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Abstract 

Understanding adoption patterns of smartphones is of vital importance to telecommunication 
managers in today’s highly dynamic mobile markets. In this paper, we leverage the network structure 
and specific position of each individual in the social network to account for and measure the potential 
heterogeneous role of peer influence in the adoption of the iPhone 3G. We introduce the idea of core-
periphery as a meso-level organizational principle to study the social network, which complements the 
use of centrality measures derived from either global network properties (macro-level) or from each 
individual's local social neighbourhood (micro-level). Using millions of call detailed records from a 
mobile network operator in one country for a period of eleven months, we identify overlapping social 
communities as well as core and periphery individuals in the network. Our empirical analysis shows 
that core users exert more influence on periphery users than vice versa. Our findings provide 
important insights to help identify influential members in the social network, which is potentially useful 
to design optimal targeting strategies to improve current network-based marketing practices. 
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1 Introduction 
Mobile handset is the central medium through which consumers subscribe to mobile network operators 
(MNOs) traditionally for the purpose of using communication services such as calling and text 
messages. As the number of mobile subscriptions worldwide is passing 7 billion by the end of 2015 
(ITU 2015), smartphones have appeared as the standard configuration for mobile handsets once 
dominated by feature phones with fixed functionalities at the time of manufacture. Gartner (2015) 
estimated that annual smartphone sales have totalled over 1 billion units and exceeded that of feature 
phones since 2013. On one hand, the development of smartphones has fuelled the rapid growth in 
creating multi-sided technological and commercial platforms that represent the accelerated 
convergence of mobile telephony, Internet services and personal computing (Campbell-Kelly et al. 
2015). The ecosystem of these platforms consists of interdependent actors, including chipset makers, 
smartphone vendors, MNOs, and mobile OS and application developers, who together contribute 
complementary innovations that empower the "over-the-top" applications, such as web browsing, 
video streaming, online gaming, mobile banking, etc. These services are easily installed in the 
smartphone as mobile apps that consumers can choose based on own preferences and thus have a 
significant impact on consumer welfare (Ghose and Han 2014). Meanwhile, the smartphone market has 
witnessed new entrants such as Apple and Samsung outcompeted the incumbents for their superior 
capabilities to engage with a variety of stakeholders across the value chain (Pon et al. 2014). This 
resulted in the proliferation of smartphones both in terms of number of new models and high variations 
among heterogeneous manufacturers, implying that product differentiation still characterize this 
innovative and competitive market (Cecere et al. 2015). On the other hand, total service revenues in 
wireless industry nowadays remained steadily growing. This can be in particular attributed to the 
expanded smartphone penetration, in that the greater value associated with smartphone users, as 
opposed to ones equipped with feature phones, is reflected by their higher willingness to shift to more 
expensive tariff plans with mobile broadband access as add-on service (OECD 2013). However, MNOs 
experienced the revenue gap caused by the continued decline in voice and SMS usage and heavy 
investment in network resources to handle capacity issues, due to the explosion of mobile data traffic. 
McKinsey & Company (2014) reported that global mobile data traffic increased nearly 40 times from 
2008 to 2013, whereas the generated revenue streams from it merely tripled. To ensure the profitability 
and sustainable growth, MNOs have to devise effective strategies to keep inducing subscribers to 
upgrade to newer generation of smartphones, and meanwhile transition their tariff structures to become 
more data-centric. More importantly, the popularity of smartphones stimulated the emergence of 
innovations that are transforming many industries for immense economic and social development. 
Therefore, as one of the most dynamic market segments in wireless industry, understanding adoption 
patterns of smartphones is of great interest to not only handset manufacturers and MNOs, but also to 
service providers and application developers. 
 Factors that influence consumers' acceptance and adoption behavior of mobile services have 
long been a fundamental research theme in mobile business community and mobile computing within 
the IS discipline at large, mostly dominated by conceptual approaches (Budu and Botateng 2013; Ladd 
et al. 2010). For example, Tscherning and Damsgaard (2008) designed a holistic framework to analyze 
scholarly literature about diffusion of various types of mobile communication products and services, 
and found that most existing research employed either Technology Acceptance Model (TAM) (e.g. 
Sarker and Wells 2003) or Diffusion of Innovation (DOI) theory (e.g. Kakihara 2014). López-Nicolás 
et al. (2008) linked these two theoretical frameworks together, showing that social factors are strongly 
related to consumer's perceived benefits to adopt advanced mobile services, because DOI theory 
complements the TAM in the way that explained the potential adopters' attitudes towards mobile 
innovations are affected by the information received from their social environment. However, in the 
case of smartphone adoption, empirical studies on how the focal subscriber decides to adopt the 
smartphone, because she is informed about it, through the exposure from friends who have already 
adopted in the social neighborhood, are still limited. This is mostly because large-scale mobile dataset 
that can be used to construct mobile social network (MSN) and establish the relationship between peer 
influence and smartphone adoption is lacking until recently (Blondel et al. 2015). Two exceptions 



include one study considering smartphone as a general product category (Risselada et al. 2014) and the 
other focusing on one specific model of Apple's iPhone 3G (Matos et al. 2014). Both studies confirmed 
that peer influence have a positive impact on consumer's decision to adopt the smartphone. 
 In this paper, we contribute to the existing literature mainly from two aspects: First, we 
leverage network structure and specific position of each individual in the social network to account for 
and measure heterogeneous role of peer influence in smartphone adoption. We do so by introducing 
core-periphery structure as a meso-level organizational principle of network to complement the use of 
centrality measures that are derived from either global properties of the network (macro-level) or 
individual's local social neighborhood (micro-level). Second, we unify overlapping community 
structure with core-periphery structure, by specifying positive correlations between the overlaps of the 
community affiliations and the coreness of individual's network position. Our empirical results on 
iPhone 3G adoption, given the presence of confounding factors, demonstrate the asymmetric peer 
influence between subscribers positioned at the core and at the peripheral parts of the network, i.e. core 
users may exert stronger influence to periphery users than vice versa. We believe our findings provide 
important insights on identifying influential members in the social network, which is potentially useful 
to design optimal targeting strategy to improve current network-based marketing practices. 

2 Related Literature on Peer Influence and Product Adoption 
Peer influence via interpersonal communications, either online or offline, has been acknowledged the 
important role in determining consumer's choices for decades. In general terms, when we speak of 
influence within a social network, we assume that controlling all other factors, there exists temporal 
dependence between the focal individual's behavior and her direct neighbors' previous behavior (e.g. 
Bass 1969; Roger 2003). For example, marketers increasingly realize to harness the power of social 
links between consumers to complement traditional advertising strategy (Bruce et al. 2012; Trusov et 
al. 2009), aiming at triggering viral adoptions through social contagion (Van der Lans et al. 2010).  
 Traditional diffusion studies (e.g. Bass model and its variations) typically use aggregated data 
to model product growth at the market level without detailed network information, so that peer 
influence is simplified as just to estimate one relatively parsimonious parameter (Hartmann et al. 2008). 
Given that modern IS diligently record digital traces of human communications, such as emails, phone 
calls, tweets, etc., at an unprecedented scale, the resulting massive data of social interactions can 
facilitate researchers to investigate peer influence with new insights. Peres et al. (2010) critically 
reviewed the shift from aggregate-level modelling to individual-level product adoption from 
perspective of consumers, and they noted the increasing contributions from observing and measuring 
contagion effect on actual social networks.  
 However, empirical analyses on identifying peer influence using observational networked data 
still face significant challenges, as it is known that estimation is subject to several confounding factors, 
such as homophily, correlated unobservable and simultaneity, among others (Aral 2010; Manski 1993). 
Due to the endogenous formation of social network, the correlated behavior among connected 
individuals can be ascribed to both influence and their inherent similarities - homophily (McPherson 
2001). Thus misattribution of homophily to influence may lead to significant overestimation of the 
latter (Aral et al. 2009; Davin et al. 2014; Tucker 2008). Another source of correlation stems from the 
unobserved external stimuli that drive actions of connected individuals similarly. One example of 
correlated unobservable in the case of product adoption is mass marketing and/or media exposure that 
may potentially bring the awareness and interests of the product to everyone in the same fashion. For 
example, Van den Bulte and Lilien (2001) re-analyzed the classic study on diffusion of medical 
innovation by (Coleman 1966) that articulated the strong influence in doctor's new drug adoption 
decision, but found no evidence of contagion effect after controlling for marketing efforts. Finally, the 
simultaneity issue indicates the contemporaneous interdependence between the focal individual and her 
peers. Manski (1993) referred to this as "reflection problem" and it may also lead to upward bias in the 
estimation (Nair et al. 2010). 



 Numerous scholars have contributed to the toolkits for the purpose of quantitatively estimating 
peer influence in social networks given the presence of confounding factors, including actor-based 
model families (Lewis et al. 2012; Steglich et al. 2010), fixed or random effects models (Bramoulle et 
al. 2009; Goldsmith-Pinkham and Imbens 2013), hierarchical Bayesian model (Ma et al. 2014), 
instrumental variable methods (Tucker 2008), latent space model (Davin et al. 2014), matched sample 
estimation (Aral et al. 2009; Han and Ferreira 2014), randomization test (Anagnostopoulos et al. 2008; 
La Fond and Neville 2010), to name just a few. Despite the sophistication of these model specifications 
on handling observed homophily, Shalizi and Thomas (2011) argued that peer influence and 
homophily are generically confounded observationally and can not be readily disentangled from each 
other, because latent homophily may still remain as a component of the estimated influence.  
 Moreover, even when researchers explicitly address the endogeneity issue through robust 
identification strategies that alleviate bias from confounding factors, the estimated effects of peer 
influence may fail to account for individual heterogeneity in the tendency to influence (or be 
influenced by) peers, i.e., some consumers exert disproportionate influence to others and vice versa. As 
such, the notions of influentials or opinion leaders that catalyze product diffusion have received 
considerable attention with both theoretical backgrounds  (Katz and Lazarsfeld 1955; Roger 2003) and 
empirical evidences (Goldenberg et al. 2009; Iyengar et al. 2011). However, Watts and Dodds (2007) 
doubted the influential hypothesis and found that cascades of influence are largely driven by "a critical 
mass of easily influenced individuals". Van den Bulte and Joshi (2007) introduced a two-segment 
structure with asymmetric influence in the diffusion model: one segment of influentials who affect 
another segment of imitators whose adoption can hardly affect influentials, and they showed that this 
two-segment approach fits data better than the standard mixed-influence model. Likewise, such a 
structure is consistent with several empirical studies that discover asymmetric peer effect in adoption 
behavior between influential and susceptible individuals (Aral and Walker 2012; Iyengar et al. 2011; 
Nair et al. 2010; Tucker 2008). These findings shed light on the new research direction towards 
understanding which individuals and in what way should be targeted so as to achieve mass adoption 
through contagion (Aral 2010).   
 Canonical methods to identify opinion leaders typically fall into three categories: 1) 
individual's authority is predetermined in a formal organizational environment (e.g. managers vs. 
workers) (Tucker 2008), which can hardly be adapted to common scenarios; 2) individuals are 
surveyed to directly nominate opinion leaders in their reference group (Nair et al. 2010); 3) individual's 
status is based on certain socio-metric techniques, by calculating network centrality scores after 
capturing self-reported social interaction information (Banerjee et al. 2013). Iyengar et al. (2011) 
compared the relationship between self-reported and socio-metric leadership and found that not only 
these two types of opinion leadership are barely moderately correlated, but also adoption patterns are 
distinct from each other. Meanwhile, how network structure and individual's positions in the network 
moderate the contagion process remains elusive. Needless to say, none of these methods can be well 
suited to generalize into large-scale network settings.  
 The inclusion of full network structure provides new insights when assessing heterogeneous 
effects of peer influence. Jackson et al. (2015) broadly described a taxonomy of "macro"-level and  
"micro"-level characteristics emerged from social network that can affect product diffusion. On one 
hand, the macro-level patterns relate to the global properties of the network, such as network densities, 
degree distributions, path lengths, and so on. These summary statistics capture the essential graph 
topologies of the network and have seen as primary determinants of process of diffusion (e.g. Roger 
2003; Jackson and Rogers 2007).  However, such overall characterizations of network overlook the 
richness of dyadic social interaction information between pairs of individuals. On the other hand, the 
micro-level patterns refer to the local network structure among individual's connections. Sundararajan 
(2008) explained micro patterns arise because individuals know their own immediate social 
neighborhood well and are likely to know less about the structure of their neighbors' local network, but 
have minimal knowledge about the rest of the network. Hence individuals with large number of 
connections (high degree) and/or are strongly interconnected with each other (high clustering) are 
assumed to serve like a hub in diffusion process, because they are more likely to receive and pass the 



information (Goldenberg et al. 2009). It is just unsurprising that highly central individuals who occupy 
the key positions are deemed as potential influentials, so that various centrality measures have been 
used to represent different aspects of importance in a myriad of applications (Jackson 2014). However, 
when it comes to learning about how individual's position matters, relevant centrality measures may 
require information that extends beyond individual's own local network structure, i.e., individual's 
centrality is recursively related to the centralities of her neighborhoods.  Therefore, Jackson et al. 
(2015) pointed out the "blur" between macro and micro measures of network structure and individual 
position that needs further exploration.  
 Lastly, the underlying distinctive generating mechanisms of correlated behavior resulted from 
confounding factors such as homophily and heterogeneous influence may lead marketers to implement 
different strategies in order to boost product sales. If homophily is the primary driving force, then 
targeted actions should be placed upon segmented individuals with similar characteristics (Hill et al. 
2006), while if influence is in effect, then marketers should focus on influential individual (Iyengar et 
al. 2011), or engineer products with attributes that can augment viral adoptions (Aral and Walker 
2011). If influence and homophily are intermingled, as in most cases where social network is formed 
as a result, then the optimal strategy should be to target influentials of each segmentation and design 
incentives that foster the adoption across segmentations (Aral 2010). Therefore, without appropriately 
accounting for the relative importance and interplay between peer influence and homophily as well as 
the individual heterogeneity being influential and susceptible to influence does not only complicate the 
identification issue, but also hamper the confidence of marketers to measure and manage the effect of 
peer influence more systematically in order to ensure desirable outcome from their marketing efforts.  

3 Background and Data Description 
We obtain the EURMO dataset from a major MNO, which includes call detail records (CDR) for over 
5 million subscribers between August 2008 and June 2009 in one European country. Subscribers are 
identified by their anonymized phone numbers. For each call we know the initiator and the recipient, 
the timestamp, and the GPS coordinates of the connected cell tower. By aggregating GPS coordinates 
over the entire period, we can approximate subscriber's home location as where they spend most of 
their days at municipal level1. We further infer the socio-economic information (e.g. wage) by cross-
referencing the latest census. We also have a set of subscriber characteristics such as gender and usage 
history since their subscription to EURMO, which includes tariff plan, handset usage and 
supplementary services (e.g. mobile Internet). Table 1 lists relevant extracted variables with types and 
brief descriptions. 
 
Variable Type Description 
gender categorical Self-reported gender (male, female, unknown) 
wage categorical Inferred wage level (very low, low, average, high, very high) 
prepaid binary Prepaid tariff plan (yes, no) 
phone_technology cateogrical Handset technology (2G, 2.5G, 3G, 3.5G, other) 
mobile_internet binary Mobile broadband as add-on service (yes, no) 
phone_age continuous Age of currently owned handset (year) 
tenure continous Tenure since subscription (year) 
region categorical Home location at municipal level 

Table 1. List of covariates extracted from EURMO. 
 We decide to choose Apple's iPhone 3G (referred only as iPhone hereafter for brevity's sake) 
as the exemplary model to examine the role of peer influence in its adoption for the following reasons. 
First, compared to its predecessor and other smartphones, iPhone includes several innovative features 
that may incur contagious adoption: 1) it supports tri-band UMTS/HSDPA (also dubbed 3.5G) and 
                                            
1 The municipal location is defined as Nomenclature of Units for Territorial Statistics (NUTS) III, which is a geocode 
standard across European countries by Eurostat for statistical purposes. 



enhanced browsing functionality that allow faster and easier mobile internet access, which are likely to 
generate positive network effects (West and Mace 2010); 2) at the day before its release, Apple 
introduced the App Store from which users can download 500 third-party applications and over 15,000 
after the first 6 months and many of these apps are social in nature (e.g. those released by social 
networking sites) (Davin et al. 2014); 3) beyond technical utility, iPhone may also provide its users 
with hedonic benefits, e.g. the haptic experience through the touch-screen technology, which may be 
appealing to consumers with social needs (Arruda-Filho et al. 2010). Second, EURMO is the sole 
partner with Apple with exclusive arrangement. Meanwhile, CDR data spans from the month right 
after the release of iPhone and to the month before that of the successive model iPhone 3GS, so that we 
are able to capture the full cycle of the adoption. Third, iPhone is perceived as costly goods in this 
market. For potential adopters, opinions about this product from already adopted friends are likely to 
be as important, if not more, as when adopting cheap mobile product categories (e.g. caller ringback 
tone (Ma et al. 2014) or mobile apps (Davin et al. 2014)), in order to mitigate their uncertainty and 
justify the cost associated with the adoption. In our period of analysis, there are 20,570 iPhone adopters 
with complete profiles. 
 We use CDR to construct the MSN as an undirected call graph. Specifically, we denote two 
subscribers to befriend each other if they exchange at least one call in the same calendar month. The 
mutual relationship between subscribers ensures that we preclude communications that are unlikely to 
represent the social ties, such as customer services and PBX machines. The resulting network consists 
of 5,535,388 subscribers and 66,717,468 edges with mean, standard deviation, and median of degree 
being 24.1, 25.7 and 16, respectively. Figure 1 shows that the degree distribution of MSN is highly 
skewed and heavy tailed. This implies that individuals have heterogeneous degree of social ties, such 
that they may have different roles in moderating product adoption through the peer influence. 

 
 Figure 1. Empirical degree distributions of MSN generated from EURMO's CDR. 

4 Discovering Social Circles in Ego Network 
Recent empirical analyses on statistical properties of real world MSN provide evidence of community 
structure embedded within the network (Girvan and Newman 2002; Park and Barabási 2007).  
Individuals tend to form social ties and become closely connected because of their homophilous 
characteristics. Such selection process produces structural consequences for the network that mainly 
consist of cohesive groups of similar individuals. Thus it is natural to bind community-aware approach 
with the estimation techniques of peer influence, i.e., to establish the existence of these groups and to 
assign group affinities to each individual into the chosen model, in order to control for the group-level 
unobserved heterogeneity (Shalizi and Thomas 2011). 
 The community structure in MSN does not only validate the theoretic role of homophily and 
influence in tie formation, but also provides several important insights into the task of community 
structure inference, when we only observe the resulting networks as follows. First, uncovered 
communities should exhibit real social meaning, as individuals in the same community have some 
natural affinity for each other or some fundamental characteristics in common. Meanwhile, they should 



be more likely to connect to each other than those who belong to different communities. Hence 
community discovery method should entail two different sources of information together, i.e., 
individual characteristics and social connections among them. Second, in many actual networks, 
individuals may belong to multiple overlapping social circles (Ahn et al. 2010; Palla et al. 2005), such 
as families, college friends and co-workers, etc. This is also aligned with the notion of pluralistic 
homophily across different social dimensions. Third, as also noted in Shalizi and Thomas (2011), 
misspecification of community structure (e.g. simple modular and/or disjoint structure) may even 
worsen the problem and lead to biased model estimation. Fourth, as the complexity of network 
structure grows exponentially with the size, computational costs still remain challenging for large-scale 
networks. Therefore, instead of exploring the whole network, extracting subpopulation through 
community discovery does not only significantly reduce group-level heterogeneity that may potentially 
confound the result, but also help lessen the computational cost (Zhang et al. 2011).  
Subpopulation Extraction We resort to state-of-the-art method of discovering Communities from 
Edge Structure and Node Attributes (CESNA) to extract the subpopulation from the MSN2. CESNA is 
a community discovery algorithm that considers individual characteristics, network structure as well as 
interactions between these two sources of information. It can detect overlapping communities with 
high accuracy and scalability over many existing community detection algorithms, particularly on 
large-scale networks. For sake of space, details beyond the mechanics of CESNA can be found in 
(Yang et al. 2013), and we only note the following implementation procedures3: i) for each iPhone 
adopter, we construct the ego-network that contains adopter and their direct neighbors; ii) for each 
subscriber in the ego-network, we extract a list of 0-1 valued covariates specified in table 1 that 
represent pluralistic homophily, including gender and wage (socio-demographic homophily); tariff 
plan, phone technology and mobile broadband (contextual homophily); and home location (spatial 
homophily); iii) we apply CESNA on each ego-network using both node and edge information with the 
optimal number of communities identified through cross-validation; iv) we remove duplicated and 
nested communities and only retain those having iPhone adopters. As a result, we obtain 11,454 
communities with 202,743 subscribers, 14,685 (71%) of which are iPhone adopters, and nearly half of 
the original network size is dropped.  

 
   (a)      (b) 

Figure 2. Histogram of overlapping community affinities for all subscribers (left) and iPhone 
adopters (right). 

Core-Periphery Structure As Fig. 2a shows, from the extracted subpopulation, over 70% of 
subscribers belong to only one community and nearly 90% of those belong to two, while only about 
5% of subscribers belong to more than 5 communities. However, we find clearly different patterns of 
community memberships for iPhone adopters alone (Fig. 2b), that they are more likely to belong to 

                                            
2 We do not aim to survey the rich literature on community discovery methods as it is beyond our objective (refer to e.g. 
Fortunato 2010) for comprehensive reviews. 
3 The source code is available at http://snap.stanford.edu. We also discussed with authors of CESNA about implementation 
details through private communications.  



multiple communities. This provides us with extra implications that iPhone adopters tend to link with 
others with the shared properties through overlapping social circles. Moreover, we believe that the 
intersection of overlapping communities may reveal another type of "meso"-level organizing principle 
of network: core-periphery structure (Yang and Leskovec 2014). In general, core nodes refer to set of 
central nodes that are connected to other core nodes as well as peripheral nodes, while peripheral 
nodes, by contrast, are only loosely connected to the core nodes but not to each other (Borgatti and 
Everett 2000). In this regard, following the measure proposed by Yang and Leskovec (2014), we 
validate the existence of a global core-periphery structure in our subpopulation (see Fig. 3).    
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Figure 3. The fraction of nodes C(α ) in the largest connected component of the induced 

subgraph on the nodes that belong to at least one community. A high C(α ) means that 
there is a single dominant core. 

Core-periphery structure captures individuals' network positions that current centrality measures do not 
account for. For example, if individuals with high degrees (hubs) exist at the periphery of a network 
distant from densely connected core, they will still have insignificant impact in the spreading process 
as adoptions are likely to be confined to their affiliated communities, whereas less connected 
individuals who are strategically positioned at the overlaps of communities and thus become more 
central, then adoptions may percolate across communities and to other central individuals who are also 
placed at the overlaps of communities and so on (Aral 2010). Therefore, we argue that individuals who 
are placed at the core of the network are more likely to be influential compared to those at rather 
isolated peripheral parts, such that peer influence between core and periphery members of the network 
may appear to be asymmetric.  

5 Empirical Results 
We describe our empirical approach to estimate the peer influence on iPhone adoption as follows. We 
organize the subpopulation data into a panel where each individual is a subscriber and each period is a 
calendar month and observations after the first adoption are removed from the sample. In this way, we 
can estimate the discrete-time hazard model using standard binary choice specification (Allison 1982). 
The dependent variable is an indicator for when a subscriber first starts to use iPhone. Our model 
specification includes subscriber-specific characteristics such as social-demographic indicators, 
wireless technological aptitude, service usage and cumulative adoptions from friends that are deemed 
as either core or periphery. We denote a subscriber as core if she belongs to at least 5 communities and 
as periphery if otherwise. Among 9,194 core nodes, 5,548 (60%) are iPhone adopters, whereas only 
5% of peripheral nodes are adopters. With panel data, we are also concerned about controlling for the 
unobserved heterogeneity as much as we can, so we introduce dummy variables to control for fixed 
effects across home region, time and community memberships. These variables can help reduce 
systematic differences across locations where subscribers may have different experience of 
smartphones for using mobile broadband because urban areas normally support better network 
coverage, across time of periods due to the seasonal effects (e.g., campaigns during Christmas), and 
across communities for common traits at group level that we explained in the preceding section. Table 
2 summarizes the descriptive statistics for covariates used in regressions.  



Variable Description Mean Std 
Dependent variables    

Adopted_coret Indicator variable for first month a core subscriber adopts the iPhone 0.086 0.28 

Adopted_perit Indicator variable for first month a peripheral subscriber adopts the iPhone 0.004 0.065 

RHS variables    
Gender_male Indicator variable for male subscriber 0.228 0.419 

Gender_female Indicator variable for female subscriber 0.164 0.37 
Gender_other Indicator variable for subscriber who did not report gender 0.608 0.488 

Prepaid Indicator variable for subscriber who used prepaid tariff plan 0.471 0.499 
Phone_2G Indicator variable for subscriber who used 2G handset  0.122 0.327 

Phone_2.5G Indicator variable for subscriber who used 2.5G handset 0.479 0.499 
Phone_3G Indicator variable for subscriber who used 3G handset 0.355 0.479 

Phone_3.5G Indicator variable for subscriber who used 3.5G handset 0.039 0.193 
Phone_other Indicator variable for subscriber who used an unknown ranged handset 0.005 0.07 

Mobile_internet Indicator variable for subscriber who used mobile broadband  0.036 0.187 
Phone_age Number of months subscriber have used currently owned handset 0.915 0.695 
Core_frd Number of subscriber's friends who deemed as core members 1.70 2.57 
Peri_frd Number of subscriber's friends who deemed as peripheral members 14.46 10.18 

Core_frd_adoptt-1 Cumulative adoption by subscriber's friends deemed as core members 0.609 0.919 
Peri_frd_adoptt-1 Cumulative adoption by subscriber's friends deemed as peripheral members 0.508 0.692 

Tenuret Number of months since the subscription to EURMO 6.61 4.43 
Control for regions Dummies for each NUTS III region   
Control for month Dummies for each calendar month from August 2008 to June 2009   

Control for community Dummies for each community membership   
Total observations 2,116,855   

Table 2. Summary statistics of covariates used in regressions. Time-invariant covariates are 
measured on June 30, 2008, the last day of the month before the release of iPhone. 

Identification Strategy  Still, unobserved heterogeneity such as latent homophily might bias our 
estimation. Matos et al. (2014) described the issue as "one-hop homophily'', because it is assumed to 
plays a role in correlated outcome only between direct contacts but not over two hops or more. So they 
argued that for a pair of connected subscribers, one has a third friend who is not a friend with the other, 
then this third friend's decision to adopt iPhone is correlated to the pair only through the one she is 
connected with. Bramoulle et al. (2009) illustrated this type of network structure as "intransitive triads'' 
and they showed that instrumental variables (IV) built from it can sufficiently identify peer influence. 
Therefore, we follow the same IV approach to alleviate the endogeneity concerns.  
 Before we delve into the 2-stage IV approach, we first present results from pooled Probit 
model where we stratify subscribers based on core/peripheral network positions and separately 
measure how they responds to adoption by their core and peripheral friends. This allows a naive 
exploration of whether the network position matters for individual's heterogeneity to exert and receive 
peer influence. The result for the simple model is shown in column [1] and [3] of Table 3. The 
likelihood of subscriber to adopt iPhone is positively associated with the cumulative friends' adoption.  
More importantly, we clearly see asymmetric peer influence between the focal subscribers and their 
core/periphery friends. Specifically, all subscribers are more likely to get influenced by their core 
friends, regardless of their own network positions. More interestingly, periphery subscribers are more 
likely to get influenced by core friends than vice versa. This suggests that subscribers who occupy the 
central positions are likely to be more influential, while those who are located at the peripheral parts of 
the network are more susceptible to influence from the core friends.   
 Next, we estimate the model using 2-stage residual inclusion (2SRI) to deal with endogeneity 
issues. Compared to 2-stage predicator substitution (2SPS), which is widely used in linear regression 
models, 2SRI is similar in the first stage, whereas endogenous regressors and the first-stage residuals 
are included in the second stage. In nonlinear setting, 2SRI may yield consistent results whereas 2SPS 



is not (Terza et al. 2008). As explained earlier, we use "cumulative adoptions by friend of friend not 
friend of the focal subscriber" as the IV. The results obtained from 2SRI model is listed at the column 
[2] and [4] of Table 34. Our findings are largely consistent compared to the simple pooled Probit model, 
while asymmetric peer influence between core and periphery subscribers are even more significant. 
This further renders us more confident about how network structure and positions would impact the 
focal subscribers' behavioral changes from the heterogeneous influence received from their friends. 
 

 Core Periphery 
Probit [1] 2SRI [2] Probit [3] 2SRI [4] 

Core_frd_adoptt-1 0.125*** (0.007) 0.318*** (0.04) 0.200*** (0.013) 0.706*** (0.032) 

Peri_frd_adoptt-1 0.042** (0.012) 0.074*** (0.015) 0.047*** (0.013) 0.141*** (0.009) 

Core_frd 0.03*** (0.002) 0.036*** (0.002) 0.099*** (0.003) 0.109*** (0.004) 
Peri_frd 0.005*** (0.0006) 0.013*** (0.003) 0.016*** (0.0004) 0.025*** (0.001) 
Gender_male 0.116*** (0.022) 0.104*** (0.022) 0.153*** (0.009) 0.163*** (0.01) 
Gender_female -0.024 (0.03) -0.018 (0.031) -0.055*** (0.013) -0.053*** (0.013) 
Prepaid -0.129*** (0.022) -0.035* (0.02) -0.054*** (0.009) -0.016* (0.01) 
Phone_2.5G 0.317*** (0.046) 0.316*** (0.046) 0.317*** (0.018) 0.331*** (0.018) 
Phone_3G 0.378*** (0.046) 0.338*** (0.047) 0.435*** (0.018) 0.452*** (0.018) 
Phone_3.5G 0.461*** (0.050) 0.439*** (0.051) 0.679*** (0.022) 0.718*** (0.022) 
Phone_other 0.415*** (0.096) 0.501*** (0.099) 0.504*** (0.049) 0.547*** (0.049) 
Mobile_internet 0.132*** (0.023) 0.125*** (0.023) 0.125*** (0.017) 0.142*** (0.018) 
Phone_age -0.029* (0.012) -0.031* (0.01) -0.048*** (0.006) -0.045*** (0.006) 
Tenuret 0.08*** (0.016) 0.08*** (0.02) -0.05*** (0.01) -0.04*** (0.01) 
Control for regions Yes Yes Yes Yes 
Control for month Yes Yes Yes Yes 
Control for community Yes Yes Yes Yes 
         
Pseudo R2 0.0751 0.0889 0.0657 0.0869 
Observations 63,863 63,863 2,052,992 2,052,992 
***p<0.001, **p<0.01, *p<0.05 (all tests are two tailed)      
Table 3. Regression results obtained from Probit and 2SRI models  

6 Discussion 
This paper adds to the growing literature that explores the role of peer influence in product adoption 
using individual-level observational data with detailed large-scale network information. We link two 
fundamental organizational principles of social networks: community and core-periphery structure, by 
showing that an individual in the core is also more likely to show up in more overlapping communities. 
Furthermore, our results provide evidence of the asymmetric effect of peer influence between core and 
periphery users. In particular, core users exert more influence over periphery users than vice-versa. Our 
findings suggest that taking both homophily and influence into account, targeting subscribers who 
belong to many communities and thus are more likely to be located at the core of network may help 
spread the product within communities, as users in the same community tend to exhibit similar traits, 
as well as across communities through closely connected core subscribers who are likely to receive 
multiple referrals and thus generate a "social multiplier" effect (Hartmann et al. 2008). In our future 
work, we will perform simulated seeding strategies to have a better understanding of the benefits 
associated with our findings. 
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