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Abstract—1In this paper we address the problem of identi-
fying goats in dairy farms with sub-optimal values of Body
Condition Score (BCS). The BCS conveys information on
whether an animal is fat or thin and its identification has a
strong economic impact as very thin animals have poorer milk
production and associated health problems. Albeit its important
implications, not only there is no automated way of assessing the
BCS in dairy farms, but current available techniques require
specially trained personnel. However, the recently introduced
Pictorial Scale for BCS assessment in dairy goats shows that
the rump region has several visual cues strongly correlated
with animal’s BCS values. In this paper we move towards the
automatic assessment of BCS by developing a descriptor for
rump’s 3D surfaces, collected by an RGB-D camera. The use
of 3D surfaces as the basis for identification is fundamental, as
it allows data collection without requiring animal handling to
ensure careful alignment between camera and animal. However,
the identification of the rump region in the 3D surfaces is
very difficult, which leads to a large variability in the type of
surfaces associated with the same BCS value. The descriptor we
here introduce, the Heat Based Rump Descriptor (HBRD), uses
diffusion geometry concepts to seamlessly handle the difficulty
in defining a rump region and the resulting large variability of
shapes. We test our descriptor in a dataset of 32 dairy goats
and show that our descriptor is able to effectively cluster all
the very thin animals.

I. INTRODUCTION

The Body Condition Score (BCS) is correlated with an
animal fat deposits and is an important animal-based in-
dicator of animal welfare. Furthermore, very low BCS, as
those represented in Fig. 1(a), are also correlated with low
milk production [1] and are not in adherence with consumers
expectations on animal’s welfare [2].

European Union, having recognized the farm animals’
right of freedom from hunger and thirst, is currently moving
towards the introduction of BCS as a key indicator on wel-
fare assessment protocols on goat farms. However, standard
techniques for estimating the BCS in goats , e.g., as those
presented in [8], cannot be used in large scale assessments,
as they require restraining and handling of each animal
individually by specially trained assessors.

The recently introduced Visual Body Condition Scoring
System, [15], addresses the scalability problem by creating
illustrations to allow non-experts to assess the BCS by visual
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(a) Very thin

(b) Normal

(c) Very Fat

Fig. 1. Examples of very thin, normal and very fat animals at different dis-
tances and orientations from a RGB-D camera. Each animal was manually
evaluated to assess its BCS score.

inspection. For the construction of the Pictorial Scale, authors
identified several visual features in the rump region that
are strongly correlated with the animal BCS. Those features
correspond to distances between bones and muscle folds,
which are easy to visually identify. The features were used
to define a standard individual of each class, from which a
professional illustrator generated drawings for the Pictorial
scale. The Pictorial scale can now be used in farms, but still
requires trained evaluators.

The features identified in [15] worked well for the pur-
pose of creating visually accurate illustrations. However, to
retrieve such features, authors acquired photographs taking
careful control on conditions such as: i) animals’ stillness;
and ii) rumps’ alignment with the camera, which are difficult
to ensure without animal handling. In this paper we move
towards a scenario where no handling is required by using
RGB-D cameras, as 3D information handles better changes
in the orientation between camera and animal. Such cameras
can be fixed on top of the animals’ normal path, and can
accurately collect data at roughly 2m from the animal.

RGB-D cameras, such as the Kinect camera, provide both
an RGB image and a depth image, from which we can
recover 3D surfaces corresponding to the animal surface.
From the whole animal, we extract the rump as showed in
Fig. 2 using a manual labeling approach similar to the one
presented in [15].

As noted in [15], the main difference between different
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Fig. 2. Acquiring rumps’ 3D surfaces.

BCS categories are the fat reserves in the rump, which yield
a bulkier appearance in fatter animals. To correctly assess the
animal class, we focus on descriptors that represent changes
in the volume between rumps of different animals. Fur-
thermore, the most noticeable changes in the rump volume
concern its upper part, near the hip.

However, the direct comparison of volume between rumps
3D surfaces is very challenging, as: (i) rump shapes vary
considerably between animals, regardless of BCS, as showed
in Fig.1; and (ii) it is difficult to consistently define the rump
region in a meaningful and consistent way.

Without a clear definition of the region of interest, we
cannot compare two surfaces. In fact, from the several
descriptors available for the recognition of 3D shapes,[16],
[10], [3], none that we are aware of handles the problem of
representing a shape that itself is ill defined. We thus propose
to assess the changes in volume from one surface to another
based on how much they differ from a plane. Animals with
rumps that are more similar to a plane, have smaller fat
deposits, i.e., are thinner. By introducing an intermediary
shape, we avoid mapping and registration between rumps.

To capture changes in this vague region of the upper
part of the rump, without having to specifically segment it,
we use multi-scale descriptors, i.e., descriptors that provide
information on how a given point in the surface is related to
the whole surface by considering increasingly large neigh-
borhoods for that point. An example of such descriptors are
Heat Kernel Signatures [13].

Heat Kernel Signatures and other heat based descriptors
describe how connected a point is to its neighborhood by
simulating heat propagating over a surface. In Fig. 3 we show
several snapshots of the process of heat propagating from an
initial heat source to the whole surface. At each fixed time
instant, the temperature of a point in the surface is related to
its distance to the initial source. Furthermore, as time passes,
the temperature in points further from the source increases,
while the temperature at the source decreases. The change
in the temperature is more significant in the first instants,
when there are sharp contrasts over the surface, than in the

end, when the temperature over the whole surface becomes
constant, regardless of the surface shape.

Source

Fig. 3. Heat diffusion over a goat’s 3D rump. Red corresponds to higher
temperatures and blue to colder ones.

Thus, heat diffusion has two characteristics that make it
the ideal choice of representation: (i) naturally introduces
a notion of scale, and (ii) temperatures can be used as a
surrogate to distances[3], specially when surfaces are noisy
and have a poor resolution such as those from common RGB-
D cameras.

In this paper we move towards the automatic identification
of the body condition score of farm goats by introducing a
Heat Based Rump Descriptor (HBRD) that:

« represents regions at different scales, allowing to focus
on the upper part of the rump, without having to
explicitly segment the region;

o describes the rump by comparing it against a default
shape, in this case a plane.

Such descriptor allows to handle the variability in the an-
imals’ shape and the difficulty in defining the region of
interest.

In the following we show how we obtain an initial seg-
mentation of the rump region given the output of an RGB-D
sensor, and we provide full detail on how to estimate HBRD
descriptors in any given rump.

II. DATA ACQUISITION

While leaving the milking room, animals pass one by one
through a narrow corridor. We placed a calibrated RGB-D
sensor on a fixed point above the animals’ path. An expert
manually evaluated the animals’ BCS to provide ground truth
using the simplified 3 points scale defined in [15].

While we cannot identify accurately the rump region in the
different animals, we follow [15] and define the region based
on the rump bone structure, namely the tuber sacrale (hip or
hook bones) and the tuber ischia (pin bones), represented
in Fig. 4(a). The tips of these bones correspond to easily
identifiable features in the RGB images of animals of all
categories, as we show in Fig. 4(b)-(d).

From the depth image, D, we can recreate the goat 3D
surface, as illustrated in Fig. 2. The surface corresponds
to a set of triangles, represented by a list of vertex coor-
dinates X = [& ,&0,....%}] and a set of edges E = {e; =
(1,2),...,en, = (k,N)}. Each vertex corresponds to a pixel
in the depth image, and the coordinates are obtained by
calibrating the sensor. We construct the set of edges based
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(a) Detail on the rump bone structure.

Fig. 4.
same plane, and photographs showing that the bones are easy to identify.

on adjacency relations between pixels in the depth image,
creating a mesh of triangles that cover the surface, without
overlap. From the camera calibration, we can also map the
annotations in the RGB image, I, to the depth image, D, to
obtain the 3D coordinates of the left and right hip bones,
by, and pin bones py .

When the goat is standing, the four bone tips approxi-
mately define a plane, as the hip and pin bones are rigidly
connected. By finding the orientation of the plane defined
by the four bone tips with respect to the floor, we rotate
the whole surface, so the bone tips lay in the x —y plane.
We define the rump as all the points with a positive z. This
segmentation is reproducible and consistent, albeit it may
lead to the inclusion of other parts of the animal in the rump,
e.g., the tail.

To account for changes in the animal size, we nor-
malize both x and y coordinates of all vertices, so that
the bone tips of all the animals are in the same posi-
tion hj, pj, in the x —y plane. To account for possible
hip or tip bones miss-alignment, we normalize using a
projective transformation. The resulting normalized coordi-
nates, Xporm = [X[°" = [X[7", y1°" z1], ..., X3"™"], maintain
the same z-coordinate. The edges in the normalize surface
connect the same vertices as the edges in the original one.

After segmentation and normalization, we obtain a set of
rumps similar to those represented in Fig. 5.

ITII. RUMP DESCRIPTION
A. Representing variable surfaces

Rumps in Fig. 5 highlight that the most distinct feature
among all rumps is that thin goats are almost flat. The
rumps also illustrate the intra-class variation resulting from
the natural variability of goats shapes and sizes. In particular,
it shows that goats have different features that are not related
with the BCS, e.g., rump boundaries change considerably

(b) Examples of photographs with annotated hip and pin bones.

Rump identification: Detail on the bone structure of a goat rump, showing that hip and pin bones are part of the same structure and lay on the

across animals, and in some animals the tail is included in
our estimation of the rump region. We must also account for
errors in the segmentation process, such as (i) there is a large
uncertainty in the identification of hip and pin bones on the
animals rump, (ii) it is difficult to ensure that the bone tips
are in a plane, and (iii) errors in camera calibration result in
errors in the map between RGB and depth images.

Common approaches for 3D shape representation, such as
bag of features or 3D holistic representations are not effective
in describing these variations, as they all assume that any
input shape is fully explained by the category they want to
represent and eventually classify. As far as we are aware,
there is no previous work on the representation of 3D shapes
where the shape itself was not explicitly defined.

We compare the differences in volume by extracting shape
information, e.g., distances between points and areas, and
compare it with the same information extracted from a
planar projection, as showed in Fig. 6. The planar projection
corresponds to the same mesh, but with z-coordinate set to
zero, Xplane _ {xllilane _ [ f)lane’ lplane 0], “"Xlg\)Jlane )

The comparison between the two surfaces 1s possible
because there is a natural bijection relating the two surfaces,
i.e., there is an one to one relation between points in the
rump and in the planar projection. We thus compare the
two surfaces by computing a geometry dependent function at
each point and compare the values of both surfaces at related
points.

As stated, in this work we use the temperature resulting
from a heat diffusion process, as it provides a natural
segmentation of the interest region and depends on the
geometry of each surface, as it occurs faster in planar
surfaces. Other functions, e.g., the distance to a point, also
depend on the geometry of each surface, however require a
rigorous definition of the interest region. We thus assess if
the geometry of the two surfaces is similar by comparing the
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Fig. 6. Example of a planar rump, on the left, built from the regular rump
on the right.

temperature at equivalent points in both surfaces.

B. Heat Diffusion on Discrete Surfaces

Heat based descriptors have shown good results at rep-
resenting surfaces retrieved from depth sensor [3], [4], [5]
and other 3D shapes [13], [6]. We here briefly review the
necessary steps to compute a temperature T(t) € RN on all
the vertices in the surface, at each time instant ¢. The familiar
reader may skip to section III-C.

Heat diffusion in discrete surfaces, such as the one ob-
tained from depth images, is described by eq.1, [9]

o,T(t)=—LT(1) @)

where L is the discrete Laplacian matrix, which is related
with the Laplace-Beltrami operator defined in continuous
surfaces [13]. Such operator returns the temperature second
derivative as defined over the surface, i.e., taking into account
that the surface is not necessarily a plane.

The discrete version we use in this work is associated with
a graph interpretation of the organized set of points in the
depth image. As showed in Fig. 7, each pixel i in the depth
image leads to a vertex in the graph with coordinates X;. The
vertices are connected by the triangle edges E and to each
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(d) Normal (e) Fat (f) Fat

Example of rumps from different animals. The top image represent a view from the z-axis, while the bottom view from the x-axis.

edge e = (i, ) connecting a vertex i to a vertex j there is an
associated weight w; ; = ||1/||% —%;{|%.

Fig. 7. Graph structure of surfaces retrieved with an RGB-D camera.

For a graph/surface with N vertices, the Laplacian is the
N x N symmetrical matrix L =D — W, with [W];; = w; ;
if there is an edge connecting the vertex i and j, i.e., if
e = (i,j) € E, and 0 otherwise. D is a diagonal matrix,
with [D];; = ):1]\-7:1 [W]; ;. The resulting L matrix, using the
above definition for the weights, corresponds to the finite
differences approximation to the second derivative.

With Newman boundary conditions and an initial temper-
ature over the surface equal to 7°(0), the temperature at any
other time instant T(¢) can be written in close form with
respect to the eigenvalues A; and eigenvectors ¢; of L:

Ny
T(t)=Y diexp{—2it}¢/T(0). 2)
i=1

C. Heat Based Rump Descriptors

We evaluate how much a rump differs from a plane by
considering a heat diffusion process starting at its center and
the equivalent vertex on its planar projection. Thus, the initial
condition for both the temperature in the normalized surface
7(0) and in the plane, 7/(0) will be equal to each other and
be zero everywhere except for some vertex ¢ in the center
of the rump, i.e., [T]. =1 and [T]; =0 Vi # c.



The vertices at the center of both rumps, with coordinates
Xe, and Xpyane ¢, are those closest to the center of the quadrilat-
eral defined by l_z;‘r, P . in both Xy, and X4, respectively.

For each animal, given the set of edges E and the two
sets of vertex coordinates Xor,; and Xpjgpe, We compute
the Laplacian for each surface, Lyop, and Lpjg,e. From each
Laplacian we compute the first 300 eigenvectors and eigen-
values and, given the initial condition, 7'(0), we propagate
the temperature at both surfaces using eq. 2. As to each
point in the original surface corresponds a single point in
the planar surface, we can compute the difference between
the temperature at both surfaces, AT (t) = Tuorm (t) — Tpiane(t)
at each time instant.

We evaluate the time difference at exponentially large
time intervals, as changes in temperature occur faster in the
beginning. In particular, we use time instants r, = 0.1 %9,
spanning from 1/700 to 1/10. We focus on the rump upper
part by assessing AT (¢) at a subset of vertices . that form
the shortest path in the planar mesh between X, and 713, which
we compute using the Dijkstra algorithm [7].

Finally we construct the descriptor, Z by considering, for
each time instant 7, the maximum of AT (#;) over the subset
of vertices .¥, i.e.,

2+ [Zlic = max[AT ()] 3)

The main steps for computing HBRD are highlighted in
Algorithm 1. The algorithm requires as input an RGB image,
I, a Depth image, D, which we here assume that is already
mapped into the RGB image. As fixed input parameters,
the algorithm further requires the time instants at which
we compute the temperature, 7, and the coordinates of the
left and right hip and pin bones in the normalized rump,
h) .. P}, In this study, the position of the bone tips in the
RGB iinage }_zl_,, Pi.r is provided by the user, however we
expect that this step can be automated using feature matching
and taking advantage of the 3D information provided by the
depth image, as in [12].

IV. RESULTS

We used Algorithm 1 to describe different animals.

Fig. 8 shows that temperature in thinner animals converges
faster to that the planar rump. The figure represents four
rumps, two very thin and two normal. The colors represent
the absolute difference between the temperature in the rump
to the planar rump. The black line in the upper left part of
each rump corresponds to the shortest path ..

Fig. 9 shows the descriptors for the animals in Fig. 8.
There is a clear difference over the maximum of the differ-
ence between normal and thin animals. Furthermore, we note
that by looking only into what happens on the top part of the
rump, the animal’s tail has little impact on the temperature
on the top part of the rump.

Finally, we show that HBRD differentiates thin animals
among a dataset of 32 animals, 9 thin, 17 normal and 6
fat. Fig. 10 shows the 3D-Isomap projection[14] of the set
of descriptors. The Isomap projection, similarly to PCA
projections[11] allows to visualize data of high dimension.

Algorithm 1: Heat Based Rump Descriptor (HBRD).
Input: RGB image: /; Depth image: D; Time instants:
7, bone tips in the normalized rump: #; ., p;,

Output: Rump descriptor, Z.

Manually Annotate Hip and Pin Bones in the RGB
Image:

(hyr, P1 7]  annotate([)

Segment and Normalize depth image:

(Xnorm E] < segmentNormalize(D, by, py . b} ., P} )
Xplane < projeCt(Xnarm)

Find Path Between Center and Left hip bone:

%, + centroid (i), A, p}, pl.) )

& < dijkstraShortestPath(mesh, X piane, b, Xc)

for i = 1;i < size(7);i++ do

Estimate both temperatures distributions, from eq 2:
7.7, < propagateHeat(X,om, E,-7, [f];)

Tp{me < propagateHeat(X e, E, -7, [1];)
AT([f]l) = Tnorm - Tplane

Get descriptor, from eq 3:

(/)i < max (AT ([7];))

end

However, Isomap provides a representation which minimizes
distortion of the distances over nonlinear subspaces, in
contrast to PCA that assumes linear subspaces and euclidian
norms.

Results show that very thin animals are well clustered, i.e.,
that the Heat Based Rump Descriptor captures a very elusive
characteristic. Some supervised machine learning algorithm
can then be trained using these descriptors and used used for
automatic classification. Support vector machines would be
good candidates for classification. We further note that, by
introducing a comparison surface that shares with the original
rump most of the characteristics that are not intrinsic to the
class, e.g., the tail, we obtained a descriptor that correctly
represents the class dependent characteristics.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced the Heat Based Rump De-
scriptor (HBRD) for the identification of very thin goats
in dairy farms. The identification of such animals is of
utmost relevance not only by the economic implications of
the decrease in the milk production associated with a low
BCS, as it is in direct violation of the animal’s rights.

The HBRD assesses the BCS by the rump volume. To
handle the large variability of animal shapes and the difficulty
of exactly setting the limits of the relevant part of the rump,
HBRD uses heat diffusion to represent distances between
points in two equivalent surfaces. The volume is assessed by
having the surfaces differ only on the characteristic that we
want to measure, i.e., the volume. The use of heat diffusion
allows to soft segment the region of interest, as the difference
in temperature in both surfaces will be more significant in
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Fig. 9. Maximum difference over time and over the path marked in Fig. 8.

initial time instants, where only the regions close to the
source have a significant impact on the temperature.

Using a dataset of 32 animals, we showed that HBRD
provides a good representation for the problem, as all the
very thin animals in the dataset were clustered together.

By the introduction of relevant descriptors, the work here
presented is an important step towards the automation of
BCS assessment in dairy goats. Future work should then
focus on the automatic identification of the hip and pin bones

3D isomap projection
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Fig. 10. 3D Isomap projection of the rump descriptors on a dataset of 32

animals. The blue points correspond to thin animals, while red correspond
to normal and very fat.

in the RGB images.
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