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Abstract. In this paper, we present an approach for a robot to provide
personalized assistance for dressing a user. In particular, given a dressing
task, our approach finds a solution involving manipulator motions and
also user repositioning requests. Specifically, the solution allows the robot
and user to take turns moving in the same space and is cognizant of
the user’s limitations. To accomplish this, a vision module monitors the
human’s motion, determines if he is following the repositioning requests,
and infers mobility limitations when he cannot. The learned constraints
are used during future dressing episodes to personalize the repositioning
requests. Our contributions include a turn-taking approach to human-
robot coordination for the dressing problem and a vision module capable
of learning user limitations. After presenting the technical details of our
approach, we provide an evaluation with a Baxter manipulator.

Keywords: Human-Robot Interaction, Dressing, Human Tracking, Learn-
ing and Adaptive Systems

1 Introduction

Research has moved towards allowing robots and humans to operate in the
same workspace. For instance, human-aware robots can assist people in factories,
or even elderly people in their homes. In particular, there has been increasing
interest in developing robots that can help people overcome their disabilities and
limitations [13]. There are many challenges involved in designing robotic systems
that deliver highly personalized assistance to different individuals, owing to the
uncertainty introduced by human presence.

In this paper, we address the problem of providing personalized assistance to
help dress a person with a manipulator. To this end, we introduce a framework
for human-robot collaboration, in which the user and robot take turns moving
to complete their shared goal. During these interactions, the robot learns the
user’s limitations and uses this information to provide personalized interactions.

Dressing tasks, represented as templates, are sequences of goal poses with
respect to the user. For instance, placing a hat on a user’s head has one goal
pose, with the arm several centimeters above his head. Other tasks may have
several goal poses that must be incrementally solved to complete a task.
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Before the robot acts on these templates, they are instantiated with the
current location of the user. For example, for a 1.8m tall person, a goal position
of 10cm above the head of the user becomes 1.9m from the ground. This is the
first form of personalization which allows templates of sequential goals to be
parameterized by the user’s physical features.

Once the template is instantiated, the robot attempts to fulfill the goals with
its motion planner, while asking the user to remain still. If the plan fails, the
robot tries to re-instantiate the template by asking the user to move to reposi-
tion himself. Specifically, a planner determines a sequence of user repositioning
requests that will take the user from their current pose to a new pose.

As a second form of personalization, the robot models each user’s limitations,
represented as pose constraints. When the robot asks the user to reposition
himself, it selects a pose that satisfies these constraints. Specifically, the robot
selects a new pose for the user by sampling points in its configuration space that
also satisfy the known constraints. Constraints are learned by a vision module
that monitors the user’s response to repositioning requests. Each repositioning
request has an expected behavior, and the robot infers a new constraint when
the expectation is not met. Due to inaccuracies in vision, and the uncertainty
introduced by humans, these constraints have error tolerances and confidences.
To increase our confidence and refine constraints, they are ignored in future
episodes with probability proportional to their confidence.

Among our contributions, the three most notable are:

— An approach to the dressing problem that explicitly requests the user to
reposition himself when a solution cannot be found.

— A vision-based expectation algorithm that determines if the user is comply-
ing with an interaction request and learns his constraints.

— A turn-taking approach for safe human-robot interactions in a shared workspace.

In the remainder of the paper, we compare our approach to related works, in
Section [2| Then, in Section [3] we provide an overview of the proposed approach
before detailing each component. In Section [4] we describe a specific implemen-
tation with a Baxter manipulator robot and show experimental results. Finally,
we draw conclusions and discuss future work in Section [l

2 Related Work

Our work is similar to research in designing algorithms for manipulators that
help dress humans. Much prior work has focused on the problem of clothing
manipulation in simulation [3] and also in the real world [7/9/14]. Our work is
more focused on the additional challenges posed when a person is involved.
When operating a manipulator near a person, accurate human tracking, lo-
calization, and fusing information from available sensor networks is extremely
important [I2]. Researchers have developed approaches for dressing people based
on visual and sensory information [I5]. Their proposed visual framework matches
features acquired from depth and color images to features stored in a database.
Similar to our approach, this system can detect failures via vision. However,
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on failures we re-plan using a series of user interactions and motion planning,
whereas they repeat the same action assuming the error was transient.

Researchers have used reinforcement learning to teach robots to put on a
t-shirt and wrap a scarf around a mannequin’s neck [10/5]. In the latter work,
the robot learns tasks through dynamic movement primitives, allowing them to
modify the trajectory speed or goal location. By contrast, our approach uses a
sampling-based motion planner. By performing motion planning online, we have
a high degree of confidence that the trajectory will not collide with the person.

The aforementioned works do not attempt to cooperate with the user. Our
approach employs sparse-coordination, where the robot asks the user to repo-
sition himself/herself if it cannot otherwise solve the task [1I]. Additionally,
similar to the concept of maintenance goals, repositioning requests have expec-
tations that are monitored over time by a vision module [2]. Lastly, our work
draws from research in representing and solving generalized or parameterized
plans [0]. In particular, we represent dressing tasks as sequences of subgoals that
are parameterized by the location and size of the user.

3 Approach to Personalized Dressing

Our aim is to enable a manipulator to aid users in dressing tasks by provid-
ing personalized assistance. Throughout this paper, we employ the example of
helping a user to put on a hat. Figure [I| shows our Baxter manipulator ready to
perform this task.
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Fig. 1: Baxter equipped to dress a user with two different hats.

Our approach is described at a high-level in Algorithm [I] In particular, each
dressing task is a template, which is a sequence of goal poses of the manipulator
with respect to the user. The template is instantiated with the current position
and orientation of the user by the vision module (Line [3)). Then, the motion plan-
ner attempts to find and execute a motion plan that satisfies each goal (Line .
If it meets a goal that is infeasible, the robot attempts to re-instantiate the tem-
plate by choosing a new pose for the user that satisfies his known constraints
and is in the robot’s configuration space (Line @ To refine constraints, some
are ignored with probability proportional to their confidence. The robot then
determines a sequence of repositioning requests that will move the user to the
chosen pose (Line . Finally, the vision module monitors the user during repo-
sitioning requests and infers new limitations when he cannot respond (Line .
This process happens in a loop until all of the template’s goals are solved.
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Algorithm 1 Execution of Personalized Human-Robot Motion Interactions

1: procedure EXECUTE(template, vision, motion, constraints)

2: while goals # () do

goals < vision.instantiate(template)

goals < manipulation(goals, motion) // remaining goals

if goals # () then
newPose <« feasiblePosition(template, vision, constraints, motion)
interactions < planlInteractions(vision, constraints, newPose)
constraints < interaction(interactions, vision, constraints)

3.1 Vision-Based User Tracking

The vision module monitors the user to pause motion execution if he moves, and
to determine if he is complying with repositioning requests.

The vision module is provided with a set of joint positions J from a skeleton
tracker. We model a person as a set of connected body parts, B:

B = {head, torso, left_arm, right_arm}

that are tracked by the vision module, which provides the center-of-mass location

(x,y,2) and orientation (¢s,qy,q-,qw) of each body part. Typically |J| > |B|

and some joint locations map directly to body part locations. The body part

orientations are computed by looking at the locations of consecutive joints.
Our vision module then performs two additional functions:

— Detecting if a person is stopped or moving.
— Verifying user-repositioning expectations.

To detect if a person is stopped or moving, the robot compares the body part
positions and orientations over time. If b; € B is a body part at time ¢, the body
part is stopped if: k€ [t — 1] £ b — bil| < ¢
Where ~y is the time the user must be stopped for, and € is a threshold to allow
for small movements or tremors.

When the robot asks the user to reposition himself, it generates expected
poses for some of the user’s body parts and sends them to the vision module.
When the user next stops moving, vision verifies that the user’s actual body
part poses match the expected poses. The verification of whether the user is in
an expected position is done by the function wverify_expectation(expected_pose,
actual_pose), which compares the expected pose of each user’s body part to the
actual poses found by the vision. It returns True if each dimension matches up
to a configurable threshold and False otherwise. When the result of this function
is False, the robot infers a new user constraint or refines an existing one.

3.2 Dressing Tasks as Template Goals

We represent a dressing task as a sequence of desired manipulator pose goals
with respect to the user. For instance, putting on a hat has one desired pose,
with the arm straight and above the user’s head. Other tasks may have several
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desired poses that must be completed incrementally. For instance, putting on a
backpack has several goal poses to help the user get each arm into a strap. These
sequences of goals are general to any user, but are parameterized based on their
physical characteristics. Formally, a template goal T is a sequence of pose goals:

T=(P,Py,Ps.... P)

Where each pose goal is composed of a position (x,y, z), orientation as a quater-
nion (¢, gy, ¢z, qu), and a vector of tolerances for each dimension (T'OL):

P = <x7y7z7QI7Qy7q,zaQw7 TOL)

Thus, P; is a goal pose (x,¥, 2, ¢, ¢y, ¢z, Gw), Which is satisfied by a pose P* if:
Vde P, |P, —FPj| <TOLq

Goal poses have allowable tolerances in each dimension for two reasons. First,
they account for minor vision inaccuracies. Secondly, some tasks may not require
exact orientations or positions, as the user can readjust himself.

A template is instantiated when the vision module provides the location of
a user with respect to the manipulator. Then, each pose P; is transformed from
the reference frame of the user to the reference frame of the robot. This allows
the robot to run a motion planner for each pose goal.

3.3 Motion Planning

We adopt a sparse-interaction approach, where the manipulator first tries to
solve as many pose goals as it can, before asking the user to reposition himself.
To minimize the possibility of a collision the manipulator only moves when the
user is stopped. If the user begins moving, the robot halts and re-plans once the
user stops. The vision module is responsible for monitoring the user.

The algorithm for our approach is shown in Algorithm 2] Given instantiated
template goals, the motion planner attempts to incrementally solve and execute
the pose goals. The manipulator represents the world as a 3D occupancy grid
provided by the vision module. We then use a sampling-based motion planner to
compute a trajectory through the joint-space to our goal position. Specifically, we
use RRT-Connect, a variant of Rapidly-Exploring Random Trees (RRT) known
to work well with manipulators [§]. RRT-Connect grows two trees and attempts
to connect them by extending the two closest branches. If the manipulator finds
a pose goal that is infeasible, the robot chooses a new location for the user and
determines a sequence of repositioning requests to ask.

3.4 User-Aware Pose Selection and Assistance Planning

Once the manipulator determines that a pose goal is infeasible, it asks the user
to reposition himself. The robot has a knowledge-base of user constraints and
balances seeking feasible poses with refining the constraints. Once a new pose is
determined, the robot finds a sequence of interaction requests that will move the
user to this pose. Each interaction is monitored by a vision system that infers
new constraints when the user cannot comply with a request.
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Algorithm 2 Motion Planning

1: procedure MANIPULATION(goals, motion, vision)
2: for P; € goals do
plan < motion.rrt(P;)
if plan == (‘Infeasible’) then
break
while plan.executing() do
if vision.feedback() == ‘User Moving’ then
motion.pauseUntilUserStopped(vision)
plan.replan(vision)

10: return goals.remaining|()

We represent a constraint ¢ on body part b € B as:

¢ = (b, ineq, conf)

Where ineq is an inequality for a limitation on one of the pose dimensions. The
left hand term of the inequality is the dimension, while the right hand term is
the value that cannot be surpassed. For instance, torso.x > 0.9 means that the
torso cannot move closer than 0.9m to the base of the robot. conf € R, represents
the robot’s confidence in the constraint. This is a function of how many times
the constraint is satisfied compared to the number of times it is violated.

Given a set of known feasible manipulator poses P, future poses are sampled
from points in P that satisfy all active user constraints. For each interaction, a
user constraint is active with probability proportional to its confidence. In this
way, the robot can test less confident constraints to refine them.

Once a new pose is found, the robot must determine a sequence of interac-
tions that will reposition the person. Each body part has a position, orientation,
and set of motion actions. The motion actions represent parameterized reposi-
tioning requests that the robot can ask of the person. We define several trans-
lational motion and rotational actions including: forwards(z), backwards(z),
left(x), right(x), up(x), down(x), turn_right(d), and turn_left(#). Where x is a
distance in meters and 6 is a rotation in degrees with respect to the manipulator.

Each of these motion actions is associated with a set of expectations E:

e=(b,L, TOL)

Where each expectation consists of a body part b € B, expected pose L, and tol-
erance on each dimension of the pose TOL. For instance, requesting forwards(1)
on the torso corresponds to asking the user to walk 1m forwards and moves all
of the body parts. By contrast, requesting up(0.2) on the left arm will only move
the left arm up 0.2m, because it corresponds to lifting an arm.

Using these expectations, we can generate a plan of translational and ro-
tational user requests that repositions each of their body parts. In particular,
we focus on repositioning the user to the correct z position, then y, then z,
and finally, the correct rotation. More generally, a planner could pick the order
of these actions. During these interactions, the user is monitored by the vision
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module which determines if he complies with a request. If the user cannot, the
robot infers a constraint, selects a new pose, and tries again.

3.5 Learning and Refining User Constraints

The robot learns and refines constraints in two situations. The first is when a
user stops before reaching an expected pose during a repositioning request. The
second is when the user enters a space the robot believed to be constrained.

In the first case, given a motion action m and an expectation (b, L, TOL),
the vision module detects that the user has stopped, and is not in the expected
position. Then, a constraint is inferred for the body part b on the axis associated
with m. The constraint is that the user can move no further than his current
position, which is provided by the vision. If a constraint along this axis already
exists for that body part, it is updated with the new value.

For instance, the action forwards(z) expects all of the body parts to move
x meters closer to the robot. If the user cannot comply with this request a
constraint ¢, is generated for each body part b € B of the form:

¢y = (b, b.x > vision.b.z, conf)

where vision.b.x is the z-coordinate of body part b, and conf is a configurable
initial confidence value.

In the second case, the user moves into a space that the robot believed to be
constrained. This implies that the original constraint was too strict, and should
be relaxed. To do this, the robot replaces the value in the inequality with the
value from the user’s current location.

In both cases, the robot updates the confidence in the constraint. This influ-
ences how often the constraint is ignored when picking a user-pose to request.

Let N4 be the number of times the user approaches a constraint and does not
pass it (the constraint is satisfied); and Ny the number of times the constraint
fails, because the user passes it. The confidence conf of a constraint is:

N,

COTLf = m

This constraint inferring procedure becomes particularly relevant when in-
teracting with disabled people. For instance, a user in a wheelchair may not be
able to move perfectly laterally, or too close to the robot. In such cases, learning
constraints in the adequate axes will optimize future interactions, as the robot
will request poses that satisfy the inferred constraints. We note that the con-
straints learned are approximations of a human’s physical limitations, as joint
movements are dependent from one another.

4 Evaluation

We tested our approach with a Baxter manipulator. Baxter is a particularly
good platform because is designed to work alongside users, implementing force-
compliant motion. We mounted a Microsoft Kinect on Baxter, and used OpenNI-
Tracker to find human joint positions. This depth image based skeleton tracking
approach produces robust joint positions for different users in various background
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and lighting conditions [I]. Baxter makes repositioning requests by displaying
text on its screen.

For these experiments, we considered the task of putting on a hat on the
user’s head. Formally, the goal template 7' = (P;) for this task has one goal
pose. In this pose, the right gripper of Baxter points straight out, positioned
10cm above the head body part.

We tested our approach with users ablating themselves to simulated physical
limitations. In the first set of experiments, we show how increasing the constraint
complexity affects the execution time of the task. This motivates our constraint
learning approach. In the second set of experiments, we show that learning the
constraint model of a user optimizes the interactions. In particular, with enough
accurate constraints the execution time is similar to the case with no constraints.

4.1 Planning and Executing with Increasing Constraint Complexity
We tested our system in the real world with one taller person (1.83m tall) and
one shorter person (1.62m tall), who ablated themselves by simulating physical
limitations. Our aim was to show that users with more complex constraints take
longer to teach, which motivates learning personalized constraint models. Our
first constraint was that the user was in a wheelchair and could not move his
head closer than 0.9m to the robot. The second was that the user could not move
his head more than 0.2m left.

We consider four cases, with results shown in Table[I] In Column A, the user
starts in a feasible pose, and the manipulator immediately executes its task. In
Column B, the robot selects a user-feasible pose, the user repositions himself,
and the manipulator is then able to execute the task. In Column C, the user
has one constraint, and the robot initially selects a user-infeasible pose. Thus
the robot first makes an infeasible user-repositioning request and must detect
this. Then, it must sample a new pose outside the user constraint space, and
repeat the repositioning process. In Column D, the user has two constraints, so
the process from Column C is likely to occur multiple times. We note that the
execution time is highly dependent on the number of instructions the robot gives
the user, and on how promptly the user complies with them.

A B C D
Execution time (s) 11.6 £1.8 32.0+12.3 53.0 78.0
Number of interactions 0 2.1 3.3 3.5

Table 1: Average execution times and interactions for the 4 cases over 40 trials.

The variances for Columns C and D are omitted as there was a significant
discrepancy between the two users. The distribution was bimodal, implying that
the two users took different times to respond to the robot’s instructions.

Fig. [2| shows a task execution for a user constrained to a chair, meant to
model a wheelchair. Initially, the template goal is instantiated by the vision
module with the user’s head location. At first, the user is too far away, and the
motion planner cannot solve the goal. The robot selects a new pose by sampling
points in its configuration space that are believed to be feasible for the user.
Additionally, the robot determines that this pose be achieved by asking the user
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to move forwards. Then, the vision system detects when he halts in the expected
position and re-instantiates the template goal. Finally, the motion planner finds
this new goal to be feasible, solves it, and places the hat on the user’s head.

(T

(a) User is initially at an (b) Robot requests the (c¢) Manipulator success-
unreachable pose. user to move forward. fully puts hat on the user.

Fig. 2: Example of dressing task execution for a user constrained to a chair.

The large majority of trials succeeded in putting a hat on the user, with few
errors. Occasionally, the motion planner failed when the user was positioned at
extremes of the reachability space of the manipulator, which can be resolved by
considering these as invalid poses. As for the vision module, there were some
problems when the robot arms occluded the field of view, which could be miti-
gated by adding additional cameras, using the built-in cameras on Baxter’s arms,
or planning trajectories to avoid obstructing the camera. As we will show in the
next Subsection, after several trials of interaction with the same user to learn
his specific constraints, future dressing episodes become more efficient.

4.2 Learning User Models

In this second set of experiments we show that, resorting to the knowledge-base
formed by previous interactions with each user, the robot is able to complete the
task more efficiently. To demonstrate this, we used the set of 2 constraints defined
in the preceding subsection: C = (head, head.x > 0.9, conf), (head, head.y >
—0.2, conf), where our starting confidence value conf was 1.

We first taught Baxter a perfect constraint model for each user. Then, we
performed 5 additional trials per user, with the robot choosing repositioning
poses from the users non-constrained space. The average time for completing
the task was (34.2 £ 29.4)s for the shorter user and (36.5 £ 8.5)s for the taller
user with an average of 2.6 interactions. These results are very close to those
for a user with no constraints (Table [I| Column B), which shows that learning
personalized constraint models can markedly optimize the task execution.

5 Conclusion

In conclusion, we introduced an approach for a manipulator to help dress users.
Our approach represents a dressing task as a sequence of pose goals with respect
to the user. When the robot finds a goal infeasible, it actively requests the user
to reposition his or herself. The robot chooses repositioning poses by sampling
points in its configuration space that also satisfy a user-constraint model. This
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constraint model is updated when the user does not meet the expectations of an
interaction request or enters a region the robot believes to be constrained.

We demonstrated our approach on a Baxter manipulator. We first showed
how the time it takes to dress a user increases with constraint complexity. Then,
we showed how modeling a user’s constraints and sampling from feasible regions
reduces the dressing time close to the case of a user with no constraints.

One direction for future work is to improve the manipulator’s trajectories to
make them more user-friendly. This could possibly be accomplished by biasing
the motion planner with user-taught trajectories such as with E-RRT [4].
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