Figure 6 Distribution of the evidences (strong, S, positive, P, and weak, W ) assigned to Model 1 (S1, P1, W1) and Model 2 (S2, P2, W2), by stochastic MMKF, 
using SNR = 5 and different HRF variance (sigma) values, for simulations of Model 1 (left) and Model 2 (right).
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in ▶ Figure 6. It can be observed that hae-
modynamic variability has little impact on 
the performance of the MMKF, which 
renders the use their mean prior values a 
reasonable choice.

The model selection results obtained 
using both the deterministic and stochastic 
MMKF formulations are shown in ▶ Fig-
ure 7, for the simulations of Model 1 and 
Model 2. Regardless of which model is 
used to generate the data, deterministic 
MMKF has a greater tendency to choose 
the wrong structure than stochastic 
MMKF. Obviously, the deterministic 
model did not account for stochastic fluc-
tuations of hidden states, and it also dis-
played a higher error rate due to a larger 
weighing of output values. In fact, the 
relatively high SNR makes the determinis -
tic MMKF trust the output data more; 
since the MMKF does not contain any KF 
that represents the system exactly, the 
probabilities of each KF vary widely with 
time. In contrast, the stochastic MMKF in-
troduces uncertainty in the transition be-
tween states, trusting the output data less 
and therefore yielding less variability in the 
probabilities. Since none of the KFs in-
cluded in the MMKF algorithm corre-
spond to the true model exactly, the prob-
abilities of each KF in the deterministic ap-
proach may vary substantially with time. 
By accounting for state noise, stochastic 

MMKF has greater flexibility in tracking 
the hidden states, which allows for a few 
KFs to have significant probability assigned 
to them while most KFs are eliminated 
after a few seconds of data are processed.

The results for the state estimation ob-
tained for Model 1 are shown in ▶ Figure 8 
(similar results were obtained for Model 2, 
not shown). Although state estimation is 
not strictly performed by deterministic 
MMKF, the KF with highest probability 
should correspond to the one whose (de-
terministic) states are closest to the true 
ones, and these were therefore taken as the 
equivalent to the estimated states in this 
case. In stochastic MMKF, on the other 
hand, the states are treated as random  
variables with nonzero variance, thanks to 
the state noise, and estimated. As expected, 
the estimates by stochastic MMKF there-
fore outperform those by the deterministic 
MMKF. It is interesting to note that the best 
and mixed estimates have almost exactly 
the same error when using stochastic 
MMKF (i.e. the best KF already tracks the 
hidden states well), whereas  deterministic 
MMKF benefits from a weighted estimate. 
Another interesting observation is that this 
improvement is more pronounced for the 
estimates of the haemodynamic states than 
for the neuronal states.

One possible application of the pro-
posed methodology to real fMRI data is 

described here, as an example based on our 
own work [13]. In this study, we aimed to 
identify the seizure propagation pathway in 
a patient with epilepsy, by testing a set of 
clinically plausible effective brain connec-
tivity models, based on fMRI data recorded 
during the occurrence of seizures. After 
standard pre-processing, the fMRI data 
were analysed using a general linear mod-
elling approach in order to identify brain 
regions exhibiting seizure-related signal 
changes. A space of 16 connectivity models 
involving these regions was then defined 
according to the hypothesized seizure 
propagation pathways. A square waveform 
describing the periods of seizure activity 
was used as the system’s input into the re-
gion known to be the epileptic focus in this 
case. A deterministic implementation of 
DCM was then employed in order to esti-
mate the different connectivity models and 
Bayesian model comparison was subse-
quently applied to select the model with the 
highest evidence given the data. By using 
the stochastic MMKF methodology pro-
posed here, we would be able to allow for 
perturbations in the system input, which 
would be more suitable to modelling spon-
taneous epileptic activity.
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Figure 7 Distribution of the evidences (strong, S, positive, P, and weak, W ) assigned to Model 1 (S1, P1, W1 ) and Model 2 (S2, P2, W2 ), by deterministic 
and stochastic MMKF, for simulations of Model 1 (left) and Model 2 (right).
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4. Discussion and 
 Conclusion
We have presented the first MMKF ap-
proach for the estimation of effective brain 
connectivity based on DCM. The proposed 
algorithm was able to successfully select the 
correct connectivity model structure from 
a set of pre-specified plausible alternatives. 
Moreover, we showed that MMKF assum-
ing stochastic disturbances of the states was 
much more effective, not only in the selec-
tion of the correct connectivity model 
structure but also in the estimation of the 
hidden states, when com- pared with its 
deterministic counterpart. These results 
demonstrate the applicability of a MMKF 
approach to the study of effective brain 
connectivity using DCM of fMRI data, par-
ticularly when a stochastic formulation is 
desirable.

The growing interest in the study of 
resting-state functional connectivity (e.g. 
[14]) has in fact pressed for the develop-
ment of appropriate methodologies for the 
study of connectivity in stochastic condi-
tions, particularly using a DCM frame-
work. Deterministic implementations of 

DCM presume that an extrinsic input is 
given to the brain network under investi-
gation, corresponding to sensory stimu-
lation or the performance of motor or cog-
nitive tasks. However, accounting for 
stochastic fluctuations in neuronal activity 
and their interaction with task-specific 
processes may be of particular importance 
for studying state-dependent interactions. 
Also, allowing for random neuronal fluctu-
ations may render DCM more robust to 
model misspecification and finesse prob-
lems with network identification [15]. 
Moreover, it is not possible to define such a 
deterministic input in studies of sponta-
neous brain activity, such as the one ob-
served during resting-state or in pathologi-
cal conditions like epilepsy.

In previous reports aiming to study ef-
fective connectivity within an epileptic net-
work [13, 16 –18], a deterministic imple-
mentation of DCM of fMRI was used and 
the system’s input was conceived as a time 
marker of an initial event taking place 
within the postulated epileptic focus and 
which perturbs the associated network. 
Stochastic implementations of DCM will 
certainly provide more suitable approaches 

for modelling such epileptic spontaneous 
brain activities, since it accounts for endo-
genous or random fluctuations in hidden 
neuronal states. A recent paper has just 
demonstrated the first application of 
 stochastic DCM to the study of the default 
mode network in first-episode schizo-
phrenia [19]. Other applications of interest 
will target the study of resting-state net-
works measured by fMRI, under different 
brain states, physiological modulations or 
disease.

Despite their great potential, in the lit-
erature only a few methods have been pro-
posed for model inversion (estimation) in 
the context of stochastic DCM. The orig-
inal Bayesian estimation framework [2] 
was extended by the same authors to meth-
ods of dynamic expectation maximization, 
variational filtering and generalized filter-
ing [5–7]. More recently, a nonlinear cuba-
ture Kalman filtering approach was pro-
posed to invert models of coupled dynami-
cal systems, which furnishes posterior esti-
mates of both the hidden states and the 
 parameters of the system, including any 
unknown exogenous input [20].

Figure 8  
Distribution of nor-
malised SSE values 
over the 25 simu-
lations of Model 1, 
for output signal, 
haemodynamic 
states and neuronal 
states, using the best 
and mixed estima tion 
methods, with both 
deterministic and 
stochastic MMKF.  
The box plots are de-
limited by the 25th 
and 75th percentiles, 
the whiskers extend 
over the 75% interval 
(between 12.5% and 
87.5% percentiles), 
the median is indi-
cated by the central 
dash and the mean is 
indicated by a cross.
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To the best of our knowledge, the 
 methodology presented here is the first 
multiple-model approach to the problem of 
selecting the best brain effective connectiv-
ity structure among a set of hypotheses in 
the context of DCM. In a related context, 
we have previously developed a multiple- 
model framework for the identification of 
the haemodynamic response function 
(HRF) model from fMRI data [21]. In this 
case, Set-Valued Observers (SVOs) were 
used, whereby the HRF identification is put 
forward as a problem of model falsification 
or invalidation in which we are interested 
in distinguishing among a set of eligible 
models of dynamic systems.

It should be noted that the performance 
assessment of the proposed methodology is 
still preliminary. Firstly, it is limited to two 
connectivity structures, which have pre-
viously been used to test DCM for fMRI. 
Secondly, performance is assessed only on 
simulated data, and no challenge on real 
data is attempted. Finally, no comparison 
with other DCM identification methods 
was performed. In particular, a comparison 
with variational estimation followed by 
Bayesian model selection would be 
required in order to identify the strengths 
and weaknesses of the proposed algorithm 
relative to the current most common pro-
cedure.

Furthermore, the following points need 
to be addressed in the current form of the 
proposed algorithm. The SNR of the data 
should be estimated in order to make the 
algorithm robust to temporal scaling in the 
DCM matrices as well as to the amplitude 
of the signals. Moreover, a practical way of 
applying the algorithm without knowledge 
of the HRF for each area must also be de-
veloped. Finally, finding automatic tech-
niques to design the optimal input for a 

given connectivity structure distinction 
would also have interesting applications. 
Future work should address these current 
limitations, in order to improve the pro-
posed MMKF algorithm and completely 
characterize its performance and applica-
bility in real fMRI data.
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