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SUMMARY

This paper proposes a multiple-model solution to the problem of controlling an air heating fan subject to
faults. These faults are modeled by means of an abnormal unknown airflow input rate which the nominal
controller is not designed for. Moreover, the average temperature of the air flowing through the system, which
can be seen as an offset on the corresponding dynamics, is (slowly) time-varying and highly dependent on
the ambient temperature. The fault-tolerant control (FTC) method adopted makes use of set-valued observers
(SVOs) to invalidate possible models of the system. Unlike classical fault detection, this approach does not
rely on residuals to detect abnormal system operation. This fact allows to reduce the conservatism of the
solution and enables a straightforward design from the faulty and nominal models of the plant. Moreover,
the absolute distinguishability concept is used to derive input signals that bolster the detection of faults.
Although SVOs require heavy real-time calculations that hinder its implementability in systems with low
computational power, it is shown that the architecture of the FTC strategy proposed is highly parallelizable
and, thus, may take advantage of standard multi-core processing units. Experimental results are presented.
Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fault-tolerant control (FTC) systems play an increasingly more important role in the field of control,
particularly because of the also increasing complexity of the systems to be controlled. In addition
to adequate disturbance-rejection under nominal operation, safety critical systems — such as flight
control systems or nuclear power plants — require fast fault detection and accommodation so that
human and material damage is minimized.

This objective can typically be achieved either by using active or passive FTC methodologies, or
even by adopting hybrid solutions. Passive fault-tolerant control (PFTC) methods assume, during the
design of the controllers, that the system can either be healthy or faulty and that the controller must
be able to handle both scenarios, thus leading to a reduced nominal performance. Notwithstanding
the robustness guarantees yielded by these controllers, faults with large magnitudes are unlikely to
be properly handled, without significantly degrading the closed-loop performance of the system.
Thus, this paper focuses on a so-called active fault-tolerant control (AFTC) methodology.
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Active fault-tolerant control architectures are characterized by being able to reconfigure (see [1-3]
and references therein) the controller in the presence of faults. This can be performed by the con-
troller itself or by relying on a fault detection and isolation (FDI) system to detect and evaluate the
magnitude of a fault. In the latter case, the performance of the AFTC system is, therefore, highly
dependent upon the performance of the associated FDI scheme. As a consequence, mixed active—
passive FTC solutions have appeared in the literature — see, for instance, [4, 5] — that use a PFTC
system until a fault is detected, while switching to a low-performance high-robustness controller
when a fault is detected and until it is isolated and identified. From that moment onwards, a high-
performance reconfigurable controller is used. A similar solution can also be found in the literature
of adaptive control — the so-called safe switching adaptive control [6] — where a controller can only
be connected to the plant if it is guaranteed to render the closed-loop stable.

A myriad of alternative solutions to FDI and FTC have been proposed by the scientific community
in the last three decades. The reader is referred to [1-3] and [7] for a thorough comparison of the
methods available in the literature.

This paper addresses the problem of designing an FTC for an air heating fan that can be used
to model, for instance, air-conditioning systems. The plant considered is a Process Trainer PT326
developed by Feedback Instruments Limited (5 & 6 Warren Court, Crowborough, East Sussex, TN6
2QX, UK) [8] (Figure 1). The atmospheric air is drawn by a blower (on the left) and passes through a
heater (D) and a tube (@) before returning to the atmosphere. The goal is to regulate the temperature
of the air, T'(-) — sensed by a thermistor with output variable y(-), measured in volt — using the heater
(®) in Figure 1, with manipulated input voltage signal u(-).

The air flow ¢(-) can be manually manipulated by changing the throttle opening (6°) from 10°
to 165° (degrees), and as shown in the sequel, has a significant impact on the dynamic behavior of
the system. Minimum and maximum throttle openings, 6, = 10° and G, = 165°, correspond
to minimum and maximum flows, respectively. Finally, the system is also affected by the ambient
temperature 7,. However, this (uncontrollable) variable is only responsible for generating a (slowly)
time-varying offset on the output, and hence, it does not change the incremental dynamics of the
plant. Still, this drifting operating point hinders the detectability of faults, as a highly sensitive FDI
system may lead to an arbitrary number of false alarms because of these offset variations.

The nonlinear model of the system is approximated by scheduling between several local models,
each of which corresponds to a pre-specified set of values of the throttle opening. Figure 2 depicts the
responses of the system, for three different throttle openings (30°, 70°, and 130°), to a square-wave
input signal, using a sampling frequency of 1 kHz. The different offsets of the measured variable,
y(-), are related to each operating point, and are (slowly) time-varying and highly dependent on
the ambient temperature, 7. Therefore, these offsets cannot be used for the identification of the
plant dynamics.

The solution adopted in this paper falls within the realm of active FTC, because a passive con-
troller able to accommodate all the types of faults considered would yield a significantly degraded
performance. In particular, we take advantage of the recent advances in the set-valued observers
(SVOs) theory to invalidate models of the plant that are not compatible with the current input/output
sequences, as described in the sequel — see [9—11]. Once a fault is detected and isolated, a controller
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Figure 1. Scheme of an air-heating system.
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Figure 2. System response to a square-wave input signal for the three throttle openings and a sample
period of 1 ms.

synthesized for the impaired system is connected to the loop. This paper builds on the results
presented in [12], by providing a thorough description of the methodology adopted.

1.1. Main contributions
The main contributions of this paper are as follows:

e The development of a multiple-model dynamic description for the Process Trainer PT326.

e The application of a novel AFTC design methodology for linear parameter-varying (LPV)
systems, with guaranteed closed-loop stability, and that also allows faulty-to-healthy transitions
of the process.

e The adoption of the concept of absolute distinguishability to discern between signals that
enable the detection of faults.

e The experimental evaluation of the proposed solution in a distributed computational setup,
illustrating the applicability of the FTC solution adopted to real-time systems.

e The demonstration of an approach to FTC based on multiple-models and SVO that is able to
run in real-time.

In addition to closed-loop stability, the proposed technique also provides improved performance
when compared with a passive FTC approach. Moreover, it is shown that the deterioration, in terms
of performance, when compared with the (non-realizable) perfect model identification scheme, is
negligible, at least in the scenarios considered in this paper.

1.2. Organization of the paper

This paper is organized as follows. Section 2 describes the dynamics of the air heating fan and
presents the derivation of a multiple-model uncertain description of the system. The SVO-based
approach to FTC is introduced in Section 3, and the experimental results are presented in 4. Finally,
some conclusions regarding the proposed technique are discussed in Section 5.

2. DYNAMICS OF THE AIR HEATING FAN

For each operating scenario, the dynamics of the Process Trainer PT326, illustrated in Figure 1,
was discretized with a zero-order hold and a sampling period of 200 ms, and modeled by the
autoregressive-moving-average model (ARMAX) structure described by

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
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yk)y+arytk—1)+...4+an, ytk —ng) =byu(k —ng) + ...+ by, utk —ng —np + 1)
+ek)+cieltk—1)+...+cp e(k—ng),
ey
where y(-) is the measured temperature, u(-) is the control input, that is, the power delivered
to the heater, and e(-) is a white Gaussian process noise. The coefficients a;, b;, and c,, were
experimentally assessed.
For all the (local) models considered, we used n, = n. = 3 and n, = 2. Finally, the delay ny is
different for each of those models. These ARM A X models can be described in state-space form by

S - {ii(k + 1) = A% (k) + Biu(k)
Gk = Gixi(k) 4+ nik) + bi(k)

where i denotes the index of the local model, b; (k) € R is the offset of the output variable, n; (k) is
the measurement noise, and X; is the state of the associated local model, at time k. For each value
of the throttle opening, a different set of state-space matrices is obtained.

Figure 3(a) depicts the outputs of three different models (30°, 70°, and 130°) obtained in simula-
tion, for the throttle opening sequence 130° — 70° — 130° — 30° — 70° — 30° — 130°, that
changes every 50 s. The simulation results are obtained by considering a dynamic model given by

- {i(k +1) = AgyX(k) + Boyu(k)
Ik = CowX(k) +n(k) + bey (k)

where o (k) denotes the operating point and, thus, is directly related to the throttle opening. The mea-
sured output of the plant, obtained with the experimental setup, and using the same throttle opening
sequence, is illustrated in Figure 3(b). The state-space matrices of the aforementioned models are
given by

(@)

3)

[ 1.4599 —0.7869 0.1853 ] 1]
A= 1 0 0 |.Bi=|0].C =[001010.1070 0],
|0 1 0 | | 0
~[08571 —0.1832 0.0309]  [1]
Ay=1 0 0 |.By=|0].C=[006380.0920],
K 1 0 | | 0 |
~ [0.63320.0428 —0.0381]  [1]
Az=1] 1 0 0 |. Bs3=]|0|, C3=1[0.0754 0.0673 0].
|0 1 0 0
: —'imuae ;)U ui ’ Exp. output
75 l\sllodell ;‘d o 1 73 MZEE: 2;

Model Sz
Model Ss

Model Ss
7| — — - Offsets estimation

U

e
[ o

I
3

Amplitude [V]

Amplitude [V]

o1
&)

»
[
»
o

IS
I

3.5 3.5
0

50 100 150 200 250 300 350 ) 50 100 150 200 250 300 350
Time [s] Time [s]

(@) (b)

Figure 3. Simulated (a) and experimental (b) output of the plant. S 1, 52, and 53 were obtained for throttle
openings of 30°, 70°, and 130°, respectively.
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We consider that the nominal operation of the system is yielded at a throttle opening of 6 €
[60°, 120°[. All of the other scenarios are considered abnormal situations and thus can be interpreted
as faults. It is important to stress, however, that these types of faults have a direct impact not only
on the actuation but also on the dynamics of the system (A;, C;).

Remark 1

It should be noticed that the overheating of the tube has an impact on the offsets of all models over
time. Indeed, this overheating effect causes a variable offset in each model that is apparent from
Figure 3(b).

3. SET-VALUED OBSERVER-BASED FAULT-TOLERANT CONTROL

The large level of uncertainty of the model of the air heating fan significantly hinders the problem of
designing a single non-adaptive controller for all the admissible models of the plant. To overcome
this issue, several solutions are proposed in the literature of adaptive control based on a single plant
model (cf. [13-17]), and in the literature of FTC systems (cf. [1-3]).

In this paper, however, the focus is on a class of adaptive control architectures, referred to as
multiple-model adaptive control (MMAC). In terms of design, the idea behind the MMAC is to split
the (large) set of parametric uncertainty, 2, into Ng (small) subregions, ;,i € {1,---,Ng} —
see Figure 4 for an example where a single uncertain parameter is considered — and a non-adaptive
controller for each of these subregions is synthesized. In terms of implementation, the goal is set
to identify which region the uncertain parameters, p, belong to and then connect to the loop the
controller designed for that region — see [18-20], and references therein.

Thus, multiple-model control techniques aim to select, at each time instant, a controller that is
capable of yielding the desired stability and performance levels. Moreover, the transition between
controllers must be executed in such a way that no instability issues arise.

Multiple-model architectures enjoy several advantages [21], such as the fast adaptation, compared
with indirect adaptive control (see [22—24], and references therein), when the plant dynamics change
abruptly (for instance, because of failures), and the ability to provide high levels of performance
for different classes of dynamic models. Furthermore, multiple-model approaches have a design
modularity that makes them suitable for a number of applications, while being able to provide
a natural accommodation of faults. In particular, multiple-model architectures provide a natural
way of embedding the control objective configuration that can be crucial when accommodating
faults [25]. Because of their solid theoretical background, these methodologies are also able to
provide closed-loop stability and performance robustness guarantees under time-variations of the
parameters, thus rendering this methodology appropriate for safety critical applications, such as
FTC of flight systems.

Several MMAC architectures have been proposed that provide stability and/or performance guar-
antees, as long as a set of assumptions are met. For instance, [19] uses a parameter estimator to
select a controller, guaranteeing stability of the closed-loop. Another MMAC approach, referred to
as robust multiple-model adaptive control (RMMAC), that was introduced in [26] and references
therein, uses a bank of Kalman filters for the identification system and a hypothesis testing strategy
to select the controllers. For this case, although simulation results — see, for instance, [26] — indi-
cate that high levels of performance are obtained, the only guarantees that can be provided are in
terms of stability — see [27, 28]. In [29], calibrated forecasts are used to guarantee the stability of the
closed-loop. This approach was later on extended in [30], to provide stability guarantees for several

| I #1 I #2 I > I #Ng I R
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|
Q
Figure 4. Uncertainty region, €2, for the parameter p, split into N subsets, 2;,i = {l,---, Ns}.
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MMAC architectures. The theory of unfalsified control — see [31-35], among others [36, 37] — uses
the controlled output error to decide whether the selected controller is delivering the desired per-
formance or not. Other MMAC approaches increase the number of uncertainty regions in order to
improve performance, whenever a given condition is satisfied (cf. [38]).

The approach adopted in this article uses a line-of-thought similar to that of the unfalsified control
theory. Rather than trying to identify the correct region of uncertainty, by hypothesis testing or
parameter estimation, the wrong regions are excluded. In other words, if the time-evolution of the
inputs and outputs of the plant cannot be explained by a model with uncertain parameter p, such
that p € €2;, then region €2; cannot be the one to which the uncertain parameter belongs. The
invalidation of these uncertainty regions is addressed by using SVOs, taking advantage of the recent
developments presented in [9, 10, 39, 40].

In summary, the approach provided in this paper is to use SVOs to detect faults by looking for
inconsistencies between the input/output sequences — similarly to what is performed in [11] — and
to decide which non-adaptive controllers should rot be selected. The selection among the non-
invalidated controllers may be performed by using an auxiliary decision algorithm, or by using a
pre-routed approach — see [30]. Similarly to other MMAC architectures, we use a bank of observers
—in our case, SVOs — each of which tuned for a pre-specified region of uncertainty.

It should be noticed that the number of uncertainty regions is key in terms of the time required to
select the appropriate controller to be connected to the loop, as derived in [30] for a class of time-
varying nonlinear systems. This limitation has been recognized in the controls community (see,
for instance, [21]) and several methods have, since then, been developed to reduce this search to a
small number of regions of uncertainty. In this paper, this issue is approached by using the notion
of absolute input-distinguishability, described in the sequel, which can be seen as a tool to properly
split the parameter space into the a number of sub-regions, ensuring the invalidation of all but the
‘correct’ model of the plant within a pre-specified time-horizon.

3.1. Preliminaries and notation

The class of systems considered in this paper, typically referred to as uncertain LPV systems, can
be described by

{X(k + 1) = Ak, p(k))x (k) + B(k, p(k))u(k) + L(k, p(k))d (k) @)
y(k) = C(k, p(k))x (k) + N(k, p(k))n(k),

where x(0) € X(0), x(k) € R", d(k) € R", n(k) € R", u(k) € R", and y(k) € R">, for
k = 0. The (partially) uncertain time-varying vector of parameters, p(-), is such that p(k) € R"». It
is also assumed that |d(k)| := max|d; (k)| < 1, and |n(k)| := max |n; (k)| < @1. At each time, k,

the vector of states is denoted by Sc(k), and we define X (0) := Setl(Mo, mg), where
Set(M,m) :={q : Mg < m} 5)

represents a convex polytope. As an additional constraint, it is assumed that the matrices of the
dynamics depend affinely on the vector of parameters.

Let S denote the set of plausible or admissible models of the plant to be controlled. We assume
that S is a finite set, with cardinality Ng, and that each S; € S can be described by

S, - {xi (k +1) = Ai(p(k))xi(k) + Bi(p(k))u(k) + Li(p(k))d; (k), ©)
. yi(k) = Ci(p(k))xi(k) + Ni(p(k))ni(k),
foreachi € {1,---, Ng}, with p(k) € Q; for all k = 0, and using a nomenclature similar to that of
(4). Moreover, forany i, j € {1,---, Ng}, it is clear that

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
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Define Wy, W,,, and U, such that d;(j) € Wy € R",n;(j) € W, € R",and u(j) e U C
R™, for all times j. The initial state of system S; is represented by x! := x;(0) € X(0) :=
X, C R”. The sets Wy, W,, and U are assumed to be compact convex polytopes, and we define
W =W; xW,.

3.2. Design of set-valued observers

Let X(k + 1) represent the set of possible states at time k + 1, that is, the state x (k + 1) satisfies (4)
with x (k) € X (k) if and only if x(k 4+ 1) € X(k + 1). The goal of an SVO is to find X (k 4 1) based
upon (4) and with the additional knowledge that x (k) € X(k),x(k—1) € X(k—1),--- ,x(k—N) €
X(k — N), for some finite horizon N. We further require that, for all x € X(k + 1), there exists
x* € X(k) such that, for x (k) = x*, the observations are compatible with (4). In other words, we
want X (k + 1) to be the smallest set containing all the solutions to (4).

The problem of designing this type of observer has been extensively analyzed in the literature.
One of the first algorithms developed to compute (ellipsoidal) set-valued estimates of the state of a
system was introduced in [41] and [42]. In [43], an approach to the synthesis problem of SVOs for
linear time-varying plants with nonlinear equality constraints is described. A method for active mode
observation of switching systems, based on SVOs, has been recently proposed in [44]. Another solu-
tion, applicable to LPV systems, is presented in [45]. Alternative methods have also been proposed
in [46—49] and references therein. Recent improvements in observer design techniques based on
interval analysis have also led to interesting results in terms of applicability to continuous and dis-
crete, time-varying linear systems, either with continuous or discrete-time measurements, as shown
in [50, 51] and references therein.

The solution adopted in this paper is an alternative to the aforementioned approaches, which
provides set-valued state estimates that are guaranteed to contain the frue state of the system. It is
based on the procedure introduced in [52], for discrete time-varying linear systems, and extended to
uncertain plants in [9] and [10]. Given that it can take into account values of the horizon, N, greater
than 1, it typically leads to reduced conservatism, when compared with interval-analysis methods.
This is obtained, however, at the cost of increased computational requirements.

For plants with uncertainties, the set X (k + 1) is, in general, non-convex, even if X (k) is convex.
Thus, it cannot be represented by a linear inequality as in (5). The approach suggested in [9] is
to overbound this set by a convex polytope, X (k + 1), therefore adding some conservatism to the
solution. A different method was presented in [10, 11], which requires a smaller computational
effort, while reducing the conservatism of the solution. Throughout the remainder of this article,
we are going to use the latter approach, in order to compute set-valued state estimates, X (k), of
dynamic systems that can be modeled by (4).

For the sake of completeness, a brief description of the main reasoning behind the SVO synthe-
sis methodology is presented in the sequel. As previously mentioned, the computation of X (k + 1)
based upon X (k) for systems with no model uncertainty can be performed by using the technique
described in [52]. Indeed, consider the dynamics of the plant are described by (4), and assume
that the matrices of the dynamics are exactly known, although possibly time-varying. For the sake
of simplicity, assume that N(k, p(k)) = I, and that A(k, p(k)) := A(k), B(k, p(k)) := B(k),
C(k,p(k)) := C(k) and L(k,p(k)) := L(k). In other words, assume that, at this point, the
dynamics do not depend on the uncertain vector of parameters, p(k). Then, x(k + 1) € X(k +
1) if and only there exist x(k) and d(k), such that, for the current measurement, y(k + 1),
we have

[ B(k)u(k) |
x(k + 1) _B(';-)“(k)
Pky| x(k) |=< - =: p(k), (M
d(k) d
(k)
| m(k—1) |
Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
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where
I —A(k) —L(k)
-1 A(k) L)
| o 0 I - [ Ck) oo [a+yk+1)
Ply:=1"9 0o -1 | M(k)_[—C(k)] m(k)_[ﬁ—y(kﬂ)]
ME) 0 0
0 Mk-—1)

and where M (k — 1) and m(k — 1) are defined such that X(k) = Set(M(k —1),m(k — 1)). The
inequality in (7) provides a description of a set in R2""4 | denoted by

Tk + 1) = Set (P(k), p(k)).

Therefore, it is straightforward to conclude that

xeXk+1) & 3

: elk+1).
xeR” ,deR"d

QU = =

Hence, the set X(k + 1) can be obtained by projecting I'(k + 1) onto the subspace of the first n
coordinates, which can be attained by resorting to the so-called Fourier—Motzkin elimination method
[52, 53]. Therefore, a description of all the admissible x(k + 1) is obtained that does not depend
upon specific x (k) nor d (k).

As shown in [11, 54, 55] the relationship described by (7) can be readily extended to the case
where not only X (k) but also X(k — 1), ---, X(k — N) are used for the estimation of X(k + 1).
This strategy allows us to reduce the conservatism of the method when, in order to constrain the
complexity of the set X(k + 1), an overbound X (k + 1) is computed instead. The application of
this technique to uncertain systems is described, for instance, in [39, 54].

3.3. Absolute input distinguishability

As previously mentioned, the proper selection of the uncertainty regions is of prime importance for
the type of control strategy adopted. In particular,

e the number of models, Ng, should be kept small, in order to reduce the length of transients;

e the uncertainty regions should be sufficiently small, so that the local controllers ensure the
required performance levels; and

e the exogenous signals should sufficiently excite the dynamics of the plant, in order to allow for
the identification of the best model of the system, from the set of admissible systems.

Therefore, this section aims to derive, for a pre-specified type of input signals, the largest size of
an uncertainty region, €2;, that enables its invalidation (or falsification), in case the true parameter
does not belong to that set, that is, p ¢ 2;. The following notion of distinguishability will be used
in this paper to provide an upper bound on the time required to detect a given fault.

Definition 1 ([56]) )
Letd! = d;(i) and n] = n;(i). Systems S and S, are said to be absolutely (X,,U, W )-input
distinguishable in N measurements if, for any non-zero

(X352 dd oy 3y o3 o1, ) € X2 x WY x WD g,
there exists k € {0,1,---, N} such that
y1(k) # ya(k).

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. (2015)
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Moreover, two systems are said to be absolutely (X,,U, W)-input distinguishable if there exists
N = 0 such that they are absolutely (X,, U, W)-input distinguishable in N measurements.

In the definition, we used the short-hand notation vg n to denote a concatenation of a sequence

of vectors
von = [vl. - 0]

Unlike other definitions of distinguishability that can be found in the literature [57-59], Definition
1 is important when we want to guarantee that, regardless of the input signals, two systems can be
distinguished in a given number of measurements.

The derivation of sufficient conditions for distinguishability typically leads to cumbersome cal-
culations. In particular, in [56], a method is proposed that formulates the distinguishability problem
as a concave optimization program, in order to obtain bounds on the intensity of the disturbances
that guarantee the distinguishability of two dynamic systems. An alternative solution is proposed in
[44], by deriving control input signals that lead to the identifiability of the system at hand.

The approach proposed in this paper is to assess which frequency ranges of the input signal are
more favorable in terms of distinguishability, as described in the sequel. If the input signals indeed
have the frequency content that enables the distinguishability of the possible models of the system,
one can ensure that all except the ‘correct’ model are invalidated. The following result will be used
to guarantee that, if two signals render two linear time-invariant (LTT) systems distinguishable, then
so does the sum of those signals.

Proposition 1
Consider that systems S; and S,, with sampling period Ty, are single-input/single-output LTI and
(X,, U, W)-input distinguishable in N measurements, where

Xo = {O}’ W= {0} X Wn,
and

U = {u(0),u(l),--[uk) = u sin(@kTy)} | {u(0), u(1), - [u(k) = us sin(@kTy)},

with w # @ and with W;, = [—n, n]. Then, for sufficiently large N and sufficiently small T > 0,
systems S; and S, are (X,, U, W)-input distinguishable in N measurements, where

U =U[Jw(©).u(1),[u(k) = u sin(@kTy) + us sin(@k Ty)} .

Proof

Define t = kT, where Ty is the sampling period, and let y; (-) and y;(-) denote the responses of Sy
to u(k) = uy sin(wkTy) and u(k) = u, sin(wkTy), respectively, with analogous definition of y,(-)
and j,(-) for system S,. Then, for some ay,dy,as,d, € R* and by, by, by, by € [0, 27|,

y1(t) = aysin(wt + by)

y1(t) = a; sin(@t + by)
and

y2(t) = azsin(wt + bs)

Y2(t) = azsin(@t + by)

Because the two systems are distinguishable using either input signals, it is straightforward to
conclude that

[y1(t1) — y2(t1)| = 2 for some t; < NTj, ®)
and

|71 (t2) — y2(t2)| = 27 for some t, < NTs. 9)
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Now, consider the responses of each system to the input signal u(k) = u;sin(wkTs) +
U, sin(@k Ty), which can be written as

$1(1) = ay sin(wt + by) + a, sin(@t + by),
and

$a2(t) = az sin(wt + by) + do sin(@t + by).
Hence,

y1(t) — y2(t) = ay sin(wt + by) + a; sin(dt + by) — as sin(wt + by) — dy sin(dt + )
= Ajsin(wt + c¢1) — Az sin(@t + ¢3),

for some Ay, A, € RT ,and ¢y, ¢, € [0, 27].
However, A; = 2in and A, = 2n for (8) and (9) to be satisfied, respectively. Therefore,

|91() = Y2(0)| = 20| sin(wt + ¢1) — sin(@1 + ¢2)|.
According to Lemma 1 in the Appendix, there exists 3 € R such that
| sin(wts + ¢1) — sin(®t3 + ¢3)| > 1.

Hence, it is straightforward to conclude that, by continuity of sin(-), for sufficiently small Ty,
there exists k3 such that

| sin(wksTs + c1) — sin(@k3Ts + c2)| > 1,
which completes the proof. O

Remark 2
Proposition 1 assumes that no disturbances are acting upon the system. Otherwise, these exogenous
signals may hinder the distinguishability problem. Measurement noise, however, is considered.

Remark 3

Although Proposition 1 only provides sufficient conditions for distinguishability, it can be trivially
shown that, if one of the assumptions is violated, one may end up with signals that do not enable
distinguishability. For instance, if both input signals have the same frequency, it is possible that they
cancel out, which obviously prevents the system from being excited. Alternatively, if, for instance,
@ = 2w and Ty = m/w, then the responses of the two systems may be identical at sampling times.

Remark 4 B

As a final remark, it is stressed that N may be larger than N. As an example, consider that | — @|
is small, and that by — by = b, — b, = w and a; = a; = ap = d,. Then, summing the two input
signals leads to responses that are approximately zero in the initial period; hence, the system may
only be distinguishable for large values of N .

The result in Proposition 1 validates the use of a frequency-based analysis in terms of absolute
distinguishability. Hence, if the frequency contents of the input signal are know a priori, it is possible
to infer whether or not a given fault will be detected.

3.4. Multiple-model adaptive control/set-valued observers architecture

Figure 5 depicts the fundamental MMAC architecture adopted in this article, referred to as
MMAC/SVO architecture for time-varying systems, where Ng possible dynamic models for the
system were considered. The main idea in this architecture is to have an SVO, referred to as global
SVO, that is able to provide set-valued state estimates for all the admissible time-varying uncertain-
ties of the plant, either nominal or faulty. Therefore, unless none of the Ng families of models —
which assume that the uncertain parameters are time-varying — is able to describe the dynamics of
the actual plant, the global SVO does never provide an empty set-valued estimate of the state. As
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Figure 5. Multiple-model adaptive control/set-valued observers architecture for time-varying systems. X; is
the set-valued state estimate provided by set-valued observers #i .
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Global SVO

Figure 6. Algorithm for the logic block of the multiple-model adaptive control/set-valued observers
architecture for time-invariant systems.

described in the sequel, this estimate is used to reinitialize the remaining SVOs when all the models
are invalidated. Such an event occurs, for instance, when the impaired system recovers from a fault
and, thus, retrieves its nominal behavior.

Indeed, as stressed in [30], in the case of time-varying plants, a model shall never be disqualified
‘forever’. In fact, if the dynamics of the plant drift at a given time instant, then a previously discarded
controller may be the appropriate one to be used from that moment on. Hence, the ability to address
faulty-to-healthy transitions of the plant is an important feature of an FTC scheme.

The block entitled Logic in Figure 5 is responsible for selecting the controller to be connected
to the loop, by taking into account the set-valued estimates of the state of the system provided by
the SVOs. Several approaches can be used to tackle this decision problem. The one adopted in this
article is depicted in Figure 6, where / : {2,--- ,Ns} — {1,2,---, Ns — 1} is a map satisfying
h(n) = n —1,and i, = Ng is the number of controllers. This strategy takes into account the fact
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that, if p € ;, then SVO #i does never fail, that is, the set-valued state estimate of the ith SVO,
Xi (k), is never empty. On the other hand, if p ¢ 2;, then it can happen that, for some 7,, we have
Xi(k) =0, forall k = t,.

In summary, the main strategy in the algorithm is to start by using any controller in the initial set
of plausible controllers and then remove from the loop controllers whose corresponding models of
the plant have been disqualified. For the sake of simplicity, the controllers are selected in a sequential
fashion in this case, that is, if model # Ny is invalidated, we switch to controller #Ng — 1, while if
model #Ng — 1 is invalidated, we switch to controller #Ng —2, and so on. However, other algorithms
can be used, as long as the selected controller does never correspond to a previously falsified (or
invalidated) model. In terms of FTC, it may be useful to initialize the algorithm with the controller
designed for the healthy plant. This, however, is not a requirement of the algorithm, as discussed in
the sequel.

If all but the global SVO provide empty set-valued state estimates for the plant, it means that none
of the Ns models is able to describe the observed input/output data in the whole time-range. Thus,
we conclude that the dynamics of the plant have drifted from one region of uncertainty to another,
and hence, all the other SVOs should be reinitialized.

In order to ensure closed-loop stability, we posit the following assumptions.

Assumption 1
Let S be the (finite) set of admissible models of the plant. If S; € S and S; € S, with S; # S,
then S; and S are absolutely (X,, U, W)-input distinguishable in N sampling times.

Assumption 2
Let:

(1) the initial state of the plant satisfy x(0) € X,;
(2) the control input sequence satisfy u(j) € U for all j = 0; and
(3) the sequence of disturbances satisfy (d(j),n(j)) € W forall j = 0.

Assumption 3
There exists Tmin > 0 such that, if p(k) € Q, then there exist time indexes k; and k> such that

(1) k2 — k1| = Tiins
(3) k1 <k <k,;and
4) p(k) € Qj forall k € [ky, k2]

In other words, Assumption 1 is used to guarantee that the models in S can be distinguished from
each other (in the sense of Definition 1), while Assumption 2 ensures that the input signals suffi-
ciently excite the system to enable distinguishability. The latter assumption is key for performance,
even though it can be dropped if only closed-loop stability is required, as described in [30]. Finally,
Assumption 3 guarantees that the dynamics of the system to be controlled is sufficiently slow, so
that the identification subsystem in Figure 5 is able to select the appropriate model of the plant. It is
also related to the concept of dwell-time, which is key in many MMAC strategies, in order to ensure
closed-loop stability — see, for instance, [21].

From these assumptions, we can conclude the following result.

Theorem 1 ([39])

Consider a dynamic system, S,, described by (4), such that p(k) € Q = Q; U--- U Qp,. Sup-
pose Assumptions 1-3 are satisfied and that controller, K;, designed for the region of uncertainty
2;, asymptotically stabilizes the system (4) with p € €2;. Then, the closed-loop system with the
MMAC/SVO architecture for time-varying plants is input/output stable, for sufficiently large Tipin.

This result provides guarantees that the closed-loop system is stable, for sufficiently slow time-
variations of the dynamics. The proof of the theorem (that is fully described in [39, 54]) can be
sketched as follows:

(1) Given Assumptions 1 and 2, we can guarantee that, if the dynamics of the plant remain
modeled by the same LPV description for a sufficiently large time interval, the SVOs will be
able to invalidate all but the ‘correct’ model of the plant.
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(2) Assumption 3 ensures that indeed the dynamics of the system remains in the same region of
uncertainty for a sufficiently large time interval.

(3) Because each local controller is guaranteed to asymptotically stabilize the system for the
corresponding region of uncertainty, and using similar arguments to those in [30], it can be
shown that the closed-loop system is stable.

Remark 5

As shown in [30], the minimum value of Ty, required to ensure stability increases with the number
of admissible models, Ng. Therefore, the appropriate selection of this set of models is of prime
importance in order to guarantee that the transients caused by the model identification process are
small, and thus that the closed-loop performance is not severely degraded. As described in the
sequel, the distinguishability concept is adopted for this purpose, because it allows the definition of
this set of models, based on the maximum time allowed for model identification, and on the intensity
of the exogenous signals that excite the plant.

3.5. Multiple-model adaptive control/set-valued observer applied to fault-tolerant control of an air
heating fan

The dynamics in (4) can be readily transformed into the model described by (6), where the offset,
b; (+), is modeled by a low-frequency disturbance, added to the measured output of the system. In
particular, b; (-) is described by

bi(k + 1) = 0.999b; (k) + 0.0010up, (k).

where up (k) is drawn from an interval with pre-specified bounds. The SVOs allow the definition
of (time-varying) upper and lower bounds for this disturbance that can aid the invalidation of the
models. However, because of the large level of uncertainty of this offset, which is highly dependent
on the room temperature, we assume that the aforementioned upper and lower bounds correspond
to the upper and lower saturation levels of the temperature sensor, respectively.

In designing the SVO-based FTC system for the air heating fan, Ng = 4 models are consid-
ered, where the last one, Sy, is used by the global SVO, as described in the previous subsection.
The remaining models are obtained for the throttle openings in Table I. Each model is described
by (6), with

13467 10 0 - ~—0.1132 0 0 0" -0.01477 0.0046
0663501 0 0.1235 000 0.1166 0.0096
A=\ 1504 00 o |TP 0039000 Br@=] "o |Tr| o |
0 00 0.9990] . 0 000, o0 | 0
07911 10 0 - ~—0.0814 0 0 0 -0.0677 - 0.0092
0126801 0 0.0589 00 0 0.0830 —0.0269
A00=| 90160 00 0o |TP 00109000 B2 =] "o |[Tr] o |
L 0 0009990 . 0 000, o0 | o0
07878 10 0 - - 0.0129 00 0 0.0768 - 0.0013
—0.1806 01 0 —0.0399 0 0 0 0.0488 —0.0040
As()=| 90532 00 0o |TP| 00236 000 B3@=| "o |tr2| o |
0 00 0.9990 ] L 0 000, 0 o0
10117 10 0 - ~—0.9888 0 0 0" 0.0488 0.0653
—0358801 0 1.0404 00 0 —0.0887 —0.0430
As)=| 40799 00 o |TP 02853000 Bs@=| o |tr2| o |
0 00 0.9990 ] . 0 000, 0 0
and
Cl=C=C=Cyi=[1001],
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Table I. Admissible throttle openings for each model.

Model Throttle opening (6) Plant condition
S1 [10°, 60°[ Faulty
So [60°, 120°] Healthy
S3 1120°, 135°] Faulty
0
0
Li=L,=Ls=L4= 0 , Ny =N;=N3=N4=0.1,
0.0010

where the uncertain vector of parameter, p = (p1, p2), is related to the unknown throttle opening,
as described in the sequel, and where the exogenous disturbances and measurement noise satisfy,
respectively,

0<dk)<9, Ink)|<l

These models are obtained by constructing a grid of systems, each of which with the ARMAX
structure defined in (1), and for a particular value of the throttle opening. As an example, for the
class of models S, a set of N; models is generated by considering a set of N; equally spaced
throttle openings. For each of these models, a state-space description as in (2) is derived and a pair

(ff{ , l?lj ) is obtained, with j € {1,..., N1}. Finally, an affine LPV representation for all (/Ij , B 1] ),

j €{l,..., N1}, is obtained by minimizing the element-wise mean squared error of
AT (T4 [Ae)
. - - + — . ’
s \Lae] i Laten

where n,, is the number of independent parameters considered, and pg is the instantiation of param-
eter £ for the pair (ff’ , l§1’ ) These parameters can be functions of external variables, such as the

throttle opening. In the example considered, p; = 6 and p, = 62. The process is repeated for the
remaining families of models, including that of the Global SVO, with the exception that, in the latter
case, any admissible throttle opening in the interval [10°, 135°] is considered. Alternative methods
may be used to generate this set of LPV models, as described, for instance, in [60—63] and refer-
ences therein. A systematic procedure to address this problem is also provided in [64], based on
linear fractional transformations (LFTs).

Remark 6

The uncertainty in each model is essentially a consequence of the unknown throttle opening. How-
ever, two independent uncertain parameters, p; and p;, are considered by the SVOs, because the
methodology adopted to their implementation [39] disregards any relationship between the uncer-
tain parameters of A(p) and B(p). As a result, the set-valued state estimates provided by the SVOs
are conservative, in the sense that they may include states that are not compatible with the dynamics
of the plant.

Each model obtained for a throttle opening between 60° and 120° is considered a non-faulty setup.
Hence, if the dynamics of the system are well-described by S, then the system is considered to
be operating normally. If, however, the observed sequence of input/output signals is not compatible
with S, but rather with S; or S3, then the system is faulty and a controller for the impaired systems
should be connected to the loop.

In order to evaluate the conditions in which a given fault is detected, the distinguishability of
the faulty and nominal models can be evaluated. As an example, Figure 7 depicts the minimum
amplitude of the control signal as a function of the frequency, that guarantees absolute input distin-
guishability of S, for different values of the SVOs horizon, N. Therefore, if, for example, the input
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Figure 7. Minimum amplitude of the control signal as a function of the frequency, that guarantees absolute
input distinguishability of Sy, for different values of the set-valued observers horizon, N.
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Figure 8. Minimum amplitude of the control signal as a function of the actual value of the throttle opening,
that guarantees absolute input distinguishability of the three models, for N = 20. The control signal is
assumed to be sinusoidal, with frequency 0.1 Hz.

signal is a sinusoid with amplitude 0.1 V and frequency 0.3 Hz, the fault is detected in, at most, 16
sampling periods, that is, in 3.2 s. This result is obtained by using the approach described in [5].

A complementary analysis can be performed by fixing the control input signal, and varying the
actual throttle opening, as illustrated in Figure 8. As expected, for values of the throttle opening
closer to the boundaries of each region, it is, in general, harder to identify the model of the system.

These results can be interpreted as follows. If the performance of the closed-loop is deterio-
rated (or if, ultimately, the system becomes unstable), the magnitude of the control signal tends to
increase. The results in Figure 8, however, indicate that input signals with larger amplitudes facilitate
the distinguishability of the systems, that is, reduces the time required to detect — and compensate
for — faults.

As described in [65], the local non-adaptive controllers for each region of the dynamics of the
system were designed so as to minimize the #,-norm of the tracking error — see [66] — and are
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Figure 9. Interconnection between the plant and the linear quadratic Gaussian controller.

typically referred to as linear quadratic Gaussian (LQG) controllers. For further details on the design
choices and specifications, the reader is referred to [65].

In order to avoid chattering due to switching of the controllers, an integrator is connected to the
loop, in between the controller and the plant — see [67]. In terms of controller design, it can be
assumed that the integrator is part of the process. Figure 9 depicts the LQG controller (that can be
seen as the combination of a linear quadratic regulator (LQR), and a Kalman filter (KF), based on
the separation principle [68]), together with the augmented process (plant and integrator).

The augmented process is, therefore, described by

(k+1) A; Bi (k) 0
[i(k“)} = [o 1][i<k)]+ [1] Su (k)
~———————

——— ————— N —

xak+1) i, (a]c:)(m B (10)
»(k) = Lﬁi[w(k)]
G

where x, is the augmented state, /L-, B,-, and C_'i are the augmented matrices, and §u is the incre-
mental command action from the controller. For the sake of simplicity, the disturbances are omitted
in this description. The design of the LQG controllers is performed using the quadratic cost function

N-—-1
J@u) = lim 3" (ez(k) +R [Su(k)]z), (11)
k=0

where e(k) = r — y(k) is the tracking error and R > 0 is a weighting matrix. For N — oo, the
discrete-time LQG controller for model #i is, finally, described by

Ralk + 1) = (4; — Bifi — £;Ci) Xa(k) — Lie(k) (12)
Su(k) = —RKiXq(k) ’
where £; and £; are the observer and regulator gains, respectively. An anti-windup block was also
designed to avoid transients caused by saturation of the command input.

Remark 7

In designing these controllers, the offset b; is regarded as a (low-frequency) disturbance that is
naturally rejected by the inclusion of the integrator at the plant input, and the plant is considered
time-invariant.

4. EXPERIMENTAL RESULTS

Using the Process Trainer PT326, depicted in Figure 10, a series of tests have been performed in
order to experimentally evaluate the behavior of the proposed control methodology. We start by
analyzing the behavior of the local controllers, synthesized as described in Section 3.5, followed by
the setup description and performance evaluation of the proposed SVO-based FTC method.
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Figure 10. Process Trainer PT326 experimental setup.
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Figure 11. Experimental setup: (1) PT326 air heating fan, (2) computer with the Real-Time Workshop
toolbox, and (3) computer implementing the set-valued observers routines and indicating the selected
model, i.

Throughout this section, we consider three local models for the plant, resulting from the throttle
openings ¢; = 30°, 6, = 70°, and 63 = 130°. We denote by S; the model of the system for & = 0;,
and by K; the associated LQG controller. Therefore, S, represents a non-faulty model of the plant,
while the other two describe faulty situations.

4.1. Description of the experimental setup

The experimental setup used to evaluate the adopted SVO-based FTC methodology and illustrated
in Figure 11, is composed of

(1) the Process Trainer PT326 experimental device (Figure 10);
(2) a computer equipped with MATLAB’s Real-Time Workshop (RTW) toolbox; and
(3) a computer implementing the SVOs routines.

The computer with the RTW toolbox implements the interface between the air heating fan and
the control algorithm. It is responsible for acquiring the sensor data and generating the control input
signals. The computer that implements the SVOs routines collects all this information and gener-
ates set-valued state estimates for each plausible model of the system. Notice that, as illustrated
in Figure 5, these are highly parallelizable algorithms, thus being able to take advantage of par-
allel processing architectures — such as multi-core processing units — and being implemented in a
distributed fashion. These two computers communicate between themselves by interchanging user
datagram protocol (UDP) packets.

4.2. Experimental evaluation of the local controllers
The reference tracking performance of each controller can be evaluated by resorting to Figure 12. In

these experiments, we assume that the appropriate local controller is connected to the loop. Notice
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Experimental reference tracking around equilibrium points
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Figure 12. Experimental closed-loop results for the different equilibrium points (67 = 30°, 8, = 70°, and
03 = 130°), using for each one the corresponding local controller.
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Figure 13. Experimental closed-loop results for a time-varying throttle opening, using the three local
controllers, each one in a different experiment.

that, due to the aforementioned overheating of the tube, the control action decreases as time goes
by. This effect is particularly notorious for controllers K, and K3. Indeed, as the temperature of the
tube increases, the control input effort required to achieve the same air temperature is reduced.

In the following experiments, we consider that the throttle opening is changed manually every 50
secs, according to the sequence 130°, 70° and 30°. Moreover, only a single LQG controller is used
in each experiment. The results are summarized in Figure 13.

It should be noticed that none of the controllers exhibits reasonable performance for the whole
range of the throttle opening, which indicates that non-adaptive control strategies may not be suitable
for the problem at hand. This means that if the possibility of having system failures is not considered
in the design of the controllers, the closed-loop performance may be severely affected.

4.3. Experimental evaluation of the SVO-based FTC system
Figure 14 illustrates a typical time-sequence of the results obtained using the SVO-based FTC
method described in this paper. The throttle opening changes every 70 secs. In this case, the SVOs
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Figure 14. Experimental results for the closed-loop system with the multiple-model adaptive control/set-
valued observers.
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Figure 15. Experimental results for the closed-loop system with the perfect model identification (unrealiz-
able in practical situations).

take typically less than 10 secs to invalidate all but the ‘correct” model of the system. This is valid
both for fault detection and for recovery from faults. As a consequence, the tracking error is small,
except during the transients between the switching of the non-adaptive controllers.

The results were also compared, through a series of experiments, with the so-called Perfect Model
IDentification method. In this scheme, the appropriate controller is connected to the loop, by taking
advantage of the information regarding the throttle opening. This method, of course, cannot be
implemented in practice, because such information is assumed not to be available for the controller
and hence is used here just for evaluating the results obtained.

As depicted in Figure 15, the results obtained with the Perfect Model IDentification method are
similar to those of the SVO-based FTC system. In fact, the tracking error and the control input are
comparable, although the MMAC/SVO shows slightly larger transients during the changes of the
throttle opening. In terms of root mean square (RMS) tracking error, the results obtained with both
approaches are summarized in Table II, for seven repetitions of the same experimental test.
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Table II. RMS of the output.

RMS (°C)
PMID 1.05
MMAC/SVO 1.07

PMID, Perfect Model IDentification;
MMAC/SVO, multiple-model adaptive
control/set-valued observer.

It should be noticed that the deterioration, in terms of RMS performance, that comes from the use
of the SVO-based decision subsystem, is nearly 2%, for the scenario considered. Therefore, these
results indicate that the technique proposed is potentially applicable in practical FTC problems, with
clear benefits in terms of improved performance.

5. CONCLUSIONS

This paper described the application of the MMAC methodology using SVOs to the problem of FTC
of an air heating fan. The concept of absolute distinguishability was adopted to evaluate the input
signals that promote the detection of faults.

The behavior of the proposed methodology was experimentally evaluated and it was shown that,
at least for the scenarios considered, the deterioration in terms of RMS performance due to the
SVO-based model selection is around 2%. As a shortcoming, the computational requirements of
the SVOs are typically large when compared with the ones of a passive FTC system. Nevertheless,
for the present case, this did not jeopardize the practical implementability of the technique, as the
sampling period of 200 ms was sufficient to perform all the calculations.

APPENDIX

Lemma 1
Let wy,w, € R, with w, > wy, and ¢y, ¢, € R. Then,

lim %/ (sin(w1? + ¢1) — sin(wat + ¢2))>dt = 1
0

T —o00

Proof

o sin(@it + ¢1) = sin(wat + ¢2))* di =

= 57 (sin(wit + ¢1))>dt + [3° (sin(wat + ¢2))> dt —2 [77 sin(w1t + ¢1) sin(wat + ¢2)dt
_ T + sin(2¢1)—sin(RQw T+2¢1) + T + sin(2¢2)—sin(2a)2T+2¢2)+
-2 2

4w 4wr
4= sin(@1 —¢2) +sin(¢p1 —¢2+ (w1 —w2)T) + sin(¢1 +¢2)—sin(@1 +¢o + (w1 +wr)T)
w1 —w> w1 +tw2 .

Hence,

M7 oo % 57 (sin(w1t + ¢1) — sin(wat + ¢2))*dt = 1 +1 = 1.
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