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Abstract— This paper addresses the problem of range-based
autonomous underwater vehicle (AUV) localization in the
presence of unknown ocean currents. In the setup adopted,
the AUV is equipped with an attitude and heading reference
system, a depth sensor, and an acoustic device that provides
measurements of its distance to a set of stationary beacons.
We consider the situation where the number of active beacons
is not known in advance and may vary with time. The objective
is to simultaneously localize the AUV and beacons, that is, to
find their positions underwater. We start by deriving conditions
under which it is possible to reconstruct the initial condition
of the system under study. We consider the design model
where the states evolve continuously with time, but the range
measurements are only available at discrete instants of time,
possibly in a nonuniform manner. For trimming maneuvers
that correspond to AUV trajectories with constant linear and
angular velocities expressed in the body frame, we show that if
either the position of one of the beacons or the initial position
of the AUV is known, then even without depth information
the system is weakly observable (i.e., the set of states that
are indistinguishable from a given initial configuration contains
only a set of finite isolated points). If depth measurements
are also available, then the system is observable even in the
presence of unknown constant ocean currents. Equipped with
these results, we then propose a novel observer for simultaneous
AUV and beacon localization. The mathematical setup exploited
borrows from minimum-energy estimation theory applied to
continuous-time processes with discrete measurements, projection
filters, and multiple-model estimation techniques. Convergence
analysis of the resulting observer system yields conditions under
which the estimation errors converge to a small neighborhood of
the origin (whose size depends on the magnitude of the process
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and measurement noise). The results of field experiments with
a robotic marine vehicle show the efficacy of the simultaneous
AUV/multiple beacon localization system proposed.

Index Terms— Autonomous underwater vehicles (AUVs),
minimum-energy (ME) observers, observability analysis,
range-based underwater localization.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) are steadily
becoming the tool of choice for the execution of a vast

number of scientific and commercial missions at sea that
include ocean data acquisition, remote sensing, and mapping
of the spatial extent of pollutant spills, to name a few. Meeting
these objectives requires that the AUVs be equipped with cost
effective and easy to install and use underwater navigation
systems. Meeting this challenge may prove formidable, in
view of the fact that conventional methods of vehicle
localization that rely on GPS techniques cannot be used
underwater, due to the high attenuation of electromagnetic
signals.

The above problem can in principle be overcome by
resorting to high-performance inertial navigation
systems (INS). However, the cost of such systems may be
prohibitive. Moreover, even with such high-performance INS,
drift is inevitable. Other possible solutions involve the use
of acoustic-based systems that rely on the measurements of
the ranges between an AUV and a number of transponders in
a baseline configuration or on the computation of range as
well as bearing and elevation angles to a subsea transponder
using an array of hydrophones that detect the incoming wave
emitted by the transponder in response to a query by the AUV,
see [1] for the description of localization techniques that
include ultra short baseline (USBL), long baseline (LBL), and
GPS intelligent buoy (GIB) systems. In practice, acoustic
localization systems are often affected by the presence of
outliers, latency, and multipath effects. In spite of this,
however, acoustic-based methods for underwater vehicle
navigation are pervasive, and effective methodologies have
been devised to deal with the aforementioned problems.
More recently, an alternative technique for underwater vehicle
localization has attracted considerable attention: range-only
(also called single-beacon)-based localization, whereby the
position of an AUV is estimated using discrete measurements
of the ranges between the vehicle and a transponder fixed
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at a known location, while the AUV undergoes persistently
exciting spatial maneuvers.

Previous work on single-beacon acoustic navigation can
be traced back to [2], where a least-squares algorithm is
proposed to compute the unknown initial position and con-
stant speed of an AUV moving in the horizontal plane,
subjected to an unknown constant current. The key con-
cepts behind single-beacon navigation can also be found
in [3], which describes a synthetic LBL system based on
the combination of dead-reckoning (DR) and acoustic range
and/or range rate measurements from a single acoustic source,
e.g., a transponder moored to the sea floor. Further relevant
work can also be found in [4], where an extended Kalman
filter (EKF) for single-beacon navigation is described. In [5],
by combining DR data with measurements of the ranges
between an underwater vehicle and a single beacon, taken at
successive instants of time, a robust estimation algorithm is
proposed for vehicle localization in the presence of unknown
ocean currents. In [6], a method is described for precise post-
processed localization of a deep-diving AUV using only a set
of acoustic ranges from a surface ship, while the AUV executes
a closed path under the ship. The approach is validated through
the experimental results with the Autosub 6000 AUV. For a
concise and thorough presentation of previous work in the field
and the description of a novel algorithm for single-beacon one-
way-travel-time acoustic navigation for underwater vehicles,
the reader is referred to [7] and [8], and the references therein.

Some of the most recent solutions proposed for range-
based localization borrow from the concept of simultaneous
localization and mapping (SLAM) that was first advanced in
the field of mobile robots. The key idea of SLAM is to build a
new map, or update an existing map of the environment, while
at the same time localizing a robot within that map. Pioneering
work in this area is described in [9], where a pure range-only
subsea SLAM approach is described for AUV localization. The
authors assume that the AUV is equipped with a conventional
LBL transceiver that measures the acoustic times of flight
between the vehicle and a set of submerged transponders.
Using only range data and no prior information other than the
approximate water column depth, they present a methodology
to compute both the transponder locations and the vehicle
trajectories (see also [10], where a range-only simultaneous
AUV and beacon localization system that assumes no prior
knowledge of the beacons’ locations and is robust against
sensor noise and acoustic outliers is presented). More recently,
Petillot et al. [11] have proposed a range-only system for
underwater vehicle localization that is based on a particle-
filtering implementation of SLAM, coupled with a mixture-
of-Gaussians representation of the posterior distribution of the
beacons’ positions.

No matter what particular algorithm is chosen for vehicle
localization, a crucial and often forgotten issue is that
of ascertaining the observability properties of the design
model adopted. In the absence of observability, the attempt
to design a localization system will be destined to fail. For
this reason, it is important to find conditions under which the
design model of a range-based localization systems is observ-
able. Examples of observability studies include [12], where

a necessary and sufficient condition for local observability
of a 2D maneuvering target tracking system with range-only
measurements is derived using estimation-theoretic methods.
Historically, one of the first formal studies of observability of
single-beacon AUV localization is described in [13] and [14],
where linearization techniques and classical tools of linear
time-invariant observability analysis are used. A different
strategy is used in [15] and [16] to study the observability of a
range-based localization system by considering an equivalent
augmented linear time varying (LTV) and resorting to
LTV system analysis tools (see also the approach in [16] for an
interesting related study in a discrete-time, uniform sampling
setting). Yet another approach is described in [17], where the
problem of relative AUV localization using intervehicle range
measurements was studied by exploiting tools from nonlinear
observability theory. The results obtained are validated experi-
mentally in an equivalent single-beacon navigation scenario. In
spite of substantial progress made in this area, however, work
is still required to explicitly characterize the types of AUV
trajectories that yield observability of range-based localization
systems.

Motivated by the above considerations, the first part of this
paper addresses the key observability issues pertaining to the
problem of range-based AUV localization using single and
multiple fixed beacons, in the presence of constant unknown
ocean currents. We explicitly consider the case where the
positions of the beacons may be unknown, and thus require
that they be localized as well. To this effect, we start by apply-
ing a coordinate transformation similar to the one presented
in [18], implying a state augmentation that yields a state-affine
system with algebraic constraints. We then establish, for the
important case where the motion of the AUV is characterized
by constant linear and angular velocities expressed in the body
frame (that is, trimming trajectories), conditions for which
it is possible to reconstruct the initial state of the resulting
system. The latter includes the position of the AUV as well
as the positions of the beacons. In the analysis, we borrow
from the nomenclature and the mathematical concepts of
nonlinear system observability introduced in [19]. We show,
under some reasonable practical conditions restricted to the
assumption that the position of at least one of the beacons or
the initial position of the AUV is known, that the localization
system is at least weakly observable, meaning that the set of
indistinguishable initial states is composed by a set of finite
isolated points. By adding depth measurements or allowing
the vehicle to undergo motion along the concatenation of at
least two trimming trajectories, the resulting system becomes
observable, in the sense that the set of indistinguishable points
reduces to a singleton.

The key novel contributions that emerge from the first part
of this paper are the following.

i) We derive conditions for the observability of the
simultaneous AUV/beacon localization system in terms
of AUV motion characteristics that are naturally
expressed in the body frame and are therefore extremely
easy to interpret.

ii) We address the case where the location and number of
the beacons may be unknown and vary over time.
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iii) We explicitly assume that the state of the system under
consideration evolves continuously in time, but that the
measurements occur at discrete times and the sampling
time need not be constant (i.e., the measurement process
is event driven).

iv) Finally, the above issues are tackled by assuming that
there may be unknown but constant currents. Previous
related work on the issue of observability in the absence
of currents and assuming continuous time measurements
can be found in [20].

The second part of this paper addresses the problem
of range-based localization system design. We exploit the
observability properties derived in the first part of this paper
and use the concepts of minimum-energy (ME) estimation,
projection filters (PFs), and multiple-model estimation
techniques, to derive a novel observer that solves the
AUV localization problem using relative range measurements
to stationary beacons, the locations of which may also be
unknown. In contrast to a number of results described in
the literature, we give conditions under which the AUV and
beacon estimation errors converge to a small neighborhood
of zero (whose size depends on the magnitude of the
process/measurement noise). The rationale behind the use of
the techniques adopted stems from the following facts.

i) We resort to ME observers in a deterministic setting
because, as will become clear latter, for the localization
problem at hand, it is not natural to assume that the
state and observation noise are stochastic processes with
Gaussian distributions. This is in striking contrast to
the assumptions that are at the root of Kalman filter
designs in a stochastic setting. We remind the reader
that an ME observer is an optimal filter that produces an
estimate of the state of a system that is most compatible
with the system dynamics and measured outputs for the
lowest possible energy of the state and observation noise
signals [21]. For linear systems, ME observers yield
a structure akin to that of Kalman filters, albeit in a
fully deterministic framework (see [18] for the derivation
of an ME estimator for linear dynamic systems with
perspective outputs). The deterministic setup adopted
affords us an expedite manner to assess the convergence
properties of the proposed estimator in terms of bounds
on the magnitude of the process and measurement noise.

ii) The state-affine design model that we develop has the
interesting property that the state must satisfy a set
of quadratic constraints. To explicitly address these
constraints, we exploit the techniques proposed in [21]
to solve the problem of ME state estimation for systems
with perspective outputs and state constraints. They
naturally lead to a PF that significantly improves the
performance of the proposed observer.

iii) Localizing the beacons naturally arises from the fact that
we are also interested in estimating the location of the
subset of beacons whose number and positions may be
unknown.

iv) Finally, the multiple-model approach adopted allows
us to explicitly address the fact that, according to the
observability results obtained, there may be distinct

AUV trajectories (generated by the same input)
corresponding to multiple isolated initial conditions that
will yield the same output time histories.

The efficacy of the proposed observer structure is validated
through real-world field experiments using the MEDUSA-class
of autonomous marine robotic vehicles equipped with ranging
devices. In the experiments, one of the vehicles plays the role
of an AUV, while the other two serve as proxies for underwater
beacons.

This paper is organized as follows. Section II derives the
model underlying the design of a range-based localization
system with single or multiple beacons. The observability
analysis of the proposed design model is done in Section III.
Section IV derives the observer that is used to estimate the
states of the system and discusses its convergence properties
in Section V. Section VI describes the experimental results
with a set of marine vehicles that show the efficacy of
the nonlinear observer and illustrate the implications of the
observability conditions derived. The conclusions are given in
Section VII. All the proofs of the theorems in Section III are
presented in the Appendix.

II. PROCESS MODEL

This section introduces the model adopted to design an
AUV localization system that relies on the computation of
the ranges between the vehicle and one or more underwater
beacons, the location of which may be unknown. The objective
is to compute in real time an estimate of the position of the
AUV and simultaneously construct a map composed by the
estimates of the locations of the beacons. We consider that
the AUV motion is subjected to the influence of unknown
but constant ocean currents. In what follows, we introduce
two coordinate frames: 1) an earth-fixed or inertial coordinate
frame {I} and 2) a body-fixed coordinate frame {B}
that is attached to the AUV and moves with it. We let
(IpB, IBR) ∈ R3 × SO(3) be the configuration of frame {B}
with respect to {I}, where IpB is the position of the AUV

in frame {I} and I
BR is the rotation matrix from {B} to {I}.

We denote by SO(3) the group of special orthogonal matrices
in 3D space. With this notation, the kinematic equations of
motion of the AUV can be written as

I ṗB = I
BR ν +I νc (1)

I
BṘ = I

BR S(ω) (2)
Iν̇c = 0 (3)

where ν and ω : [0,∞) → R3 denote the body-fixed linear
and angular velocities of the AUV, respectively, relative to {I},
expressed in {B}, Iνc ∈ R3 is an unknown constant ocean
current in {I}, and for every a ∈ R3

S(a) :=
⎡
⎣

0 −a3 a2
a3 0 −a1

−a2 a1 0

⎤
⎦

is the skew-symmetric matrix representing the linear map
a �→ a × b, b ∈ R3, where × is the standard cross
product in R3.
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Fig. 1. Illustration of representative state vectors in 2D space.

In what follows, we will treat the linear and angular
velocities ν and ω as inputs to systems (1)–(3) and use
the Euler angle vector η = [φ, θ,ψ] ∈ [0, 2π) ×
(−(π/2), (π/2)) × [0, 2π) to parameterize the rotation

matrix I
BR locally. For simplicity, we denote cθ := cos θ and

sθ := sin θ. Let n ∈ N be the number of stationary beacons
qi located at Iqi = [xi , yi , zi ]′ ∈ R3, i ∈ {1, 2, . . . , n}, which
we assume are not known, with the exception of their depth
coordinates zi . Clearly

I q̇i = 0. (4)

For each i ∈ {1, 2, . . . , n}, let ri (t) be the acoustic-based
measurement of the range between the AUV and the
i th beacon, acquired at time t ≥ 0. Assuming that the depth z0
of the AUV can be measured, the measurement/output model
that we adopt can be written as

ri = ∥∥Iqi − IpB
∥∥ (5)

zi = e′
z
Iq i (6)

z0 = e′
z
IpB (7)

where ex = [1, 0, 0]′, ey = [0, 1, 0]′, and ez = [0, 0, 1]′.
Equations (1)–(7) represent the nonlinear continuous model

of the multiple beacon–AUV localization problem that we
address in this paper. In the sequel, for observability analysis
purposes, we will construct a state-affine system and derive
conditions under which this new system is equivalent
to (1)–(7), in the sense that there is a one-to-one
correspondence between the state trajectories of the original
nonlinear system and the newly constructed one. We remark
that the strategy adopted to obtain the equivalent state-affine
system does not follow the ones described in [22] and [23], but
is instead tailored to our specific application. The key ideas
exploited are to express the positions of the beacons qi in the
body frame {B} and to introduce a virtual beacon, q0, located
at an arbitrary point that we take as the origin of the inertial
frame {I} (Fig. 1). Following this strategy and exploiting some
of the concepts presented in [18], we define:

Bpi = I
BR′ Iqi − I

BR′ IpB i ∈ {0, 1, . . . , n} (8)

as the vector directed from the vehicle to beacon qi expressed
in {B}. From (1), (2), and (4), it follows that:

Bṗi = I
BṘ′ (Iqi − IpB

)+ I
BR′ Iq̇i − I

BR′ I ṗB
= −S(ω)Bqi − ν − Bνc.

Using (2) and the equalities Bνc = I
BR′Iνc and

Bqi = I
BR′Iqi , it can be verified that

B ν̇c = −S(ω) Bνc,
B q̇ i = −S(ω) Bqi .

Furthermore, from (8) and the fact that Bq i = Bpi − Bp0,
the range measurement equation (5) can be written as

ri = ∥∥Iq i −I pB
∥∥ = ∥∥IBRBqi

∥∥ = ∥∥Bqi + Bp0

∥∥

where the last equality follows from the fact that any rotation
matrix is orthogonal.

To make (5) linear in the state variables, we rewrite it as
ri = χi , with χi := ‖Bqi + Bp0‖ viewed as a new extra state
variable. Straightforward computations yield

χ̇i = −
(
ν ′ (Bq i + Bp0

)
+ Bν′

c

(
Bqi + Bp0

))/
ri . (9)

Note that (9) is not valid when ri = 0, which corresponds to
the particular case where the position of the AUV coincides
with the location of the i th beacon. To avoid this singularity
(in particular, at the observer design stage), one possible
simple solution is to add a small term ε > 0 to ri in (9).
This term can be a function of ri and must be defined so as to
be nonzero when ri = 0. From a practical point of view, this
issue can be avoided by preventing the vehicle’s position to
coincide with one of the positions of the beacons. For example,
by positioning the latter at depths different from those where
the AUV is expected to operate. Note also that (9) contains
nonlinear terms such as the products of state variables. To deal
with this fact, we introduce an additional set of n + 1 state
variables. Define χc := Bν′

c
Bνc, and for each i ∈ {1, . . . , n},

let χci := Bν ′
c(
Bq i +Bp0). Straightforward computations show

that

χ̇i = −
(
ν′ (Bqi + Bp0

)
+ χci

)/
ri

χ̇ci = Bν ′
cS(ω)Bp0 − Bν ′

c

(
S(ω)Bp0 + ν + Bνc

)

+ Bν′
c S(ω)Bqi − Bν ′

cS(ω)Bqi = −ν′Bνc − χc

χ̇c = Bν ′
cS(ω)Bνc − Bν ′

cS(ω)Bνc = 0.

Using the equalities Iq i = I
BRBqi and IpB = −I

BRBp0,
(6) and (7) can be written as

zi = e′
z
I
BRBq i , z0 = −e′

z
I
BRBp0.

Putting together the above equations, we obtain a state-affine
system with state vector x ∈ R5n+7, input vector u ∈ R9, and
output vector y ∈ R2n+1, described by

{
ẋ(t) = Au,y(t)x(t)+ bu(t)
y(t) = Cu(t)x(t)

(10)
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where

x :=
[B p′

0,
[Bq ′

1 . . .
Bq′

n

]
,Bν ′

c, χc,
[
χc1 . . . χcn

]
,

[χ1 . . . χn]
]′

u := [ ν ′ ω′ η′ ]′
y := [[r1 . . . rn], z0, [ z1 . . . zn ]]′

s :=
[ 1

r1

1

r2
. . .

1

rn

]′
, � := S(ω)

Au,y := −

⎡
⎢⎢⎢⎢⎢⎣

� 0 I3 0 0 0
0 In ⊗� 0 0 0 0
0 0 � 0 0 0
0 0 0 0 0 0
0 0 1n ⊗ ν′ 1n 0 0

s ⊗ ν ′ diag(s)⊗ ν ′ 0 0 diag(s) 0

⎤
⎥⎥⎥⎥⎥⎦

bu :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−ν

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

Cu :=
⎡
⎣

0 0 0 0 0 In
−e′

z
I
BR(η) 0 0 0 0 0
0 In ⊗ (e′

z
I
BR(η)

)
0 0 0 0

⎤
⎦

that satisfies the following quadratic constraints for each
i ∈ {1, 2, . . . , n} :

χ2
i = ∥∥Bqi + Bp0

∥∥2 (11)

χc = ∥∥Bνc
∥∥2 (12)

χci = Bν′
c

(Bq i + Bp0
)
. (13)

In the above model, we have used the following notation:
given M1,M2 ∈ Rmi×ni and v ∈ Rn , we denote by
M1 ⊗ M2 ∈ Rm1n1×m2n2 the Kronecker product of M1 by M2
and by diag(v) the diagonal n×n matrix with its main diagonal
given by v. Moreover, 0, 1n , and In denote a zero matrix of
appropriate dimension, a column vector of ones with length n,
and the identity matrix of size n, respectively.

Note that for any trajectory in the state space of the original
system (1)–(3), there is a unique corresponding trajectory
in the augmented state space of system (10). Conversely,
combining the quadratic constraints (11)–(13) with the state-
affine system (10) guarantees that every trajectory of (10) has a
corresponding state-space trajectory in (1)–(3). Once an equiv-
alent state-affine system is obtained, one can resort to powerful
tools of linear systems theory for observability analysis.

An important problem that needs to be addressed explicitly
is the fact that due to practical limitations, range/depth mea-
surements are only available at discrete instants of time. This
has direct impact on the observability of the underlying model
as well as on the performance of a corresponding observer.
Furthermore, the observations may not even be periodic due
to the fact that the times taken by acoustic waves to travel
between the beacons and the AUV will depend on their
relative positions. To accommodate these issues, we adopt
the following model with continuous-time state dynamics and

discrete observations:{
ẋ(t) = Au,y(t)x(t)+ bu(t)
y(tk) = Cu(tk)x(tk)

(14)

where the possible nonuniform times tk , k ∈ {0, 1, 2, . . .}, are
the instants at which range/depth measurements are acquired
on board the AUV.

III. OBSERVABILITY ANALYSIS

This section addresses the observability of the model
introduced in Section II. In particular, given the dynamical
system (14) with unknown initial condition x(t0) = x0, subject
to (11)–(13), the objective is to determine conditions under
which it will be possible to compute x0 from the knowledge
of the input/output time histories {u(t), t ∈ [t0, t f ), y(tk),
tk ∈ [t0, t f )} for some t f > t0.

To set the stage for a formal discussion of observability,
we first introduce the following definitions adopted
from [19] and [24]. Note, however, that in this paper,
for observability analysis purposes, we will not adopt the
observability conditions derived in [19] for general nonlinear
systems. Instead, we will derive specific conditions for the
system under study that are simple to characterize in terms
of the type of motion imparted to the AUV.

Definition 1: Given the system (14) and a time
interval [t0, t f ), two initial conditions z and z̆ are said
to be indistinguishable on [t0, t f ) if the output time histories
{ y(tk), tk ∈ [t0, t f )}, resulting from all admissible input
time series {u(t), t ∈ [t0, t f )} and satisfying the initial
conditions x(t0) = z and x(t0) = z̆, are identical. For
every z, I(z) denotes the set of all initial conditions that are
indistinguishable from z on [t0, t f ).

Definition 2: The system (14) is observable at z on [t0, t f )
if I(z) = {z}, and it is observable on [t0, t f ) if I(z) = {z} for
every z.

Definition 3: The system (14) is weakly observable at z
on [t0, t f ) if z is an isolated point of I(z), and it is
weakly observable on [t0, t f ) if it is weakly observable for
every z.

Note that weak observability at a point z does not imply
that every input from the class Uad of admissible inputs will
distinguish z from any other state in a small neighborhood
of z. Different inputs may be required to distinguish z from
other states in that neighborhood. For this reason, the notion
of observability defined above, even though elegant, may not
be entirely satisfactory in a number of applications. Inter-
estingly enough, in some engineering problems dealing with
autonomous vehicles, there exist reduced classes Uc ⊆ Uad of
admissible input signals named u∗, sufficiently general to yield
maneuvers of interest in a wide range of applications, and yet
restricted in the sense that they can be easily parameterized in
terms of a small number of parameters with a strong physical
interpretation. Such is the case with AUVs when they undergo
motion along trimming trajectories (generated by holding the
input actuators fixed) that are easily parameterized by total
speed, yaw rate, and flight path angle and correspond to
helices in 3D space that may degenerate into circumferences
and straight lines [25]. In these cases, it is of interest to a
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practitioner to ascertain the observability properties of a given
system for a reduced class of inputs Uc, rather than allowing
for all inputs that are physically admissible. Motivated by these
considerations, we introduce a weaker notion of observability
originally proposed in [26], which, as we shall see, will
allow for the derivation of observability condition for the
localization system studied in this paper that are easy to
interpret physically.

Definition 4: Given the system (14) and a time interval
[t0, t f ), two initial conditions z and z̆ are said to be
u∗-indistinguishable on [t0, t f ) if the output time histories
{ y(tk), tk ∈ [t0, t f )} for an input time series {u∗(t)∈ Uc,
t ∈ [t0, t f )} satisfying the initial conditions x(t0) = z
and x(t0) = z̆ are identical. For every z, Iu∗

(z) denotes
the set of all initial conditions that are u∗-indistinguishable
from z on [t0, t f ).

Definition 5: Given u∗ ∈ Uc and a time interval [t0, t f ), the
system (14) is u∗-observable at z on [t0, t f ) if Iu∗

(z) = {z},
and is u∗-observable on [t0, t f ) if Iu∗

(z) = {z} for every z.
Definition 6: Given u∗ ∈ Uc and a time interval [t0, t f ),

the system (14) is u∗-weakly observable at z on [t0, t f ) if z is
an isolated point of Iu∗

(z) and is u∗-weakly observable on
[t0, t f ) if it is u∗-weakly observable for every z.

Note that observability implies weak observability, and
u∗-observability implies u∗-weak observability. Throughout
this paper, we will use the weaker notions of observability.
To simplify the terminology, we shall often abbreviate
the nomenclature of u∗-indistinguishable, u∗-observable, and
u∗-weakly observable to indistinguishable, observable, and
weakly observable, respectively.

We now define formally the class of admissible inputs
u ∈ Uc that we consider for the system described by (14).
To this effect, as explained before, we restrict ourselves to
AUV trimming (also called equilibrium or steady state) trajec-
tories. Straightforward computations similar to those in [25]
done for the case of aircraft show that at trimming

ωe = ψ̇e[ −sθe sφecθe cφecθe ]′ = ψ̇e
I
BR′(ηe) ez (15)

where the subscript e denotes the value of a variable at steady
state, and φ(t) = φe, θ(t) = θe, and ψ̇e are the values of roll
angle, pitch angle, and yaw rate, respectively, at steady state.

For clarity of exposition, the observability analysis will be
first carried out for the case of one beacon only, that is,
n = 1. We will also work with the states χ2

1 and r2
1 (squared

range output) instead of χ1 and r1, respectively. With these
assumptions, (14) yields

{
ẋ(t) = Au(t)x(t)+ bu(t)
y(tk) = Cu(tk)x(tk)

(16)

where x := [ Bp′
0
Bq′

1
Bν ′

c χc χc1 χ
2
1 ]′, y := [ r2

1 z0 z1 ]′,
u := [ ν ′

e ω′
e φe θe ]′, and

Au := −

⎡
⎢⎢⎢⎢⎢⎢⎣

�e 0 I3 0 0 0
0 �e 0 0 0 0
0 0 �e 0 0 0
0 0 0 0 0 0
0 0 ν′

e 1 0 0
2ν ′

e 2ν ′
e 0 0 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, bu :=

⎡
⎢⎢⎢⎢⎢⎢⎣

−νe

0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

Cu :=
⎡
⎣

0 0 0 0 0 0 0 1
sθe −sφecθe −cφecθe 0 0 0 0 0
0 0 0 −sθe sφecθe cφecθe 0 0

⎤
⎦.

At this point, it is important to note that working with the
square of the ranges rather than the ranges themselves does
not change the observability results. Suppose, for example,
that (16) is u∗-observable for a given input u∗, in the sense
that for every pair of distinct initial conditions (x0, z0), there
exists a time interval t ∈ [t∗, t f ], t∗ ≥ 0 such that the
corresponding squared range outputs are different, that is,
y(t; u∗, x0) := r2

1 (t; u∗, x0) �= y(t; u∗, z0) := r2
1 (t; u∗, z0).

Then, it also follows that r1(t; u∗, x0) �= r1(t; u∗, z0), which
implies that the initial conditions (x0, z0) for the original
system (using ranges) will produce different outputs. The
converse implication holds as well.

In what follows, for simplicity of analysis, we will rewrite
the equations in (16) by considering the so-called flow
frame {F} (also called wind frame in aerodynamics), instead
of the body-fixed frame {B}. With this change of reference
frames, the total velocity vector at trimming is aligned with the
x-axis of {F}, that is, νe = [νe, 0, 0]′. As is well known, the
transformation from flow frame to body-fixed frame is done
using a rotation matrix parameterized by the angles of attack
and side-slip, which are constant during a trimming maneuver.
As expressed in the flow frame, the body angular velocity
is also constant at trimming. Therefore, after straightforward
computations, it can be concluded that the single-beacon
system using the linear velocity ν and the angular velocity ω

expressed in the flow frame take the same form as (16), where
in this case, the orientation parameterized by η is with respect
to {F}. Throughout this paper, for simplicity of exposition
and to avoid changing of the notation, we continue to adopt
the model defined by (16), with the understanding that the
variables are expressed in the flow frame.

Returning to the observability problem, one immediate
result is that, unless there is an anchor that relates relative
localization to global (inertial) position, the system (16) is
not observable. This is due to the fact that range is a relative
measurement. To deal with this problem that arises in any
SLAM approach, the idea is to use a priori knowledge of
the position of one of the beacons/AUV and estimate the
other unknown ones. For instance, one practical scenario is
to consider that the initial position of the AUV is known,
which is feasible if the AUV starts from the surface with GPS.
Another approach is to consider that the location of one of the
beacons is known. In the sequel, we consider the case where
the initial condition of the beacon Bq1(0) is known. Later on,
we will investigate the dual case where the initial location of
AUV Bp0(0) is known.

Given x0 ∈ R12, let Ir (x0) denote the set of indistin-
guishable initial conditions from x0 for the system (16) with
range-only measurements. The main result of this section is
stated in the next theorem, which characterizes Ir (·) under
some conditions.

Theorem 1: Consider the system (16) with range-only
measurement, that is, Cu = [0, 1], subject to constraints
(11)–(13). Suppose that ωe = [ωex , ωey , ωez ]′ ∈ R3
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satisfies

‖ωe‖ > ‖ωex ‖ (17)

and the number of available samples of measurements on
[t0, t f ) is at least 7 (that is, nr ≥ 7). Moreover, let the
interarrival times, tk+1 − tk , be strictly positive. Then, for
every x0 ∈ R12 and almost all interarrival times, the set of
all initial conditions that are indistinguishable from x0 on
[t0, t f ) is given by

Ir (x0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0, x0 + 2

ω′
eωe

⎡
⎢⎢⎢⎢⎢⎢⎣

−ωeω
′
e

(B p0(0)+ Bq1(0)
)

0
−ωeω

′
e

(Bνc(0)+ νe
)

2ν ′
eωeω

′
e

(Bνc(0)+ νe
)

ν ′
eωeω

′
e

(B p0(0)+Bq1(0)
)

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(18)

Furthermore, in this case, the system (16) subject to
constraints (11)–(13) is weakly observable on [t0, t f ).
Consider now the degenerate case where the interarrival times
are uniform, that is, tk+1 − tk = T for all tk ∈ [t0, t f ). Then,
for all interarrival times except for the zero measure set

{tk |tk+1 − tk = κπ‖ωe‖−1, tk ∈ [t0, t f ), κ ∈ N+} (19)

the set of all initial conditions that are indistinguishable from
the given initial condition x0 ∈ R12 on [t0, t f ) is given by (18).

The above theorem allows for a simple geometrical inter-
pretation of the nontrivial point in Ir (x0). This stems from
the fact that the components of the nontrivial point in Ir (x0)
given by the AUV position and the ocean current velocity can
be written as

B p̆0(0) := (I3 − 2‖ωe‖−2ωeω
′
e

)(B p0(0)+Bq1(0)
)−Bq1(0)

B ν̆c(0) := (I3 − 2‖ωe‖−2ωeω
′
e

)(Bνc(0)+ νe
)− νe.

Note that from Rodrigues’ rotation formula [27], it follows
that I3 − 2‖ωe‖−2ωeω

′
e = −R(π,ωe/‖ωe‖). Geometrically,

this represents the rotation of −(Bp0(0) + Bq1(0)) about
the ωe-axis by π . In other words, Bp̆0(0) is the vector
sum of −Bq1(0) and the mirror point of the vector
Bp1(0) = Bp0(0) + Bq1(0) with respect to plane orthogonal
to ωe. In particular, when Bp1(0) lies in the plane orthogonal
to ωe,

Bp1(0) and its mirror point coincide, thereby removing
the ambiguity. This is the case when the AUV moves in
a horizontal plane. Thus, the range-only system in 2D is
observable since the set of indistinguishable points contains
only x0. The above geometric interpretation can be exploited
to show that a weakly observable system with a given
trimming angular velocity (say ωe = ω̄e) will become observ-
able by instantaneously switching to another noncollinear
trimming angular velocity ωe = ω̆e such that ω̄e × ω̆e �= 0.
This means that the system can become observable by
concatenating appropriately chosen distinct trimming
trajectories.

From Theorem 1, we obtain the following result for the
particular case where the current is zero or known.

Corollary 1: Consider the system (16) with range-only
measurement, subject to constraints (11)–(13), and let all the

requirements of Theorem 1 hold. Further assume that either
there is no ocean current or Bνc is known. Then, for almost
all interarrival times, the system (16) is observable, provided

ω′
e

(Bνc + νe
) �= 0. (20)

It is well known that the observability properties of a general
nonlinear system depend on a particular actuator–sensor con-
figuration. Furthermore, the introduction of additional sensors
has the potential to improve the observability properties of
the system. The next result shows that by including depth
and range measurements, the system becomes observable.
In what follows, Irz(x) denotes the set of indistinguishable
states associated with the system (16) with range and depth
measurements.

Theorem 2: Consider the system (16) with range and depth
measurements. Suppose that ωe ∈ R3 satisfies (17) and the
number of available samples of measurements on [t0, t f ) is at
least 7 (that is, nr ≥ 7). Moreover, let the interarrival times,
tk+1 − tk , be strictly positive. Then, for every x0 ∈ R12 and
almost all interarrival times, Irz(x0) = {x0} and the system is
observable on [t0, t f ).

The following corollary of Theorem 2 follows immediately.
Corollary 2: Consider the system (16), and let all the

requirements of Theorem 2 hold. Further, assume that either
there is no ocean current or Bνc in known. Then, for almost
all interarrival times, the system (16) is observable.

Theorem 1 gives sufficient condition (17) for weak observ-
ability of system (16) subject to constraints (11)–(13) with
range-only measurements. Further, introducing depth mea-
surements yields observability. This prompts the following
question: if condition (17) is not satisfied, then what can be
stated about the observability properties of system (16) with
range (and depth) measurements? The next result discusses
this case.

Theorem 3: Consider the system (16) subject to constraints
(11)–(13) and suppose that (17) does not hold. Then, the
system subject to constraints (11)–(13) is not observable.

Till now, we have investigated the case where the initial
location of the beacon, Bq1(0), is known and the initial
position of the AUV, Bp0(0), is unknown. We now consider the
dual case, that is, Bp0(0) is known but not the initial position
of the beacon. The following result holds.

Theorem 4: Consider the system (16), and cons-
traints (11)–(13), and assume that Bp0(0) is known. Then,
(16) has observability properties similar to those obtained for
the case where Bq1(0) is known (Theorems 1–3), except that
the set of indistinguishable points is given by

Ir (x0) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0, x0 + 2

ω′
eωe

⎡
⎢⎢⎢⎢⎢⎢⎣

0
−ωeω

′
e

(B p0(0)+ Bq1(0)
)

−ωeω
′
e

(Bνc(0)+ νe
)

2ν ′
eωeω

′
e

(Bνc(0)+ νe
)

ν ′
eωeω

′
e

(B p0(0)+ Bq1(0)
)

0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(21)
We are now ready to state the main result about

system (14), which extends the previous results to more than
one beacon.
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Fig. 2. Block diagram of the CME.

Theorem 5: Consider the system (14) with constant trim-
ming linear velocity νe �= 0, angular velocity ωe ∈ R3,
and constraints (11)–(13). Suppose that there is an anchor,

that is, the initial condition Bp0(0) or the position of one
of the beacons Bqi (0) is known. Assume that at least seven
samples of measurements, nr ≥ 7, are available on [t0, t f ),
and let the interarrival times, tk+1 − tk , be strictly positive.
Suppose also that (17) holds. Then, for every x0 ∈ R12

and almost all interarrival times, the set of all initial condi-
tions that are indistinguishable from x0 ∈ [t0, t f ) is given
by Irz(x0) = {x0}.

Under the same conditions, but with the assumption that
only range measurements are available, it follows that the
initial condition of each unknown vector in {Bp0,

Bqi ,
Bνc;

i = 1, 2, . . . , n} has two possible solutions. Otherwise, if (17)
does not hold, then the system subject to constraints (11)–(13)
is not observable.

IV. OBSERVER DESIGN

This section addresses the problem of range-based
localization system design by taking into consideration the
results derived in the previous sections. Consider system (14),
corrupted with deterministic but unknown bounded
disturbance d : [0, t] →∈ Rp and measurement noise n(tk),
that is {

ẋ(t) = Au,y(t)x(t)+ bu(t)+ Gud(t)
y(tk) = Cu(tk)x(tk)+ n(tk).

(22)

The goal is to estimate the state vector x(t) given an
initial estimate x̂0 and the past control inputs and observations
{u(τ ), y(tτ ) : 0 ≤ τ ≤ t, tτ ∈ {t1, . . . , tk} ⊂ [0, t]}, while
satisfying constraints (11)–(13).

To this effect, we propose the observer architecture shown
in Fig. 2, which will be henceforth referred to as the con-
strained ME (CME) observer. The CME is composed of the
following subsystems:

• a ME, whose role is to provide an estimate of the state
x̄(t) by solving in real time an unconstrained optimization
problem (that will be defined later);

• a PF, which maps an unconstrained solution x̄(t) onto a
constrained solution x̂(t);

• an intersample output predictor (IOP), which provides a
continuous estimate of the range measurement variable to
be used by the ME estimator.

Later, we will i) extend the CME observer to deal with
the problem of multiple beacons whose number is not known
a-priori and can change over time and ii) use the concept
of multiple-models to improve the convergence time of the
proposed observer by taking into account the observability
properties described in the previous sections.

A. Minimum-Energy Estimator

The ME estimator is formulated in a deterministic setting by
producing an estimate for the state of the system that is most
compatible with the system’s dynamics and measured outputs.
In particular, the optimal state estimate x̄(t) is defined to be
the value of the state that is compatible with the observations
collected up to time t and the dynamics of the system, for
the lowest possible measurement noise and disturbance, lowest
being understood in an integral-square sense [18], [28]. More
precisely, the state estimate x̄ is obtained from the solution to
the optimization problem

x̄(t) = arg min
z∈Rns

J (z, t)

where the cost function J (z, t) is given by

J (z, t)= min
d,n

⎧⎨
⎩‖x(0)− x̄0‖Q0 +

∫ t

0
‖d(τ )‖2

R−1
d

dτ

+
k
∑

k=1

‖n(tk)‖2
R−1

n
:x(t) = z, ẋ = Au,y x+bu(t)

+ Gud, y(tk) = Cux(tk)+ n(tk)

⎫⎬
⎭ (23)

with Q0 � 0 and the index k
 satisfying tk
 = �t�, where
�t� denotes the maximum discrete time tk ∈ [0, t), which is
strictly less than t . The matrices Rd and Rn � 0 can be viewed
as weighting parameters associated with the disturbances and
measurement noises. Using the results in [18], [21], and [28],
it can be concluded that this unconstrained state estimation
problem has the following exact iterative solution:

• for tk−1 ≤ t < tk, k = 1, . . . , k


Q̇(t)= −A′
u,y Q(t)−Q(t)Au,y−Q(t)Gu Rd G′

u Q(t) (24)

˙̄x(t) = Au,y x̄(t)+ bu (25)

• for t = tk, k = 1, . . . , k


Q(tk) = Q
(
t−k
)+ C ′

u R−1
n Cu (26)

x̄(tk) = x̄
(
t−k
)+Q−1(tk)C

′
u R−1

n
(

y(tk)−Cux̄
(
t−k
))

(27)

while satisfying Q(0) := Q0 � 0 and x̄(0) := x̄0.

B. Projection Filter

In general, the solution obtained in the unconstrained state
estimation problem x̄(t) does not satisfy constraints (11)–(13).
To solve this problem, we first observe that (11)–(13) can be
rewritten as quadratic constraints of the form z′Si z + r ′

i z = 0,
i ∈ {1, . . . , 2n + 1}. Thus, one strategy is to compute x̂ such
that

x̂(t) = arg min
z∈Rns : z′Sl z+r ′

l z=0
∀l∈{1,...,2n+1}

(z − x̄)′Q(z − x̄). (28)

Since (28) does not have a closed-form expression, following
the ideas in [21] and [29], we propose a scheme that asymptoti-
cally solves the related sufficient Karush–Kuhn–Tucker (KKT)
conditions [30, pp. 243 and 244]. More precisely, consider the
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Lagrangian function corresponding to the cost function in (28),
that is

L(x̂,λ) = (x̂ − x̄)′Q(x̂ − x̄)+
2n+1∑
l=1

λl(x̂
′Sl x̂ + r ′

l z)

where λ ∈ R2n+1 is the Lagrange multiplier vector. This leads
to the following sufficient KKT conditions for optimality:
e2 = Q̄ x̂ − Q x̄ + R̄λ = 0, e3 = (S̄(x̂)+ 2R̄)′ x̂ = 0 (29)

where

S̄(x̂) = [S1 x̂, S2 x̂, . . . , S2n+1 x̂]

R̄ = [r1, r2, . . . , r2n+1]/2, Q̄ = Q +
2n+1∑
i=1

λi Si . (30)

Suppose that along the trajectories of the system, we have
that Q̄ � 0 and S̄(x̂) + R̄ remain full column rank. Then,
setting the initial condition x̂(0) = x̄0, the following proposed
solution guarantees that the sufficient KKT conditions for (28)
hold at sampling times t = tk and asymptotically in [tk−1, tk)
(i.e., e2 and e3 converge to zero as tk goes to infinity):

• for tk−1 ≤ t < tk, k = 1, . . . , k


[ ˙̂x
λ̇

]
=
[

Q̄ S̄(x̂)+ R̄
S̄(x̂)′ + R̄′ 0

]−1

([−Q̇ x̂ + Q ˙̄x + Q̇ x̄
0

]
−μ
[

Q(x̂ − x̄)+(S̄(x̂)+ R̄)λ( 1
2 S̄(x̂)+ R̄

)′
x̂

])

(31)

• for t = tk, k = 1, . . . , k

[

x̂(tk)
λ(tk)

]
=
[

Q̄−1(tk)(Q(tk)x̄(tk)− R̄λ∗(tk))
λ∗(tk)

]
(32)

where μ > 0. The solution λ∗(tk) is obtained by
solving fl(λ, tk) = 0, l ∈ {1, 2, . . . , 2n + 1} using an
iterative generalized Newton’s method, where each fl is
given by

fl(λ, tk) = x̄′QQ̄−1 Sl Q̄−1 Q x̄ + λ′ R̄′ Q̄−1Sl Q̄−1 R̄λ

− 2
(
x̄′QQ̄−1 Sl + r ′

l

)
Q̄−1 R̄λ + 2r ′

l Q̄−1 Q x̄.

C. Intersample Output Predictor

In (24) and (25), we assumed that the observation y(t) is
piecewise continuous in time, which is not (it is a discrete
signal). A straightforward approach to deal with this problem
is to hold y between sampling times. This, however, is not
the best solution because it can introduce significant model
mismatch if the interarrival times tk+1 − tk are not small
enough. To overcome this problem, we suggest the use of an
IOP such as the one described in [31]. For a general nonlinear
system

ẋ(t) = f (x(t), u(t)), y(tk) = h(x(tk), u(tk))

the key idea consists of using the predicted output given by

˙̂y(t) = ∇x̂ h(x̂, u(t)) f (x̂(t), u(t)), ŷ(tk) = y(tk)

Fig. 3. Block diagram of the MMAE.

for t ∈ [tk−1, tk). In our case, this corresponds to replacing
the signals ri in Au,y (10) by r̂i , where

˙̂ri (t) = −
(
ν′(B pi + Bq0

)
+ χc + χci

)/
r̂i , t ∈ [tk−1, tk)

r̂i (tk) = ri (tk).

D. Multiple Models

As discussed earlier, the process model (10) together with
constraints (11)–(13) may not be observable, but only weakly
observable (Theorem 1). In this case, the proposed CME
converges to one of the two elements of Ir (x0) (18), (21),
depending on the initial condition x̄(0) of the observer. How-
ever, as soon as the system becomes observable, the state
estimate will, as shown in the next section, converge to the
true solution. In spite of this, there is still a problem of
performance because the time that the estimate x̂ takes to
reach a small neighborhood of the true solution x depends
on the magnitude of the initial state error ‖x̂(0) − x(0)‖.
This motivates the use of a multiple-model adaptive estimator
(MMAE) [32] with the structure shown in Fig. 3. The MMAE
consists of i) a bank of nm local CME observers, where
each observer is initialized with a different initial condition
selected according to a suitable criterion (explained later)
and ii) a dynamic weighting signal generator system that
is responsible for updating the piecewise constant weights
ps(t) ∈ [0, 1], s = 1, 2, . . . , nm . The (final) state estimate
x̂(t) is given by a weighted sum of the local state estimates,
that is,

x̂(t) =
nm∑

s=1

ps(tk)x̂s(t), t ∈ [tk, tk+1)

where each x̂s(t), s = 1, 2, . . . nm , corresponds to a local state
estimate generated by the sth local CME observer. Following
the approach in [32] but adapted to the problem of continuous
dynamics with discrete measurements, the weights are piece-
wise constant signals that are updated at measurements times
t = tk according to:

ps(tk) = ps(tk−1)βs(tk)e−ws(tk)

∑nm
l=1 pl(tk−1)βl(tk)e−wl (tk)

, s ∈ {1, 2, . . . , nm}
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where βs(·) is a positive bounded signal and ws(·) is an error
measuring function that maps the observations of the system
and the states of the sth local observer to a nonnegative real
value. Examples of βs(·) and ws(·) are

βs(tk) = |Ss(tk)|− 1
2 , ws(tk) = 1

2
‖ ŷs

(
t−k
)− y(tk)‖2

Ss (tk)
−1

Ss(tk) = Cu(tk)Q
−1(tk)C

′
u(tk)+ Rn � 0.

In practice, to reduce memory and computing power, we have
slightly modified the MMAE scheme according to the follow-
ing procedure. Given the first range measurement obtained
from a newly observed beacon i at time tk , we generate two
initial conditions for Bp̄i (tk) that satisfy constraints (11)–(13),
using (21) and an arbitrarily chosen Bp̄i (tk) [which is typically
set to [0, ri (tk), 0]′ + Bq̄0(tk)]. Two new CME observers are
then created with the corresponding initial condition. Then,
we apply an MMAE scheme with the weights initialized with
p1(tk) = p2(tk) = 0.5 (for the case of two models). Whenever
one of the weights ps(·) reaches some threshold near one, the
corresponding CME will be kept and all the other CMEs are
discarded.

V. OBSERVER CONVERGENCE

In this section, we investigate under what conditions the
estimation error of the proposed observer converges to a
small neighborhood of zero (or zero, in the absence of the
measurement noise and process disturbances). We first analyze
the stability properties of each local CME observer.

A. Convergence of the CME Observer

In what follows, we assume the following.
Assumption 1: The matrix Q̄(t) defined in (30) is positive

definite along the trajectories of the CME, and S̄(x̂) + R̄
remains full column rank.

Assumption 2: Let Num(t, σ ), 0 ≤ σ < t , denote the
number of time instants at which measurement arrives in
the open interval (σ, t). There exist finite positive constants
τD and N0, for which the following condition holds:

Num(t, σ ) ≤ N0 + (t − σ)/τD. (33)

Regarding the first assumption, note that Q is always
positive definite, which means that Q̄ � 0 for the Lagrange
multiplier λ sufficiently small. Also, the rank condition on
S̄(x̂) + R̄ is the standard condition on Lagrange multiplier
theory for constraint independence, which in this case holds
because each constraint is imposed on a different beacon.
Assumption 2 typically arises in the context of logic-based
switching control and also in estimation of continuous systems
with discrete observations [18]. The constant τD is called the
average dwell time and N0 the chatter bound. The condition
above guarantees that the summation of ‖n(·)‖2 in (23) will
not grow unbounded due to too frequent measurements. This
assumption is purely technical and in practice always holds.

The next result establishes the convergence properties of the
proposed CME observer. We will need the standard definition
of class K and KL functions [33, p. 144].

Theorem 6: Suppose that Assumptions 1 and 2 hold and
denote e1 := x̄ − x. Let u(t), y(tk) be a given input/output
pair for system (22). Then, there exist a KL function β, and
class K functions γd and γn such that the estimation error
associated with the CME observer satisfies

‖ē(t)‖ ≤ β(‖e(0)‖, t) + γd

(
sup
τ∈[0,t ]

‖d(τ )‖R−1
d

)

+ γn

(
sup

tτ∈[0,t ]
‖n(tτ )‖R−1

n

)
(34)

where ē := [e′
1, e′

2, e′
3]′ and e2, e3 are defined in (29).

Proof: Consider the following Lyapunov functions:
V1 = e′

1 Q(t)e1, V2 = e′
2e2/2 + e′

3e3/2 (35)

which are bounded below and above by some class K
functions. Consider first the case where t ∈ [tk−1, tk) for some
sampling times tk−1 and tk . Computing the time derivative
of V1 and V2 yields

V̇1 = −e′
1

(
Q Au,y + A′

u,y Q + QGu Rd G′
u Q
)
e1

+ e′
1 Q(Au,ye1 − Gud)+ (Au,ye1 − Gud)′Qe1

= −1

2

∥∥G′
u Qe1

∥∥2
Rd

− 1

2

∥∥G′
u Qe1 + 2R−1

d d
∥∥2

Rd
+ 2‖d‖2

R−1
d

V̇2 = e′
3(2(S̄(x̂)+ R̄)′ ˙̂x)

+ e′
2(Q̄

˙̂x − Q ˙̄x + Q̇ x̂ − Q̇ x̄ + (S̄(x̂)+ R̄)λ̇)

=
[

e2
e3

]([
Q̄ S̄(x̂)+ R̄

S̄(x̂)′ + R̄′ 0

] [ ˙̂x
λ̇

]

+
[

Q̇ x̂ − Q ˙̄x − Q̇ x̄
0

])
.

Using Assumption 1, (31), and the fact that δ I ≤ Gu Rd
G′

u ≤ �I , we can conclude that

V̇1 ≤ −1

2
δλmin(Q)V1 + 2‖d‖2

R−1
d
, V̇2 = −2μV2

where λmin(Q) is the smallest eigenvalue of matrix Q.
Note that observability of system (22) is a necessary and
sufficient condition for λmin(Q) > 0. Defining γ :=
(1/2)δ infτ∈[tk−1,t) λmin(Q(τ )), we further conclude that

V1(t) ≤ V1(tk−1)e
−γ (t−tk−1)+ 2

γ
sup

τ∈[tk−1,t)
‖d(τ )‖2

R−1
d

(36)

V2(t) = V2(tk−1)e
−2μ(t−tk−1) (37)

for t ∈ [tk−1, tk). Note that from (37), it follows that the
conditions in (29) will be enforced (for sufficiently large
μ and/or tk).

Now consider the case where t = tk . Using (27), we obtain

e1(tk) = (I − Q−1(tk)�(tk))e1
(
t−k
)+ Q−1(tk)n̄(tk) (38)

where n̄(tk) = C ′
u R−1

n n(tk) and �(tk) = C ′
u R−1

n Cu. Thus,
substituting (38) into (35) and considering the composite
function V = V1 + V2, we obtain

V (tk) = e1
(
t−k
)′
(Q(tk)+�(tk)Q

−1(tk)�(tk)−2�(tk))e1
(
t−k
)

+ 2e1
(
t−k
)′
(I −�(tk)Q

−1(tk))n̄(tk)

+ n̄(tk)′Q−1(tk)n̄(tk)

+ 1

2
‖Q̄(tk)x̂(tk)− Q(tk)x̄(tk)‖2 + 1

2
‖S̄(x̂)′ x̂‖2.
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Note that using Assumption 1 and (32), it follows that
V2(tk) = 0. Using the matrix inversion lemma [34] and (26),
we can further simplify the terms in the above expression
containing Q(tk) as

I − �Q−1(tk) = I − L ′F L Q−1

Q(tk)+�Q−1(tk)� − 2� = Q − L ′F L

Q−1(tk) = Q−1 − Q−1 L ′ F L Q−1

where Q = Q(t−k ), L = �1/2(tk) is any matrix such that
L ′L = �(tk), and F = (I + L Q−1 L ′)−1 is a positive definite
matrix. This leads to

V (tk) = V1
(
t−k
)− e1

(
t−k
)′
(L ′ F L)e1

(
t−k
)

+ 2e1
(
t−k
)′
(I − L ′F L Q−1)n̄(tk)

+ n̄(tk)′(Q−1 − Q−1 L ′F L Q−1)n̄(tk)

≤ V
(
t−k
)+ n̄(tk)′Q−1n̄(tk)+ 2e1

(
t−k
)′n̄(tk)

−
∥∥∥F

1
2 Le1
(
t−k
)− F

1
2 L Q−1n̄(tk)

∥∥∥2

≤ (1 + ε)V
(
t−k
)+ (1 + 1/ε)n̄(tk)′Q−1n̄(tk) (39)

where ε is an arbitrary small positive constant. Now, by
combining (39) with (36) and (37), it follows that:

V (tk) ≤ (1 + ε)
[
V1(tk−1)e

−γ�tk + V2(tk−1)e
−2μ�tk

]

+ (ε + 1)ak/ε + bk (40)

where �tk = tk − tk−1, ak = λmax(Q−1)‖n̄(tk)‖2, and bk =
(2(1 + ε)/γ ) supτ∈[tk−1,tk) ‖d(τ )‖2

R−1
d

. Solving (40) recursively

yields

V (tk) ≤ (1 + ε)k
[
V1(t0)e

γ (t0−tk) + V2(t0)e
2μ(t0−tk)

]

+
k−1∑
j=0

(1 + ε) j eγ (tk− j −tk)((ε + 1)ak− j/ε + bk− j ).

Using Assumption 2 and (33), we can further simplify the
above inequality to

V (tk)≤ [(1 + ε)e−γ τD ]keγ N0τD V1(t0)

+ [(1 + ε)e−2μτD ]ke2μN0τD V2(t0)

+
k−1∑
j=0

[(1+ε)e−γ τD] j ((ε + 1)ak− j/ε+bk− j )e
γ N0τD .

By choosing μ and ε such that κ1 := (1 + ε)e−γ τD < 1 and
κ2 := (1 + ε)e−2μτD < 1, it follows that V is a bounded
function and V (t) → (1/1 − κ1)((ε + 1/ε)maxk ak +
maxk bk)eγ maxk{N0τD } as t → ∞. Using the fact that ‖ē‖ ≤
‖e1‖+‖e2‖+‖e3‖, we can now conclude inequality (34). �

In Theorem 6, we have used the fact that Q is a positive
definite matrix that is bounded below, which means that
λmin(Q) > 0. This is true if the system is observable, that is,
the observability matrix is full rank. This can be done either
using range and depth measurements or, in the case of range
only measurements, using at least two noncollinear piecewise
constant angular velocities. Note also that the estimate x̂(t)
is the solution to the optimization problem (28) pointwise at
times tk and converges asymptotically to the optimal in the
intervals [tk−1, tk).

Remark 1: Consider system (10) without disturbance d(·)
and noise n(·). In this case, it can be concluded that
as t → ∞, the functions V1(t) and V2(t) → 0, which implies
that x̄(t) → x(t), (S̄(x̂(t)) + 2R̄)′ x̂(t) → 0, from which it
follows that (x̂ − x̄)′ Q(x̂ − x̄) → 0. Since Q� 0, it follows
that x̂(t) → x̄(t), and therefore x̂(t) → x(t) as t → ∞.

B. Convergence of the MMAE

So far, we have investigated the convergence properties
of each local CME observer, which implies that Theorem 6
and Remark 1 apply to each CME in the multiple-model
approach. We now show that similar properties apply to
the state estimate computed using the MMAE architecture.
The next result provides conditions for the convergence of the
dynamic weights ps(t). Roughly speaking, it says that the
model identified is the one that exhibits least output error
(residual) energy. The proof is omitted because it would be
a slightly variation of the one in [32].

Lemma 1: Let s
 ∈ {1, . . . , nm} be an index corresponding
to one of the CME observers, and let S = {1, . . . , nm} \ {s
}
be an index set. Suppose that there exist positive constants
n′ and k ′ such that for all k ≥ k ′ and n ≥ n′, the following
condition holds for all j ∈ S:
k+n−1∑
τ=k

(ws
(tτ )−ln βs
(tτ ))<
k+n−1∑
τ=k

(w j (tτ )− ln β j (tτ )). (41)

Then ps
(t) → 1 as t → ∞.
Condition (41) can be viewed as a distinguishability

criterion. The following result establishes the convergence of
the proposed observer.

Theorem 7: Suppose that Assumptions 1 and 2 hold, and let
u(t), y(tk) be a given input/output pair of system (22). Then,
there exist a KL function β, and class K functions γd and γn

such that the estimation error associated with the MMAE is
bounded and satisfies

‖eM (t)‖ ≤ β(‖eM (0)‖, t)+ γd

(
sup
τ∈[0,t ]

‖d(τ )‖R−1
d

)

+ γn

(
sup

tτ∈[0,t ]
‖n(tτ )‖R−1

n

)
(42)

where eM (t) is the weighted sum of the error vectors
associated with each model defined in Theorem 6, that is

eM (t) :=
nm∑

s=1

ps(t)ēs(t). (43)

Suppose also that the distinguishability criterion (41) holds.
Then, there exists an index s∗ ∈ {1, 2, . . . , nm} such that
eM (t) → ēs∗(t) as t → ∞.

Proof: From (34) and (43), we can conclude that

‖eM (t)‖ ≤
nm∑

s=1

ps(t)

(
βs(‖ēs(0)‖, t)+ γds

(
sup
τ∈[0,t ]

‖d(τ )‖R−1
d

)

+ γns

(
sup

tτ∈[0,t ]
‖n(tτ )‖R−1

n

))

for some βs ∈ KL and γds , γns ∈ K, s ∈ {1, 2, . . . , nm}.
Thus, there exist class KL function β and class K functions
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Fig. 4. Three MEDUSA marine robotic vehicles.

Fig. 5. Mission 1. Top: trajectory of the AUV (GPS, estimated using
DR only, and estimated using the proposed observer) and beacon locations
(true position denoted by O and estimated with the initial condition �).
Bottom: estimation errors and estimated current velocity.

γd and γn such that (42) holds. Now, if the distinguishability
criterion (41) holds, we can conclude that ps∗ → 1 and
ps → 0,∀s ∈ S. This implies that eM (t) → ēs∗(t)
as t → ∞. �

VI. EXPERIMENTAL RESULTS

In this section, we describe a set of experiments carried
out with three autonomous marine vehicles of the MEDUSA

class (Fig. 4). Each vehicle has two side thrusters that can
be independently controlled to impart forward and rotational
motion and is equipped with an attitude and heading
reference unit that provides measurement of body orientation
η(t) and angular velocity ω(t). To measure the forward
velocity ν(t), and since this class of vehicles do not carry
a Doppler velocity logger, an online computational procedure
was used to estimate it based on the readings of the com-
mands that are sent to the thrusters and using a quasi-steady-
state model of the vehicle [35]. A GPS unit was used for
ground-truth comparison purposes. Each vehicle is equipped
with an acoustic Tritech Micron data modem and ranging
unit that is used for communications and also to measure
the ranges among vehicles. The tests were performed in

Fig. 6. Evolution of the AUV and estimated beacon positions for each model
presented in the xy plane, corresponding to mission 1.

open water, in June 2012 in the Expo area of Lisbon, Portugal
(latitude: 38.766 and longitude: −9.03) [Fig. 4 (left)].
See [17] and [35] for more information on MEDUSA

autonomous marine vehicles and the experimental site
in Lisbon. Throughout the tests, two of the MEDUSA vehi-
cles were kept in a hold position mode to act as proxies
for stationary beacons. The other MEDUSA maneuvered at
the surface and acted as proxy for an underwater vehicle
moving at a constant depth, interrogating the beacons. This
is realistic, because the vehicle does not use GPS or aerial
communications for localization purposes.

Due to space limitations, only three types of trajectories for
the moving MEDUSA are described.

1) A lawn-mower trajectory (Fig. 5) where the observabil-
ity conditions are not satisfied initially. However, as soon
as the AUV turns, the observability condition (17) holds.

2) A small circular trajectory performed with (commanded)
angular velocity ωez = 0.025 rad/s (Fig. 7). The
observability condition is satisfied from the time the
AUV starts.

3) A larger circumference performed with (commanded)
angular velocity ωez = 0.012 rad/s (Fig. 8). Since the
angular velocity ωez is smaller, when compared with the
second mission, different results are expected.
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Fig. 7. Mission 2. Top: trajectory of the AUV (GPS, estimated using
DR only, and estimated using the proposed observer) and beacon locations
(true position denoted by O and estimated with the initial condition �).
Bottom: estimation errors and estimated current velocity.

Fig. 8. Mission 3. Top: trajectory of the AUV (GPS, estimated using
DR only, and estimated using the proposed observer) and beacon locations
(true position denoted by O and estimated with the initial condition �).
Bottom: estimation errors and estimated current velocity.

The moving MEDUSA, which starts at the initial position
identified by the symbol ( ), moves with a commanded
forward velocity of 0.5 m/s and interrogates each beacon
in cycles of 4 s, which guarantees that the interarrival time
condition (45) holds. After extensive trials, we concluded
that the range measurements acquired by the modems can be
modeled as being corrupted with additive noise with a bounded
error of 0.3 m. In these experiments, it was observed that
the movement of the AUV was affected by constant ocean
currents. Thus, without the knowledge of the ocean current
vector, the DR error accumulates very fast (see the DR error
in Figs. 5–8).

Fig. 9. Linear and angular velocities of the AUV for missions 1–3. Filtered
data are shown with a black solid line.

Fig. 10. Time evolution of the models’ weights for missions 1–3.

The local estimators in the proposed multiple-model
observer approach are initialized, as described in Section IV,
meaning that one of the initial estimates of the position
of each beacon is on the left-hand side of the AUV
and the other one on the right. The design parameters
for the observers were set to Q(0) = diag([102 I2,
10−2 I4, 102 I2, 0.1I3, 10I2]), Rn = 0.25I2, Rd = diag([5 ×
10−3 I2, 10−6 I6, 0.1I3, 10−6, 10−4 I2]), and μ = 10 in the
appropriate units.

1) Mission 1: Fig. 5 shows the trajectory of the AUV (GPS,
estimated trajectory using DR only, and estimated trajectory
using the proposed observer), the beacon locations (the true
locations and their estimates), estimation errors, and estimated
current velocity for mission 1. Clearly, as soon as the vehicle
turns and therefore the system becomes observable, the estima-
tion error of the observer initialized with the arbitrary chosen
initial condition converges to a small value close to zero. This
can also be observed in the evolution of the estimated state of
each local estimator, as shown in Fig. 6. In this case, model 1
converges to the true locations of the beacons, while the other
models converge to some or all of the mirror points for each
beacon. The evolution of the models’ weights is shown in
Fig. 10, where the weight of model 1 converges to one since
it has the least error function.
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Fig. 11. Comparison of different observers for missions 1–3.

2) Mission 2: In this mission (Fig. 7), ωez > 0
(see Fig. 9), and therefore the observability condition (17)
holds. Thus, convergence of the estimator is achieved much
faster when compared with the first mission. This can also be
observed from the convergence of the models’ weights shown
in Fig. 10.

3) Mission 3: In the last mission, the AUV moves on a
larger circumference (Fig. 8), with an average angular velocity
that is half of that in the second mission (Fig. 9). Although
convergence of the models’ weights is similar to that observed
in mission 2 (Fig. 10), the same is not true for the convergence
of the states errors, which is slower. This is due to the
smaller magnitude of the angular velocity ωez , which leads
to an observability matrix with a higher condition number
and a smaller minimum singular value. These two values
are a measure of the quality of the unobservability of the
system and the corresponding estimator. The reader is referred
to [36] and [37] for a discussion of these unobservability
measures.

In Fig. 11, we compare the effect of disabling one or more
of the designed blocks in the three missions. We consider five
observers:

1) complete observer consisting of the ME, PF, IOP, and
MMAE blocks;

2) observer without the IOP module;
3) observer without using the PF module, which solves the

unconstrained problem;
4) observer with only the ME and MMAE modules;
5) plain ME observer.

As expected, taking into account the quadratic constraint
together with the IOP and the MMAE along with the ME
observer significantly improves the convergence of the esti-
mation error during the transient phase, when compared
with the unconstrained ME observer. Note also in mis-
sions 2 and 3 that after sufficient time has elapsed, there
is no significant difference in the performance of these
observers. This shows that the output of the PF, x̂, converges
to the output of ME, x̄, meaning that x̄ satisfies
constraints (11)–(13).

VII. CONCLUSION

This paper addressed theoretical and practical issues related
to the problem of range-based simultaneous AUV/multibeacon
localization in the presence of ocean currents. Conditions were
derived under which it is possible to reconstruct the initial
condition of the system under study. The latter includes the
position of the beacons and the vehicle. In the model adopted

for localization system design, the states evolve continuously
with time, but the range measurements are only available at
discrete instants of time, in a possible nonuniform manner.
Motivated by practical considerations that have to do with
maneuverability and energy-related issues, we considered the
important case where the AUV undergoes motion along trim-
ming trajectories. We have shown that this class of trajectories,
which are sufficiently general to be of practical use, allow for
a simple characterization of the types of maneuvers that yield
observability or weak observability of the underlying design
model. In particular, we proved that generically, for an arbi-
trary range measurement schedule, if either the position of one
of the beacons or the initial position of the AUV is known, then
there are trimming trajectories such that even without depth
information, the model is weakly observable. In the process of
deriving these results, we obtained a complete mathematical
characterization of the unobservable space and interpreted it
geometrically. If depth measurements are also available, then
the mode is observable even in the presence of unknown con-
stant ocean currents. The results derived have a strong practical
implication in that the concatenation of at least two appropri-
ately chosen different trimming trajectories that do not neces-
sarily yield observability individually leads to an observable
system.

Equipped with these results, in the second part of this
paper, we proposed a novel multiple-model observer for
simultaneous AUV and beacon localization. The setup adopted
was motivated by the fact that some of the trajectories used
may yield temporary unobservability over a finite interval
of time, thus warranting the use of multiple models run-
ning in parallel. The resulting observer borrows concepts
from ME estimation theory, PFs, and multiple-model esti-
mation techniques. Convergence analysis of the resulting
observer system was formally done. The results of field
experiments with a robotic marine vehicle showed the effi-
cacy of the simultaneous AUV/multiple beacon localization
system.

APPENDIX

The following proposition is instrumental in analyzing the
impact of the sampling times on the observability properties
of systems (14) and (16).

Proposition 1: Consider w > 0, and let t1 < t2 < · · · < tn ,
n ≥ 7 be consecutive sampling times. Then the matrix
Ot ∈ Rn×7 composed by rows of the form

Oti = [1 ti t2
i sin(tiw) cos(tiw) ti sin(tiw) ti cos(tiw)

]
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is full column rank, except on a zero measure set given by
|Ōt | = 0 with

Ōt =
[

A B
C D

]
, A =

[
β̄42 − β̄32 ᾱ42 − ᾱ32

β̄52 − β̄42 ᾱ52 − ᾱ42

]

B =
[
β̄41 − β̄31 ᾱ41 − ᾱ31

β̄51 − β̄41 ᾱ51 − ᾱ41

]

C =
[
β̄62 − β̄52 ᾱ62 − ᾱ52

β̄72 − β̄62 ᾱ72 − ᾱ62

]

D =
[
β̄61 − β̄51 ᾱ61 − ᾱ51

β̄71 − β̄61 ᾱ71 − ᾱ61

]

and β̄i j = (sin(tiw)− sin(t jw)/ti − t j ) and ᾱi j =
(cos(tiw)− cos(t jw)/ti − t j ). In particular, suppose that the
interarrival times are uniform, that is, tk+1 − tk = T for all
tk ∈ [t0, t f ). Then, the matrix Ot is full column rank except
on a zero measure set described by (19).

Proof: Consider the following matrices P1, P2, P3, P4,
and P5 defined as:

P1 := I7 −

⎡
⎢⎢⎣

0 t1 I2 s1 c1 0
0 0 0 0 0
0 0 0 0 t1 I2
0 0 0 0 0

⎤
⎥⎥⎦

P2 := I6 −
[

0 t2 β̄21 ᾱ21 s2 c2
0 0 0 0 0 0

]

P3 := I5 −
[

0 γ̄32 ν̄32 β̄32 ᾱ32
0 0 0 0 0

]
,

P4 := I4−
[

0 0
I3 0

]
, P5 :=

[
0 (t1 − t2)I2
I2 I2

]

where si = sin(tiw), ci = cos(tiw), γ̄ j2 = ((β̄ j1 − β̄21)/
(t j − t2)), and ν̄ j2 = ((ᾱ j1 − ᾱ21)/(t j − t2)), i ∈ {1, . . . , 7},
j ∈ {3, . . . , 7}.

Note that the determinant of the above matrices with excep-
tion of P5 is one, that is, |P5| = (t2 − t1)2 > 0. Thus, we may
conclude that the determinant of Ot , composed by the first
seven row vectors Oti , i ∈ {1, 2, . . . , 7}, satisfies

|Ot | = |Ot · P1|

=
7∏

i=2

(ti − t1)

∣∣∣∣∣∣∣

⎡
⎢⎣

1 t2 β̄21 ᾱ21 s2 c2
...
...

...
...

...
...

1 t7 β̄71 ᾱ71 s7 c7

⎤
⎥⎦ . P2

∣∣∣∣∣∣∣

=
7∏

i=2

(ti − t1)
7∏

i=3

(ti − t2)

∣∣∣∣∣∣∣

⎡
⎢⎣

1 γ̄32 ν̄32 β̄32 ᾱ32
...

...
...

...
...

1 γ̄72 ν̄72 β̄72 ᾱ72

⎤
⎥⎦ . P3

∣∣∣∣∣∣∣

= (t2 − t1)
−2

7∏
i=2

(ti − t1)
7∏

i=3

(ti − t2)

∣∣∣∣∣∣∣∣
P4.

⎡
⎢⎢⎣
γ̄42 − γ̄32 ν̄42 − ν̄32 β̄42 − β̄32 ᾱ42 − ᾱ32

γ̄52 − γ̄32 ν̄52 − ν̄32 β̄52 − β̄32 ᾱ52 − ᾱ32

γ̄62 − γ̄32 ν̄62 − ν̄32 β̄62 − β̄32 ᾱ62 − ᾱ32

γ̄72 − γ̄32 ν̄72 − ν̄32 β̄72 − β̄32 ᾱ72 − ᾱ32

⎤
⎥⎥⎦ . P5

∣∣∣∣∣∣∣∣

= (t2 − t1)
−2

7∏
i=2

(ti − t1)
7∏

i=3

(ti − t2)|Ōt |. (44)

Since ti �= t j for all i �= j , the first term on the right-hand
side of (44) is nonzero.

Now consider the vector of interarrival times t̃ ∈ R6+, where
t̃i = ti+1w − tiw, i ∈ {1, 2, . . . , 6}. The determinants of
the matrices A and Ōt can be written as |A| = f1 sin(t̃2) +
f2 sin2(t̃2/2) + f3 t̃2 and |Ōt | = f̃4 sin(t̃6) + f̃6 sin2(t̃6/2) +
f̃8 t̃6, where f̃i := fi + fi+1 t̃6, i ∈ {4, 6, 8}. Note that
f1, f2, and f3 are continuous functions of t̃3, and t̃4 and f4– f9
are continuous functions of t̃1–t̃5. Furthermore, for any
given t̃3 and t̃4, |A| has countable zero crossings. Since
f1, f2, and f3 are continuous functions of t̃3 and t̃4, we can
conclude that the set of points satisfying |A| = 0 is composed
of a number of countable surfaces in R3+, and is therefore a
zero measure set. Using the same reasoning as for matrix A,
it can be concluded that the set of points satisfying |Ōt | = 0
also has zero measure. Thus, the matrix Ot is generically of
full column rank, losing rank only at the set of zero measure
sample points given by |Ōt | = 0.

Consider the particular case where the interarrival times are
uniform, that is, tk+1 − tk = T for all tk ∈ [t0, t f ). Then, it
follows that |Ōt (T )| = 215T −4 sin12 (T ‖ωe‖/2) sin4(T ‖ωe‖).
This implies that the matrix Ot is of full column rank almost
everywhere, losing rank only at the zero measure sample
points described by the set (19). �

In Proposition 1, we showed that the matrix Ot is full rank
almost everywhere except at a set of particular sample times of
zero measure defined by |Ōt | = 0. Thus, even if the matrix Ōt
is singular at a particular combination of sampling times, by
slightly perturbing the sample times, it becomes nonsingular.
For the nonuniform case, it is still possible to numerically
conclude that for all the points in the region defined by

0 < tk+1 − tk < κπ‖ωe‖−1, tk ∈ [t0, t f ) (45)

for κ = 0.9 and at least six interarrival times, |Ōt | �= 0.
Proof (Theorem 1): Consider system (16) with the initial

condition x0 ∈ R12. Let ωe ∈ R3 be such that (17) holds.
Without loss of generality, we consider t0 = 0. The state
transition matrix �(t, 0) ∈ R12×12 of (16) is given by

�(t, 0)=

⎡
⎢⎢⎢⎢⎢⎢⎣

�̄1(t, 0) 0 − t�̄1(t, 0) 0 0 0
0 �̄1(t, 0) 0 0 0 0
0 0 �̄1(t, 0) 0 0 0
0 0 0 1 0 0

0 0 �̄2(t,0)
2 − t 1 0

�̄2(t, 0) �̄2(t, 0) − t�̄2(t, 0) t2 − 2t 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(46)

where �̄1(t, 0) is the state transition matrix of the linear
system ζ̇ = −S(ωe)ζ and �̄2(t, 0)=−2

∫ t
0 ν ′

e�̄1(s, 0)ds. The
observability matrix Onr ∈ Rnr ×12, nr ≥ 7, associated with
system (16) is, according to [38], defined by

Onr := [(Cu(t0)�(t0, 0))′ . . . (Cu(tnr −1)�(tnr −1, 0))′
]′

where tk ∈ [t0, t f ), k ∈ {0, 1, 2, . . . , nr − 1}. Note that Onr is
a function of the measurement sampling times, tk ∈ [t0, t f ).

We claim that Onr has rank 7 almost everywhere, with
the exception of a zero measure set. We show this using
the rank-factorization theorem in [34, Th. 3.13]. Note that
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Or =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1
−e′

x −e′
x 0 0 −1

νe
0

e′
x × ω′

e e′
x × ω′

e 0 0 0 0
ω′

eωee′
x − e′

xωeω
′
e ω′

eωee′
x − e′

xωeω
′
e 0 0 0 0

0 0 2e′
xωeω

′
e

‖ωe‖2

νe
0 0

0 0 e′
x × ω′

e 0 0 0
0 0 ω′

eωee′
x − e′

xωeω
′
e 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Onr = Ot (t j , ‖ωe‖)Or , j ∈ {0, 1, . . . , nr − 1}, where Ot ∈
Rnr ×7 whose j th row, Ot j , is given by

Ot j := 2νe

[
1

2νe
t j

1−cos(t j‖ωe‖)
‖ωe‖2

t j‖ωe‖−sin(t j‖ωe‖)
‖ωe‖3

t2
j

2‖ωe‖2 t j
cos(t j ‖ωe‖)− 1

‖ωe‖2

t j sin(t j ‖ωe‖)
‖ωe‖3

]

and Or ∈ R7×12 is given in the equation shown at the top of
this page.

Resorting to Proposition 1, it can be concluded that for
almost all interarrival times, Rank(Ot ) = 7. Moreover,
from (17), it follows that Rank(Or ) = 7. Thus, by the
rank factorization theorem, it follows that Rank(Onr ) =
Rank(Or ).

Since Rank(Onr ) = Rank(Or ), we can conclude that
Kernel(Onr ) = Kernel(Or ). Thus, the null space asso-
ciated with the observability matrix is Kernel(Onr ) = Nα,
where the value of N is shown in (47) at the bottom of this
page and α = [α1, . . . , α5]′ ∈ R5.

Note that all initial conditions of the form x̆0 := x0 + Nα

are indistinguishable from x0. Since the initial condition of the
beacon is known, that is, B q̆1(0) = Bq1(0), this implies that
α1 = ωexα4 and α2 = α3 = 0. Moreover, note that x̆0 must
satisfy constraints (11)–(13). Imposing constraint (12), we
obtain α5 ∈ {0,−2‖ωe‖−2ω′

e(νe + Bνc(0))}. Thus, one
solution is α5 = 0, yielding α4 = 0, which is the triv-
ial solution satisfying (11) and (13). The other nonzero
solution of α5 leads to α4 = −2‖ωe‖−2ω′

e(
Bp0(0) +

Bq1(0)), satisfying (11) and (13), which is the set
defined in (18).

To show the reverse inclusion, consider z := x0 + v ∈
Ir (x0), where v ∈ Kernel(Or ). Let r(x(t)) denote the
range output given the initial condition x0, where x(t) is
the solution to (16) with x(0) = x0 and r(z(t)) denotes the
range output given the initial condition z, where z(t) is
the solution to (16) with x(0) = z. By noting that
v ∈ Kernel(Or ), it follows that r(z(t)) = Cu(t)�(t, 0)x0 +
Cu(t)�(t, 0)v = r(x(t)). Since x0 is an arbitrary point, by
definition, system (16) combined with constraints (11)–(13)
is weakly observable on [t0, t f ). The proof for the case

of uniform interarrival times follows from the later part
of Proposition 1. �

Note that in Theorem 1, we used the fact that
Rank(Onr ) = min(Rank(Or ),Rank(Ot)). Thus, the observ-
ability condition (17) and the restriction on the interarrival
times are derived independently from the matrices Or and Ot .
This is because the rank of Or depends only on ωe as νe > 0,
and the rank of Ot depends only on tk ∈ [t0, t f ) as ‖ωe‖ > 0.

Proof (Corollary 1): From Theorem 1, it follows that the
set of indistinguishable points is given by (18). Suppose that
there is no ocean current or Bνc in known. In this case, the set
of indistinguishable points is a subset of {x0, x̆0}, where x̆0
is a nontrivial point in (18). Let us assume that the point x̆0
is indistinguishable from x0. Since Bν̆c = Bνc, we conclude
that Bνc = Bνc − 2‖ωe‖−2ωeω

′
e(
Bνc + νe), which contradicts

with (20). Thus, x̆0 is distinguishable from x0, and the system
is observable. �

Proof (Theorem 2): Consider system (16) with the initial
condition x0 ∈ R12. From (2) and (46), we conclude that
e′

z
I
BR(η) = e′

z
I
BR(ηe)�̄1(t, 0)′.

Since S(ωe) is a skew symmetric matrix, it follows that
�̄1(t, 0)′�̄1(t, 0) = I,∀t . On the other hand, the depth
measurements yz satisfy yz = Cu,z�(t, 0)x0 = C̄u,z x0, where

C̄u,z =
[[−1 0 t

0 1 0

]
⊗ (e′

z
I
BR(ηe)

)
0
]
.

Note that C̄u,z is a first-order polynomial in t . Thus, each
row of the observability matrix corresponding to depth-only
measurements system (16) is a linear combination of rows
of Oz := [I3 ⊗ (e′

z
I
BR(ηe))0].

Now, the observability of system (16) can be verified by
intersecting Kernel(Or ) derived in (47) with Kernel(Oz).
Moreover, since the initial condition of the beacon is known,
from Theorem 1, it follows that α1 = ωexα4 and α2 = α3 = 0.
Intersecting the mentioned null spaces, the following equalities
must hold: α4e′

z
I
BR(ηe)ωe = 0 and α5e′

z
I
BR(ηe)ωe = 0. Now,

using (15) and observing that (17) implies that ψ̇e �= 0,
we conclude that α4 = α5 = 0. Thus, the intersection of
the two null spaces defined above contains only the origin,
Irz(x0) = {x0}, and system (16) is observable on [t0, t f ). �

N =

⎡
⎢⎢⎣

ex (ex × ωe)ωez −(ex × ωe)ωey ωe − ex e′
xωe 0

−ex 2ωeωey − (ex × ωe)ωez 2ωeωez + (ex × ωe)ωey ex e′
xωe 0

0 0 0 0 ωe

0 −2eyν
′
eωeωey −2eyν

′
eωeωez −eyν

′
eωe −2ωeνe

⎤
⎥⎥⎦ (47)
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Proof (Theorem 3): Consider the system (16) with the
initial condition x0 ∈ R12 and let ωe ∈ R3 be such that (17)
does not hold, that is, ωey = ωez = 0. Moreover, consider that
nr ≥ 3 measurement samples are available.

We claim that the range-only observability matrix, Onr , has
rank 3. We show this using the rank-factorization theorem.
Define Or ∈ R3×12 and Ot ∈ Rnr ×3 whose j th row, Ot j ,
is given by

Or =
⎡
⎣

0 0 0 0 0 1
e′

x e′
x 0 0 1

νe
0

0 0 2e′
x

1
νe

0 0

⎤
⎦

Ot j := νe

[
1
νe

−2t j t2
j

]
.

Note that Rank(Ot) = 3, given tk − tk−1 > 0. Moreover,
Rank(Or ) = 3. It can be verified that Onr = Ot (t j )Or ,
j ∈ {0, 1, . . . , nr −1} holds; hence, by the rank factorization
theorem, it follows that Rank(Onr ) = 3. From a standard
result in linear algebra, it follows that Rank(Onr ) =
Rank(Or ). This completes the proof of the claim.

Now, using Or and Oz from Theorem 2, it can be verified
that the concatenation of the two matrices Orz has the form

Orz =
[[

ey 0 0 ey 0 0 2ez 0 0
] [ 1

νe
ez

1
νe

ey ex

]

I3 ⊗ (e′
z
I
BR(ηe)

)
0

]
.

In this case, the null space Kernel(Orz) = Nα, where

N =

⎡
⎢⎢⎣

0 0 ξ1 ξ2 0 0
ξ1 ξ2 0 0 0 0
0 0 0 0 ξ1 ξ2

−ey 0 −ey 0 −2ex 0

⎤
⎥⎥⎦

ξ1 = ex + ez tan θe/cosφe, ξ2 = ey − ez tan φe, and
α = [α1, . . . , α6]′ ∈ R6. Imposing the constraint that the
initial condition of the beacon is known yields α1 = α2 = 0.
We thus have a fourth-order linear subspace and only three
quadratic state constraints described by (11)–(13). Solving the
corresponding quadratic equations, we may find a solution for
α4–α6, but the fifth order, α3, remains as a free parameter.
This implies that the set of indistinguishable points is at least
a piecewise continuous function of the free parameter α3, and
the system is not weakly observable. �

Proof (Theorem 4): The proof for the case of range-only
measurements is similar to that of Theorem 1 with the only
difference that we use the assumption Bp̆0(0) = Bp0(0). This
implies that α1 = α4 = 0 and ωezα2 = ωeyα3. Moreover,
note that x̆0 must satisfy constraints (11)–(13). Imposing
constraint (12), we obtain α5 ∈ {0,−2‖ωe‖−2ω′

e
(Bνc(0) + νe)}. Setting α5 = 0 implies α2 = α3 = 0,
which is the trivial solution ensuring that (11) and (13) hold.
The other nonzero solution of α5 leads to

[α2, α3] = −[ωey , ωez ]‖ωe‖−2ω′
e
B p1(0)/

(
ω2

ey
+ ω2

ez

)

ensuring that constraints (11) and (13) hold. With two possible
solutions for α, we conclude that I(x0) is given by (21).

Consider now the case where depth measurements are
added to the set of observations (similar to the conditions
in Theorem 2). The observability of system (16) can be

verified by intersecting Kernel(Or ) derived in (47) with
Kernel(Oz), but with the assumption that the initial con-
dition of the AUV is known, meaning α1 = α4 = 0 and
ωezα2 = ωeyα3. Intersecting the mentioned null spaces, the
following must hold:
(ωeyα2 + ωezα3)e′

z
I
BR(ηe)ωe = 0, α5e′

z
I
BR(ηe)ωe = 0.

At this point, using (15) and noting that (17) implies that
ψ̇e �= 0, we conclude that α2 = α3 = α5 = 0. Thus, the
intersection of the two null spaces defined above contains only
the origin, Irz(x0) = {x0}, and system (16) is observable
on [t0, t f ). Moreover, using the same reasoning as in Theorem
3, but with the assumption Bp̆0(0) = Bp0(0), we conclude
that Irz(x0) is at least a piecewise continuous function of free
parameter α1. Thus, the system is not observable. �

Proof (Theorem 5): For only one beacon, the result follows
from Theorems 1–4. Consider now more than one beacon.
In this case, it can be concluded from (14) that the dynamic
equations of each set {Bq i , χi , χci } do not depend on the other
sets. This means that the observability of the multiple beacon
system can be investigated by analyzing the observability of
each single-beacon system, and the result immediately follows
from Theorems 1–4. �
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