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a b s t r a c t

In this paper, we tackle the problem of trajectory tracking for a particular class of underactuated vehicles
with full torque actuation and a single force direction (thrust), which is fixed relative to a body attached
frame. Additionally, we consider that thrust reversal is not available. Under some given assumptions, the
control law that we propose is able to track a smooth reference position trajectory while minimizing
the angular distance to a desired orientation. This objective is achieved robustly, with respect to bounded
state disturbances, and globally, in the sense that it is achieved regardless of the initial state of the vehicle.
The proposed controller is tested in an experimental setup, using a small scale quadrotor vehicle and a
motion capture system.
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1. Introduction

In recent years, the advent of miniaturized electronics al-
lowed for the development of small-scale aerial vehicles that
are able to perform efficiently a number of different tasks, such
as surveillance, targeting, structure inspection, among others (cf.
Herrick, 2000 and Kinsey, Eustice, & Whitcomb, 2006). In order
to take full advantage of the capabilities of these vehicles, sev-
eral controllers have been proposed that make use of different
parametrizations of the attitude of the system, such as: Euler-
angles, quaternions, rotation matrix and angle-axis parametriza-
tion, just to name a few. Euler-angles arise when linearization is
used in the controller design and even though they are very intu-
itive in nature and might be used effectively for local stabilization
around a given set-point, they are not singularity-free, i.e., there
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exist points in the attitude space that cannot be represented
with a given set of Euler-angles, so they cannot be used for the
purpose of global stabilization. The rotation matrix provides a
singularity-free injective representation of the orientation of the
vehicle, and it can be used for controller design as suggested by
Koditschek (1989). The unit quaternions and the angle-axis are
representations of attitude that provide a double cover of the at-
titude space, meaning that for every orientation there exist two
quaternions (or two different angle-axis combinations) that repre-
sent that rotation. So, even though they are singularity-free, they
might lead to inconsistent behavior, namely the unwinding phe-
nomenon (cf. Mayhew, Sanfelice, & Teel, 2011a). In order to avoid
such problems, one is required to select the sign of the unit quater-
nion so that the kinematic equations of motion are satisfied. In
practice, a memory state is required to keep track of past values,
as suggested byMayhew, Sanfelice, and Teel (2013). For a more in-
depth discussion on attitude representation, the reader is referred
to the work of Shuster (1993).

Every attitude representation has its advantages and drawbacks
and, depending on the particular application at hand, some might
prove more useful than others. In particular, unit quaternion
representations have been applied to the control of spacecraft
by Joshi, Kelkar, and Wen (1995), Kristiansen, Nicklasson, and
Gravdahl (2009), Li, Ding, and Li (2010), Wisniewski and Kulczycki
(2003), unmanned aerial vehicles by Tayebi and McGilvray (2006)
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and underwater vehicles by Fjellstad and Fossen (1994). A good
overview of these different control techniques can be found in the
work by Chaturvedi, Sanyal, and McClamroch (2011).

Despite their relative success, the aforementioned papers pro-
vide a control solution for fully actuated vehicles, ruling out very
common vehicles such as helicopters and underwater vehicles.
In order to address this issue, other control solutions have been
presented by Aguiar and Hespanha (2007), Goodarzi, Lee, and
Lee (2013) and Lee, Leok, and Harris McClamroch (2011). How-
ever, such strategies rely on continuous controllers and it has
been shown by Bhat and Bernstein (2000) that global asymptotic
stabilization of a given set-point is not possible bymeans of contin-
uous feedback. In order to solve this problem, discontinuous con-
trol laws have been proposed (see e.g. Fjellstad & Fossen, 1994)
but these are not robust to small measurement noise, as shown by
Mayhew and Teel (2011a). Recent advances in hybrid control the-
ory have shown that hybrid systems satisfying the so-called hybrid
basic conditions are inherently robust to small measurement noise
(cf. Goebel, Sanfelice, & Teel, 2012), making hybrid control tech-
niques a suitable candidate for the problem at hand. In fact, hybrid
control strategies using both quaternion feedback and rotationma-
trix feedback have been proposed by Mayhew et al. (2011a) and
Mayhew and Teel (2011b), respectively.

In this paper, we will make use of the hybrid quaternion feed-
back strategy that is presented by Mayhew et al. (2011a), in or-
der to design a controller for a class of underactuated vehicles that
have a single force direction, known as thrust, and full torque actu-
ation. Resorting to the backstepping of hybrid feedback laws given
byMayhew, Sanfelice, and Teel (2011b),we design a controller that
is able to globally asymptotically stabilize a given smooth reference
position trajectory while minimizing the rotation angle to a given
attitude configuration. The proposed strategy is, in part, similar to
that of Zhao, Dong, and Farrell (2013), however, the controller we
propose includes an integral term that makes it robust to static ac-
celeration perturbations, we use a robust hybrid system in order
to extract the desired unit quaternion and our solution is evalu-
ated in an experimental setup using an optical motion capture sys-
tem. A preliminary version of this article that does not consider the
additive disturbance and without the experimental results was
presented at the 2013American Control Conference (cf. Casau, San-
felice, Cunha, Cabecinhas, & Silvestre, 2013). Another preliminary
version of the present work with a systemmodel that does not in-
clude the attitude dynamics was presented at the 2014 Interna-
tional Conference on Robotics andAutomation (cf. Casau, Sanfelice,
Cunha, Cabecinhas, & Silvestre, 2014).

The remainder of the paper is organized as follows. In Section 2,
we present some of the notation and basic concepts that are
used throughout the paper. In Section 3, we rigorously define the
problem at hand and present some of the assumptions that render
the proposed controller a feasible solution to the given problem.
In Section 4, we devise a controller for the position subsystem,
considering the orientation and the thrust as inputs, while in
Sections 5 and 6 we follow the backstepping procedures in order
to devise a controller in terms of the torque and the thrust. In
Section 7, we present some experimental results. Finally, Section 8
provides some concluding remarks to this work.

2. Preliminaries

N denotes the set of natural numbers; Rn denotes the
n-dimensional Euclidean space equipped with the inner product
⟨x, y⟩ := x⊤y for each x, y ∈ Rn which induces the norm |x| :=√

⟨x, x⟩;Rm×n denotes the set ofm×nmatrices; vec : Rm×n
→ Rmn

is given by vec (A) :=

e1⊤A⊤

· · · en⊤A⊤


⊤ for each A ∈ Rm×n,
where ei ∈ Rn is a vector of zeros except for the ith entry which
is 1; |v|∞ := maxi∈{1,...,n} vi for each v ∈ Rn; |A|2 denotes the
maximum singular value of a matrix A ∈ Rm×n; given M > 0, we
have that MB := {x ∈ Rn

: |x| ≤ M}; given a set valued mapping
M : Rm ⇒ Rn, the range of M is the set rgeM = {y ∈ Rn

: ∃x ∈

Rmsuch that y ∈ M(x)}.
We follow the same notation of Magnus and Neudecker (1985)

to represent the derivatives of differentiable functions. Let F :

Rm×n
→ Rp×q be a differentiable function, then

DX (F) :=
∂vec (F)

∂vec (X) ⊤
. (1)

We also define the saturation function:

Definition 1. A K -saturation function is a smooth strictly increas-
ing function σK : R → R that satisfies the following properties: (1)
σK (0) = 0, (2) sσK (s) > 0 for all s ≠ 0, (3) lims→±∞ σK (s) = ±K ,
for some K > 0. Moreover, for each x ∈ Rn we define

ΣK (x) :=

σK (x1) · · · σK (xn)


⊤. �

The attitude of a rigid-body can be described by an element R
of SO(3) given by SO(3) := {R ∈ R3×3

: R⊤R = I3, det(R) = 1}.
Flows in SO(3) satisfy Ṙ = RS (ω), for some ω ∈ R3, and S (ω) is
such that S (ω) v = ω × v for each ω, v ∈ R3 (cf. Bullo & Lewis,
2005, Section 4.1.5). Let Sn

⊂ Rn+1 denote the n-dimensional
sphere, defined by Sn

:= {x ∈ Rn+1
: x⊤x = 1}. The attitude

of a rigid body may also be represented by unit quaternions q :=

[η ϵ⊤
]
⊤

:= (η, ϵ), where η and ϵ denote the scalar and vector
components of q ∈ S3, respectively. The mapping R : S3

→ SO(3),
given by

R(q) := I3 + 2ηS (ϵ) + 2S (ϵ)2 , (2)

maps a given unit quaternion to a rotation matrix (cf. Wertz,
1978, Eqs. (12)–(47)). This map is a double cover of SO(3), since
R(q) = R(−q). It is important to note that for any continuous path
R : [0, 1] → SO(3) and for any q(0) ∈ S3 such that R(q(0)) =

R(0), there exists a unique continuous path q : [0, 1] → S3 such
that R(q(t)) = R(t) for all t ∈ [0, 1] (cf. Bhat & Bernstein, 2000).
This is known as the path lifting property and, in particular, itmeans
that the solution t → R(t) to Ṙ = RS (ω) can be uniquely lifted to
a path t → q(t) in S3 that satisfies

q̇ =
1
2


−ϵ⊤

ηI3 + S (ϵ)


ω :=

1
2
Π(q)ω.

Wemake use of recent developments on hybrid systems theory
in Goebel et al. (2012). Under this framework, a hybrid system H
is defined as

H =


ẋ ∈ F(x) x ∈ C
x+

∈ G(x) x ∈ D,
(3)

where the data (C, F ,D,G) is given as follows: the set-valued map
F : Rn ⇒ Rn is the flow map and governs the continuous dynamics
(also known as flows) of the hybrid system; the set C ⊂ Rn is
the flow set and defines the set of points where the system is
allowed to flow; the set-valued map G : Rn ⇒ Rn is the jump
map and defines the behavior of the system during jumps; the
set D ⊂ Rn is the jump set and defines the set of points where
the system is allowed to jump. A solution x to H is parametrized
by (t, j), where t denotes ordinary time and j denotes the jump
time, and its domain dom x ⊂ R≥0 × N is a hybrid time domain:
for each (T , J) ∈ dom x, dom x ∩ ([0, T ] × {0, 1, . . . , J}) can be
written in the form ∪

J−1
j=0([tj, tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where tj’s define the jump
times. For a definition of asymptotic stability for hybrid systems
see Goebel et al. (2012, Definition 7.1).
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3. Problem formulation

In this paper, we consider the problem of designing a controller
for a class of rigid bodies with a single thrust direction and full
torque actuation. This includes, for example, different types of
helicopter vehicles. For controller design purposes, we consider
that the dynamics of such vehicles can be described by the
following set of differential equations:

ṗ = v, v̇ = −Re3
T
m

+ ge3 + L(p, v)b, (4a)

Ṙ = RS (ω) , ω̇ = −J−1S (ω) Jω + J−1M, (4b)

where p ∈ R3 denotes the position of the rigid body in the
inertial reference frame, v ∈ R3 represents its linear velocity,
expressed in inertial coordinates, R ∈ SO(3) represents the ori-
entation of the body fixed frame with respect to the inertial ref-
erence frame, ω ∈ R3 denotes the angular velocity, expressed in
the body attached frame, g ∈ R denotes the acceleration of grav-
ity, (p, v) → L(p, v) ∈ R3×ℓ is smooth function that represents
state dependent disturbances that scale linearly with an unknown
constant parameter b ∈ Rℓ for some ℓ ∈ N, T ∈ R is the thrust
magnitude, M ∈ R3 is the torque, m ∈ R denotes the mass of the
rigid body and J ∈ R3×3 denotes its tensor of inertia. This model
is similar to those that were used by Frazzoli, Dahleh, and Feron
(2000) and Hua, Hamel, Morin, and Samson (2009). For more de-
tails on aircraft models, the reader is referred to Betty (1986), Pad-
field (2007) and references therein.

Suppose that we are given a function t → (p(4)
d (t), ω̇d(t)) ∈

MpB × MωB for some Mp,Mω > 0 and for each t ≥ 0. Then, the
position and attitude reference trajectories, denoted by pd and Rd,
respectively, are obtained by integration of this function, given a
set of suitable initial conditions. In particular, the attitude trajec-
tory t → Rd(t) is obtained by the integration of the differential
equation Ṙd = RdS (ωd), hence guaranteeing that Rd(t) belongs to
SO(3) for each t ≥ 0.

This procedure gives rise to amap t → r(t) ∈ R12
×SO(3)×R3

defined for each t ≥ 0, where

r(t) := (pd(t), p
(1)
d (t), p(2)

d (t), p(3)
d (t), Rd(t), ωd(t)) (5)

collects not only the position and attitude trajectories, but their
derivatives up to a certain order. In the sequel, we restrict
our attention to bounded reference trajectories and disturbances
satisfying the following assumption.

Assumption 1. Given Mp,Mω > 0, a reference trajectory is a
solution r to

ṙ ∈ Fd(r) :=


p(1)
d , p(2)

d , p(3)
d ,MpB, RdS (ωd) ,MωB


, (6)

such that rger ∈ Ωr for some compact set Ωr ⊂ R12
× SO(3)×R3,

satisfying e3⊤Rd(t)e3 ≥ 0 for each t ≥ 0. Moreover, for each
disturbance (p, v, b) → L(p, v)b for (4), the following holds:

sup
r∈Ωr

p(2)
d

 +


√
3 +

√
ℓ sup

(p,v)∈R6
|L(p, v)|2


|b|∞ < g. (7)

Notice that the model disturbances (p, v, b) → L(p, v)b must be
bounded. If the disturbance term does not satisfy this requirement,
then the results presented in this paper do not hold globally, but
rather on a subset of the state space where (7) is satisfied. Addi-
tionally, (7) is required to guarantee that the thrust is positive, as
described in the problem statement below.Moreover, it is not pos-
sible for an underactuated vehicle to track an arbitrary reference
trajectory (cf. Levine & Müllhaupt, 2011). Therefore, given a refer-
ence trajectory r satisfying Assumption 1, the controller proposed
in this paper is able to track the attitude trajectory R0(r, Υ ) ob-
tained by solving the optimization problem

minimize
1
2
trace


I3 − RRd

⊤


subject to R ∈ Υ

(8)

where Υ ⊂ SO(3) is to be defined during the design of the con-
troller.

Problem 1. Design a hybrid controller

ẋc ∈ Fc(x) x ∈ Cc, x+

c ∈ Gc(x) x ∈ Dc, (9)

with output (T (x),M(x)), where x := (r, p, v, R, ω, xc) belongs to
X := Ωr × R3

× R3
× SO(3) × R3

× Xc , for some Xc , such that
the set

A :=


x ∈ X : p = pd, v = p(1)

d , R = R0(r, Υ )


, (10)

is globally asymptotically stable for the closed-loop system resulting
from the interconnection between (4) and the controller (9), and
there exists T > 0 such that 0 < T (x(t, j)) ≤ T for each (t, j) ∈

dom x and for each solution x to the closed-loop system. �

To solve this problem, we separate it into three simpler tasks.
In Section 4, we design a controller for the position subsystem and
then, in Sections 5 and 6, we design a control law for the whole
system using backstepping techniques.

4. Robust position tracking by saturated feedback

In this section, let us consider R ∈ SO(3) as a virtual input.
Then, given a reference trajectory satisfying Assumption 1, the
position and velocity tracking errors are given by p0 := p − pd
and v0 := v − ṗd, respectively. Then, using (4a), we find that the
dynamics of the tracking errors are given by
ṗ0 = v0, (11a)

v̇0 = −Re3
T
m

+ ge3 + L(p, v)b − p(2)
d . (11b)

Since we are considering both R ∈ SO(3) and T ∈ R as inputs,
the term −Re3T/m can be set to an arbitrary vector µ ∈ R3

\ {0}
using the thrust input T (µ) := m |µ|, and the attitude input as the
solution to the optimization problem (8) with Υµ := {R ∈ SO(3) :

Re3 = −µ/ |µ|}, as the constraint for R which is given by

R0(r, Υµ) =


I3 + S (γ ) +

1
1 − e3⊤Rd

⊤ µ

|µ|

S (γ )2


Rd, (12)

where γ := −S (Rde3)
µ

|µ|
, for eachµ ∈ R3 (cf. Frazzoli et al., 2000).

Then, let us define the feedback law
µ(r, p0, v0, z) := −ΣK (kpp0 + kvv0) − L (p, v) ΣK (z)

− ge3 + p(2)
d , (13)

where ΣK : Rℓ
→ Rℓ is a K -saturation function with the prop-

erties given in Definition 1, kp, kv > 0 and z ∈ Rℓ is an inte-
gral state satisfying ż := kzL(p, v)⊤Dv0


V 0(p0, v0)


⊤, for each

(r, p0, v0) ∈ Ωr × R3
× R3, where

V 0 :=

3
i=1

1
2


σK (ri) ei⊤v0


P

σK (ri)
ei⊤v0


+

 ri

0
σK (ξ) dξ, (14)

withr := kpp0 + kvv0, σK given in Definition 1 and

P :=

kv

kp
β −β

−β kp

 ,

for some β ∈ (0, kv).
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Clearly, R0(r, Υµ) is not defined when e3⊤Rdµ = |µ|. However,
if e3⊤Rd(t)e3 ≥ 0 for each t ≥ 0 and (7) is satisfied then
this situation does not happen for any solution to the closed-loop
system. Replacing (T , R) = (m |µ| , R0(r, Υµ)) into (11), we obtain
the closed-loop system

ṗ0 = v0,

v̇0 = −ΣK (kpp0 + kvv0) + L (p, v) (b − ΣK (z)),

ż = kzL(p, v)⊤Dv0


V 0(p0, v0)


⊤,

(15)

with the important stability properties that are given in the
following lemma whose proof is deferred to Appendix.

Lemma 1. Let Assumption 1 hold. Then, there exists K > |b|∞ such
that, for each kp, kv, kz > 0, the set

A0 := {(p0, v0, z) ∈ R3
× R3

× Rℓ
: p0 = v0 = 0}, (16)

is globally asymptotically stable for the system (15) and its solutions
are bounded. Moreover, there exists T > 0 such that 0 <
T (µ(r, p0(t), v0(t), z(t))) ≤ T for each r ∈ Ωr and for each solution
t → (p0(t), v0(t), z(t)), defined for each t ≥ 0.

The controller for the position subsystem presented in this
section determines the acceleration of the vehicle and, as a
consequence, it fixes a desired direction R0(r, Υµ)e3. The extra
degree of freedom, consisting of rotations around R0(r, Υµ)e3, is
used to minimize the distance to Rd. In this way, the user may
specify attitude trajectoriesRd that are not feasible, but aremapped
to the feasible trajectory R0(r, Υµ) in the sense that, for each t ≥ 0,
R(t) = R0(r(t), Υµ(t)) and p0(t) = v0(t) = 0 satisfy (11), while
R(t) = Rd(t) may not.

5. Global asymptotic stabilization of the attitude kinematics by
hybrid quaternion feedback

In this section, we develop a controller that solves Problem 1
when ω is taken as a virtual input. To do so, let us define the
rotation error as R1 := RR0

⊤, where R0 is given by (12). Since
R0(t) ≡ R0(r(t), Xµ(t)) belongs to SO(3) for each t ≥ 0, then its
derivative satisfies Dt (R0(t)) = −Γ (R0(t))R0(t)ω0(t), for each
t ≥ 0, with

Γ (R) := −

S (Re1) S (Re2) S (Re3)


⊤.

Moreover, solving Dt (R0(t)) for ω0, we obtain

ω0 = −
1
2
R0

⊤Γ (R0)
⊤Dt (R0) , (17)

and, from (4b), we conclude that Ṙ1 = R1S (R0(ω − ω0)).
The design of a controller such that R = R0 is globally asymp-

totically stable is equivalent to the design of a controller that sta-
bilizes R1 = I3. Although strategies for the global stabilization of
an attitude reference by matrix feedback exist (cf. Mayhew & Teel,
2011b), it is not clear how they can be extended to the stabilization
of the class of underactuated vehicles presented in this paper. In-
stead,we resort to attitude stabilization byhybrid quaternion feed-
back introduced in Mayhew et al. (2011a).

In this direction, let us point out that there exists a unique unit
quaternion satisfying R1 = R(q1) and the kinematic equations

q̇1 =
1
2
Π(q1)R0(ω − ω0). (18)

In order to retrieve the unit quaternion uniquely, we make use of
the robust path-lifting strategy that was introduced in Mayhew
et al. (2013). We discuss the implementation of this technique at
the end of Section 6, but, for now, we assume that q1 is readily
available from the measurements.
In standard backstepping we would add a feedforward term to
ω in order to cancel out ω0. However, due to the presence of an
unknown constant b ∈ Rℓ in the dynamics of the plant, we cannot
determine ω0. Instead, we use an estimate ω0,1, given by ω0,1 :=

−
1
2R0

⊤Γ (R0)
⊤ Dt (R0)|b=b1 , which is in all aspects identical to (17)

but where we replace the unknown disturbance b by an estimate
b1. It is possible to verify that the difference between ω0,1 and ω0
is given by

ω0,1 − ω0 = −
1
2
R0

⊤Γ (R0)
⊤Dv0 (R0) L(p, v)b1, (19)

where we have used the definition of the estimation errorb1 :=

b1 − b.
Let η1 and ϵ1 denote the scalar and vector components of q1,

respectively, H := {−1, 1}, δ > 0,

Q+

δ := {(q, h)× ∈ S3
× H : hη ≥ −δ},

Q−

δ := {(q, h)× ∈ S3
× H : hη ≤ −δ},

(20)

x1 := (r, p0, v0, q1, z, h,b1) belongs toX1 := Ωr ×R3
×R3

×S3
×

Rℓ
× H × Rℓ and

ḃ1 :=
1
2
kb1khL(p, v)⊤Dv0 (R0)

⊤Γ (R0)ϵ1, (21)

then define the hybrid system H1 := (C1, F1,D1,G1) as follows:

ẋ1 ∈ F1(x1) :=



Fd(r)
v0

−R(q1)R0e3
T (µ)

m
+ ge3 − p(2)

d + L(p, v)b
1
2
Π(q1)R0(ω − ω0)

kzL(p, v)⊤Dv0


V 0(p0, v0)


⊤

0
1
2
kb1khL(p, v)⊤Dv0 (R0)

⊤Γ (R0)ϵ1


x1 ∈ C1 := {x1 ∈ X1 : (q1, h) ∈ Q+

δ }, (22a)

x+

1 ∈ G1(x1) := (r, p0, v0, q1, z, −h,b1)
x1 ∈ D1 := {x ∈ X1 : (q1, h) ∈ Q−

δ }, (22b)

for some δ ∈ (0, 1), where T (µ) = m |µ| and ω = ω1, given by
ω1 := ω0,1 + R0

⊤

−ω⋆

1 − kqhϵ1

, with

ω⋆
1 :=

2kzkV0
kh

(η1S (µ) − S (µ) S (ϵ1)) Dv0 (V0)
⊤. (23)

V0 given in (A.2) and h ∈ H is a logic variable that enables controller
switching and H := {−1, 1} is a discrete set endowed with the
discrete topology, but it can be regarded as a subset of R with
the subspace topology. In particular, if we consider any function
V : Rn

× H → R such that the map x → V (x, h) is continuous for
each h ∈ H , then V (x, h) is continuous on R × H . This fact is used
in the proof of the following theorem.

Theorem 2. Let Assumption 1 hold. Then, there exists K > |b|∞ such
that, for each kp, kv, kV0 , kq, k, kz, kb1 > 0, the solutions to the hybrid
system (22) are bounded and the set A1 :=


x1 ∈ X1 : p0 = 0, v0 =

0, q1 = (h, 0)

is globally asymptotically stable.

Proof. First of all, we prove that the hybrid system (22) meets the
hybrid basic conditions (as given in Goebel et al., 2012): (1) since
φ(x1) := hη1 is continuous, the pre-image of closed sets under φ
is also closed, thus both C1 and D1 are closed; (2) since F1(x1) given
in (22a), is a single valued function and continuous, it is locally
bounded, convex and outer semicontinuous; (3) by Goebel et al.
(2012, Lemma 5.10), the jumpmap G1(x1) is outer semicontinuous
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if and only if D1 × G1(D1) is closed. Notice that the jump map
changes the logic variable but not the states, therefore G1(D1) is
closed and G1(x1) is locally bounded for each x1 ∈ D1. Since D1 is
closed, we conclude that the jump map is outer-semicontinuous.
Next, let us prove that everymaximal solution toH1 is precompact,
i.e. complete and bounded. Consider the following definition

V1(x1) := kV0V0(p0, v0, z) + 2k(1 − hη1) +
1

2kb1
b1⊤b1. (24)

From the properties of V0 and knowing that both H and S3 are
compact we have that for any c > 0, V−1

1 (c) is compact. From
Assumption 1 we have that the reference trajectory r belongs to
a compact set Ωr and, since q0 belongs to the compact set S3, then
for any initial condition (r, p0, v0, q1, z, h,b1)(0, 0) we have that
the set U1 := {x1 ∈ X1 : V1(x1) ≤ V1(x1(0, 0))}, is compact. We
have that the time derivative of V1 is given by
Dx1 (V1) , F1(x1)


= −kV0kzW0(p0, v0) − kkqϵ1⊤ϵ1. (25)

Defining

uc1(x1) :=


−kV0kzW0(p0, v0) − kkqϵ1⊤ϵ1 if x1 ∈ C1
−∞ otherwise, (26)

it is straightforward to see that

Dx1 (V1) , F1(x1)


= uc1(x1) ≤ 0,

for all x1 ∈ C1∩U1. If x1 ∈ U1∩D1 thenV1(G1(x1))−V1(x1) = 4khη1.
From (22b), we have that hη1 ≤ −δ thus V1(G1(x1)) − V1(x1) ≤

−4kδ. Defining

ud1(x1) =


−4kδ if x ∈ D1
−∞ otherwise, (27)

wehave thatV1(G1(x1))−V1(x1) = ud1(x1) < 0 for all x1 ∈ U1∩D1.
These results show that any solution x1(t, j) to H1 remains in U1
for all (t, j) ∈ dom x. This together with the fact that G1(D1) ⊂

C1 implies the completeness (from Goebel et al., 2012, Propo-
sition 2.10) and the boundedness of solutions. Additionally, the
relation rgex1 ⊂ U1 is also verified and the growth of V1 along so-
lutions to H1 is bounded by uc1 , ud1 on U1. Then, since H1 satisfies
the hybrid basic conditions and V1 is continuous, by Goebel et al.
(2012, Theorem 8.2), the precompact solutions x1 to H1 approach
the largest weakly invariant set M1 inside

V−1
1 (c) ∩ U1 ∩


u−1
c1 (0) ∪


u−1
d1

(0) ∩ G(u−1
d1

(0))


, (28)

for some c > 0. Since u−1
d1

(0) = ∅ we have that, in particular,

M1 ⊂ u−1
c1 (0), with

u−1
c1 (0) = {x1 ∈ X1 : p0 = v0 = 0, q1 = (h, 0)} = A1. (29)

Since each maximal solution to H1 is precompact, it converges to
A1. We conclude that A1 is globally attractive for the closed-loop
hybrid system (22). Since V1 is positive-definite relative to A1 and
non-increasing along solutions to (22), then A1 is globally stable
for the closed-loop hybrid system. Hence, we conclude that it is
globally asymptotically stable. �

In the next section, we take advantage of Theorem 2 and
backstepping techniques in order to solve Problem 1.

6. Global asymptotic stabilization of the full dynamic system

In this section, we develop a hybrid feedback law that
is obtained from that of the previous section by means of
backstepping. As before, due to the unknown disturbance b, the
derivative ofω1 has to be estimated using a second estimator for b,
denoted by b2 ∈ R3. Letω := ω − ω1,b2 := b2 − b and

M = S(ω)Jω + J(ω̇1,2 + u), (30)

where kω > 0, u ∈ R3 denotes a new virtual input variable
and ω̇1,2 := Dt (ω1)|b=b2 denotes the estimate of ω̇1 when using
the estimate b2. The difference between ω̇1,2 and ω̇1 is given by
ω̇1,2 − ω̇1 = Dv0 (ω1) L(p, v)b2. Let x2 := (x1,ω,b2) belong to
X2 := X × R3

× R3. Then, replacing (30) into (4b), we obtain
ω̇ = u + ω̇1,2, allowing us to define the hybrid system H2 :=

(C2, F2,D2,G2) as follows:

ẋ2 ∈ F2(x2) :=

 F1(x1)
−kωω + Dv0 (ω1) L(p, v)b2 − khR0

⊤ϵ1
−L(p, v)⊤Dv0 (ω1)

⊤ω


x2 ∈ C2 := {x2 ∈ X2 : (q1, h) ∈ Q+

δ } (31a)

x+

2 ∈ G2(x2) := (G1(x1),ω,b2)
x ∈ D2 := {x2 ∈ X2 : (q1, h) ∈ Q−

δ } (31b)

where we have used

u := −kωω − khR0
⊤ϵ1, (32a)

ḃ2 := −L(p, v)⊤Dv0 (ω1)
⊤ω. (32b)

With these definitions, we are able to state the main result of this
paper.

Theorem 3. Let Assumption 1 hold. Then, there exists K > |b|∞
such that, for each kp, kv, kV0 , kq, k, kz, kb1 , kb2 > 0, the solutions
to the hybrid system (31) are bounded and the set A2 :=

{x2 ∈ X2 : x1 ∈ A1,ω = 0}, is globally asymptotically stable.

Proof. The proof of this theorem follows very closely the proof
of Theorem 2. Namely, the proof that H2 meets the hybrid basic
conditions is essentially the same so we dismiss it here.

Let us define the following Lyapunov function candidate

V2(x2) := kV0V0(p0, v0, z) + 2k(1 − hη1)

+
1
2
ω⊤ω +

1
2kb1

b1⊤b1 +
1

2kb2
b2⊤b2. (33)

Since V0 is positive-definite relative to {(p0, v0, z) ∈ R3
×R3

×Rℓ
:

p0 = 0, v0 = 0, z = Σ−1
K (b)} and, by Assumption 1, r ∈ Ωr for

some compact set Ωr we conclude that, for each initial condition
x2(0, 0), the set U2 := {x2 ∈ X2 : V2(x2) ≤ V2(x2(0, 0))}, is
compact. Using (25) and (31a) we have that the time derivative of
V2 is given by
Dx2 (V2)

⊤, F2(x2)

= −kV0kzW0(p0, v0) − kkqϵ1⊤ϵ1

− kωω⊤ω. (34)

Defining

uc2(x2) :=


−kV0kzW0 − kkqϵ1⊤ϵ1 − kωω⊤ω if x2 ∈ C2
−∞ otherwise (35)

it is straightforward to see that

Dx2 (V2)

⊤, F2(x2)

= uc2(x2) ≤ 0,

for all x2 ∈ C2 ∩ U2. From (31b), we have hη1 ≤ −δ, thus the
following holds:

V2(G2(x2)) − V2(x2) ≤ −4kδ ∀x2 ∈ D2. (36)

Defining

ud2(x2) =


−4kδ if x2 ∈ D2
−∞ otherwise, (37)
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we have that V2(G2(x2)) − V (x2) = ud2(x2) < 0 for all x2 ∈

U2 ∩ D2. These results show that any given solution x2(t, j) to
H2 remains in U2 for all (t, j) ∈ dom x2. This together with the
fact that G2(D2) ⊂ C2 implies the completeness (from Goebel
et al., 2012, Proposition 2.10) and the boundedness of solutions.
Additionally, the relationship rgex2 ⊂ U2 is also verified and
the growth of V2 along solutions to H2 is bounded by uc2 , ud2 on
U2. Then, since H2 satisfies the hybrid basic conditions and V2
is continuous, by Goebel et al. (2012, Theorem 8.2) or Sanfelice,
Goebel, and Teel (2007, Theorem 4.7), the precompact solutions to
(31) approach the largest weakly invariant set M2 inside

V−1
2 (r) ∩ U2 ∩


u−1
c2 (0) ∪


u−1
d2

(0) ∩ G(u−1
d2

(0))


, (38)

for some r > 0. Since u−1
d2

(0) = ∅ we have that, in particular,

M2 ⊂ u−1
c2 (0), with u−1

c2 (0) = A2. Since each maximal solution
to H2 is precompact, it converges to A2. We conclude that A2 is
globally attractive for the hybrid system H2. Since V2 is positive-
definite relative to A2 and non-increasing along solutions to (31),
thenA2 is globally stable for the closed-loop hybrid system. Hence,
we conclude that A2 is globally asymptotically stable for (31). It
follows from the fact that solutions to the hybrid system remain in
U2 thatb2 is bounded. �

To solve Problem 1, one needs to drop the assumption that q1
is directly measured, and consider that R(q1) is measured instead.
In this direction, let us define the controller variables xc :=

(z, h, b1, b2,q1) ∈ Xc for (9), where q1 ∈ S3 is a memory
variable that is part of the robust path-lifting strategy introduced
in Mayhew et al. (2013) and Xc := Rℓ

× H × Rℓ
× Rℓ

× S3. Then,
we define the hybrid controller (9) as follows:

Fc(x) :=


kzL(p, v)⊤Dv0


V 0(p0, v0)


⊤

0
1
2
kb1khL(p, v)⊤Dv0 (R0)

⊤Γ (R0)ϵ1

−L(p, v)⊤Dv0 (ω1)
⊤ω

0


∀x ∈ Cc := {x ∈ X : (Φ(q1, RR0

⊤), h) ∈ Q+

δ ,

dist(q1, Q(RR0
⊤)) ≤ α},

Gc(x) :=


(z, −h, b1, b2,q1) if x ∈ D1 \ D2,
{(z, −h, b1, b2,q1),
(z, h, b1, b2, Φ(q1, RR0

⊤))} if x ∈ D1 ∩ D2,

(z, h, b1, b2, Φ(q1, RR0
⊤)) if x ∈ D2 \ D1

∀x ∈ Dc := D1 ∪ D2,

(39)

where 0 < α < 1, Q(R) denotes the set of quaternions {q, −q} ⊂

S3 satisfying R(q) = R(−q) = R for each R ∈ SO(3),

D1 := {x ∈ X : (Φ(q1, RR0
⊤), h) ∈ Q−

δ ,

dist(q1, Q(RR0
⊤)) ≤ α},

D2 := {x ∈ X : dist(q1, Q(RR0
⊤)) ≥ α},

(40)

dist(p,Q ) := inf{p⊤q : q ∈ Q } for each p ∈ S3 and Q ⊂ S3, and

Φ(q, R) := arg max
p∈Q(R)

q⊤p,

is such that q1 = Φ(q1, RR0
⊤). Moreover, the output of the

controller is

T = m |µ| ,

M = S (ω) Jω + J−1(−kωω − khR0
⊤ϵ1 + ω̇1,2).

(41)
Backtracking the definitions of the variables in (41), it follows
from Mayhew et al. (2013, Theorem 9) and Theorem 3 that (10) is
globally asymptotically stable for the interconnection between (4)
and (39). In the next sectionwe present some experimental results
that show the behavior of the closed-loop system using the given
controller.

7. Experimental results

In order to experimentally evaluate the performance of the
controller described in Section 6, we make use of the following
components: (1) Blade mQX quadrotor (Horizon Hobby Inc., 2012),
(2) VICON Bonita motion capture system (VICON, 2012), (3)
MATLAB/Simulink software, and (4) custommade RF interface. The
BlademQXquadrotor weighs 80 g andhas a radius of approximately
11 cm. This vehicle accepts the thrust and the angular velocity as
inputs. It is readily available in the market and allows for easy
integration with the other components of the control architecture.
For more details on the system architecture and identification, the
reader is referred to Cabecinhas, Cunha, and Silvestre (2014).

In order to assess that the hybrid controller was working as
intended, we carried out the following experiment: (1) Set the
desired position trajectory to (42); (2) Set the initial yaw of the
quadrotor to be approximately 180 degrees away from the desired
orientation; (3) Run the experiment for h(0, 0) = 1 and h(0, 0) =

−1. Let us consider that L(p, v) = I3 and σK (s) =
2K
π

arctan(s).
Moreover, we have chosen the controller parameters kV0 = 0.01,
kz = 0.3, kp = 3, kv = 6, k = 3, K = 1, kω = 40, kb2 = 1
and kb1 = 1. The controller parameters for the position subsystem
were obtained using LQR synthesis techniques and, even though,
the performance attained by the LQR controller does not translate
to this application due to saturation, it works fairly well when the
tracking error is small. Also, onemust select the attitude controller
gains much higher that the position controller gains to ensure that
the commanded orientation R0 is closely tracked. The reference
trajectory is given by

pd(t) :=

a sin(2πν0t) a cos(2πν0t) −h0


⊤,

Rd := I3,
(42)

where a = 1 m, f0 = (2π)−1 Hz and h0 = 1 m. This trajectory
satisfies Assumption 1.

In this experiment, we test specifically the hybrid nature of
the proposed controller since, if working as intended, different
values of the logic variable produce different outcomes when the
quadrotor is near a rotation error of 180 degrees. From the analysis
of Fig. 1, it is possible to verify that this is indeed the case. For
the experiment where h(0, 0) = −1, the initial yaw angle is
approximately 175° (or−185° if we subtract 360°) and it is quickly
brought to zero. On the other hand, for the experiment where
h(0, 0) = 1, the initial yaw angle is 174° and, even though the
initial yaw angles are only 1° apart, the quadrotor corrects its yaw
angle by rotating in opposite directions. It may also be verified
that this correction of the yaw angle has nothing but a small
effect on the pitch and the roll angles. By introducing a hysteresis
gap around rotations of 180°, where the behavior of the vehicle
depends on the value of a logic variable, the hybrid controller
reduces the possibility of chattering due to noise. This feature of
the hybrid quaternion-based feedback is discussed in more detail
in Mayhew et al. (2011a).

In Fig. 2, we present a comparison between the reference and
the actual position of the vehicle for the two experiments. We
see that there is little mismatch between the trajectories in both
experiments and that the controller is able to converge to the
given trajectory within the first 10 s of the experiments. The
(component-wise) position tracking errors do not exceed 10 cm
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Fig. 1. Euler angles for two experiment runs starting roughly with the same initial.

Fig. 2. Comparison between the position of the quadcopter and the reference
trajectory for two experimental runs with initial yaw error of approximately 180°
and different initial values of h(0, 0).

after the first 10 s, which we attribute mostly to delays in the
system, since it is possible to see that there is some lag in the
tracking of the given trajectory.

From Figs. 1 and 2 it can be concluded that the controller
proposed in this paper yields very good results, despite the very
simple model that was considered in its design.

8. Conclusion

In this paper, we designed a quaternion-based hybrid controller
that globally asymptotically stabilizes a class of underactuated ve-
hicles to a smooth reference position trajectory. In particular, the
proposed controller is robust to bounded state dependent accel-
eration disturbances and small measurement noise. Moreover, the
proposed controller also minimizes the angle to a reference ori-
entation. The proposed controller was tested in an experimental
setup using a optical motion capture system.
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Appendix. Proof of Lemma 1

In what follows, let u0(p0, v0) := −ΣK (kpp0 + kvv0). For each
K , kp, kv > 0 there exists a positive definite and symmetric matrix
P ∈ R2×2 such that
D(p0,v0)


V 0(p0, v0)


⊤, [v0

⊤ u0(p0, v0)
⊤
]
⊤

< 0,

for each (p0, v0) ∈ R6
\ {0} and

D(p0,v0)

V 0(p0, v0)


⊤, [v0

⊤ u0(p0, v0)
⊤
]
⊤

= 0,

for (p0, v0) = 0 (cf. Casau et al., 2013, Proposition 1).
It follows from (13) and from the reverse triangle inequality that

|µ(r, p0, v0, z)| ≥ g −
ΣK (kpp0 + kvv0)


− |L (p, v) ΣK (z)| −

p(2)
d

 .
Since |ΣK (x)| ≤

√
nK for each x ∈ Rn and |Ax| ≤ |A|2 |x| for each

A ∈ Rm×n and x ∈ Rn, it follows that

|µ(r, p0, v0, z)| ≥ g − (
√
3 +

√
ℓ sup

(p,v)∈R6
|L(p, v)|2)K

− sup
r∈Ωr

p(2)
d

 .
Then, it follows from (7) that it is possible to select K > |b|∞
such that |µ(r, p0, v0, z)| > 0 for each (p0, v0, z) ∈ R3

× R3
×

Rℓ. It follows from the triangle inequality that, given a reference
trajectory satisfying Assumption 1 and disturbances (p, v, b) →

L(p, v)b for (11), if (7) holds for each (p, v) ∈ R3, then there exists
K > |b|∞ such that

0 < |µ(r, p0, v0, z)| ≤ g + (
√
3 +

√
ℓ sup

(p,v)∈R6
|L(p, v)|2)K

+ sup
r∈Ωr

p(2)
d

 , (A.1)

for each (p0, v0, z) ∈ R3
× R3

× Rℓ. It follows directly from the
lower and upper bounds on µ(r, p0, v0, z) given previously that
there exists T > 0 such that 0 < T (µ(r, p0(t), v0(t), z(t))) ≤ T
for each r ∈ Ωr and for each solution t → (p0(t), v0(t), z(t)),
defined for each t ≥ 0. Consider the following continuous function

V0(p0, v0, z) = kzV 0(p0, v0) − b⊤z

+

ℓ
i=1


|zi|

0
σK (ξ) dξ +


|bi|

0
σ−1
K (ξ) dξ


. (A.2)

From an application of Young’s inequality it follows that

bizi ≤ |bi| |zi| ≤


|zi|

0
σK (ξ) dξ +


|bi|

0
σ−1
K (ξ) dξ, (A.3)
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it is possible to conclude that (A.2) is positive definite relative to
the compact set {(p0, v0, z) ∈ R3

× R3
× Rℓ

: p0 = v0 = 0, z =

Σ−1
K (b)}. That V0 is radially unbounded follows from the fact that

lim
|zi|→+∞


|zi|

0
σK (ξ) dξ − b|zi| = +∞, (A.4)

where b > 0 and i ∈ {1, 2, 3}. Suppose that the limit in (A.4) is
finite, then

lim
|zi|→+∞


|zi|

0
σK (ξ) dξ − b|zi| = lim

|zi|→+∞


|zi|

0
σK (ξ) dξ − b|zi|

+ lim
|zi|→+∞

|zi|(σK (|zi|) − b).

(A.5)

However, using the properties of the K -saturation function, since
K > |b|∞ we have that lim|zi|→+∞ |zi|(σK (|zi|) − b) does not
converge, thus the limit in (A.4) cannot converge. By (A.3) we have
that

lim
|zi|→+∞


|zi|

0
σK (ξ) dξ − b|zi| = +∞. �

Since V 0 is also radially unbounded, then V0 is radially unbounded.
Let F denote (15), then the time derivative of (A.2) is given by

D(p0,v0) (V0(p0, v0))
⊤, F


= −kzW0(p0, v0), (A.6)

thus (A.6) is negative definite relative to p0 = v0 = 0. Since (A.2)
is radially unbounded, for any initial condition (p0, v0, z)(0) then
the sub-level set

Ω0 := {(p0, v0, z) ∈ Ωr × R3
× R3

× Rℓ

: V0(p0, v0, z) ≤ V0((p0, v0, z)(0))} (A.7)

is compact. It follows from Khalil (2002, Theorem 4.8) that the set
{(p0, v0, z) ∈ R3

× R3
× Rℓ

: p0 = v0 = 0, z = Σ−1
K (b)}

is globally stable for the system (11), and it follows from Khalil
(2002, Theorem 8.4) that V0(p0, v0, z) converges to 0, therefore
each solution converges to

Ω0 ∩ {(p0, v0, z) ∈ Ωr × R3
× R3

× Rℓ
: p0 = v0 = 0}, (A.8)

which is a subset of A0.
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