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Abstract— Global localization is a widely studied problem,
and in essence corresponds to the online robot pose estima-
tion based on a given map with landmarks, an odometry
model, and real robot sensory observations and motion. In
most approaches, the map provides the position of visible
objects, which are then recognized to provide the robot pose
estimation. Such object recognition with noisy sensory data
is challenging. In this paper, we present an effective global
localization technique using soft 3D object recognition to estimate
the pose with respect to the landmarks in the given map.
A depth sensor acquires a partial view for each observed
object, from which our algorithm extracts the robot pose
relative to the objects, based on a library of 3D Partial View
Heat Kernel descriptors. Our approach departs from methods
that require classification and registration against complete
3D models, which are prone to errors due to noisy sensory
data and object misclassifications in the recognition stage. We
experimentally validate our method in different robot paths
with different common 3D environment objects. We also show
the improvement of our method compared to when the partial
view information is not used.

I. INTRODUCTION

For robots to interact with humans on a daily basis and
safely operate in environments common to both, they must be
able to navigate using natural landmarks, which are complex
and difficult to identify. The most interesting landmarks in
human environments are often medium sized objects, such
as sofas, whose shape and texture yields them unique, hence
valuable for localization in large environments. However,
localizing the robot based on such objects is not a trivial
matter as it implies recognizing both the object and its pose.
Furthermore, errors in either of these tasks are common and
can strongly affect localization results.

In this work, we contribute by developing a method that
provides a coarse pose estimation of the robot without
performing classification nor registration. This method is
used in the core of our algorithm, Global Localization by
Soft 3D Object Recognition (GLSOR-3D ), which estimates
a robot position and orientation in a global coordinate system
using as landmarks multiple medium size objects.
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GLSOR-3D assumes that some prior knowledge is available
concerning both the landmarks distribution and orientation
in a global coordinate system, as well as their appearance
models. While the robot navigates in an environment with
multiple objects, as illustrated in Fig. 1, GLSOR-3D provides
an estimation of the robot global pose from data collected
by a depth sensor, namely a Kinect Camera. In particular,
the sensor provides the relative object position, and object
observations in the form of a partial view, corresponding to
the visible 3D surface of objects as seen from the sensor. By
comparing partial views with the information in the object
appearance models, GLSOR-3D extracts information on the
object class and pose.

Fig. 1. Robot with a map, navigating a scenario with multiple objects.

However, the information on the relative pose and object
identity is coarse as it is subject to ubiquitous sensor noise,
symmetric objects, similarity between different objects and
view angle discretization in the dataset. GLSOR-3D addresses
this problem by:

1) using a state-of-the art partial view descriptor, the Partial
View Heat Kernel (PVHK) [1], which allows for easy
comparison between partial views without requiring
registration against complete 3D models;

2) accumulating several observations from different posi-
tions, while estimating the displacement between obser-
vations through odometry; and

3) performing soft object detection, i.e., by computing the
probability associated with each object class instead of
performing hard classification.

Finally, to integrate the information from the sequence of
observations and odometry readings with the environment
map, GLSOR-3D uses a particle filter framework [2]. Particle
filters are specially suitable when the observations are am-
biguous and are not linearly related with the dynamics, as is
the case for the PVHK descriptor.

We validate GLSOR-3D by performing an extensive set
of experiments with different number of objects, displayed
in different layouts and considering different paths. Fur-
thermore, we assess the impact of using the coarse pose



estimation using the object models by solving the same
problems with and without partial view information.

II. RELATED WORK

We present related work in indoor localization and an
overview of the particle filter algorithm for localization.

A. Indoor localization

In recent years we have seen robots perform increasingly
complicated tasks in human environments, for which they
rely on navigation in global coordinate systems. The re-
silience of current localization methods, such as [3], which
relies on 3D information as GLSOR-3D , ensures that robots
can follow a map through numerous tasks. However, most
algorithms rely only on static landmarks such as walls and
corners. The ambiguity of such landmarks means that algo-
rithms rely on external initialization. GLSOR-3D , by making
use of more singular landmarks, performs global localization
without requiring any other sources of information.

Also using 3D active cameras, the state-of-the-art Simul-
taneous Localization and Mapping++ algorithm (SLAM++)
[4], provides impressive results for localization. SLAM++
tracks the camera pose while creating an object pose map
of the unknown environment. On the other hand, GLSOR-
3D has access to the environment map, but needs to find its
own position in global coordinates by also tracking object
positions. While we could use similar tracking methods using
registration against dense and complete 3D models, all these
steps are computationally very demanding, requiring highly
parallel GPU implementations to obtain real time perfor-
mance. Furthermore, this method requires classification upon
object recognition, risking an erroneous decision that might
affect the rest of the process. The same risk is also present
in the relocation from an existing map which is addressed in
[4] by choosing a highest voted pose. GLSOR-3D avoids the
risk or propagating an initial erroneous estimation, by using
probabilistic approaches to classification and pose estimation.

The use of joint localization and object recognition has
also been addressed previously either to solve a localiza-
tion [5], [6] or detection and mapping [7] problem, or for
the purpose of object recognition [8], [9]. In [5], authors
introduce the concept of hard and soft object detection,
whether explicit classification is made or not. The devised
approach performs soft recognition in a omni-directional
image. It computes a per-pixel vector of detection scores,
using local image features, for each object class present
in the dataset. These results in a heatmap, representing
the probability that a given object appears in a particular
position of the image. The localization is then estimated
by integrating the observations with a map annotated with
the position and label of the objects using a particle filter
framework [10]. GLSOR-3D has a very similar approach,
however we make full use of a 3D sensor, a Kinect camera,
to both estimate the probability of each object class, and
to retrieve the relative position between robot and objects.
The 3D information allows for easy object segmentation, and
retrieval of their partial views. Furthermore, we off-line learn

the appearance of several partial views per object, accounting
for different view angles and thus allowing GLSOR-3D to
estimate the object orientation with respect to the sensor.

Finally, GLSOR-3D uses the Partial View Heat Kernel [1],
which represents partial views in a holistic form, contrary
to other approaches that rely on feature matching, e.g.,
the approach proposed in [7]. The choice results in a less
complex recognition step and a more stable representation
with respect to sensor noise. However, the resulting set of
observations changes in a highly non-linear, non-analytical
form with respect to the robot position or dynamics. Thus,
following [5], we chose particle filters above other methods
such as Extended Kalman Filters also common in several
localization approaches such as [11].

B. Particle filter for localization

The objective of robot localization is to estimate the robot
state s = ([xs,ys],θs}, as defined by its position and orienta-
tion in a global coordinate system, at instant t, by integrating
all previous observations Z1:t , all previous actions U1:t , and
previously known information from the environment, m.

ŝt = argmax
s
{p(s|Z1:t ,U1:t ,m)}. (1)

In a Markovian setting, the posterior probability distribu-
tion in (1) can be defined recursively as:

ptarget(st) = p(st |Zt ,Ut ,m) = µ p(Zt |st ,m)qproposal(st) (2)

where µ ∈ R is a normalization constant and
qproposal(st) =

∫
p(st |st−1,Ut ,m)p(st−1|Zt−1,Ut−1,m)dst−1,

is the proposal probability distribution. A particle
filter approximates the target probability in Eq. 2
at any time instant t by a set of weighted particles
St = {s[ j]t ,w[ j]

t } j=1,...,J . The recursive estimation can be
described in three steps:

1) predicting the position of a set of particles St from St−1
according to a motion model p(st |st−1,U(t,m));

2) updating the weights with the new observation:

w[ j]
t ∝ p(Zt |s[ j]t ,m); (3)

3) resampling a new set of particles from St , to focus the
computational effort on regions with higher probability.

Different approaches have been proposed for each step.
And while there are widely accepted motion models, e.g., we
use the one defined in [12], different types of observations
have led to different approaches to estimate p(Zt |s[ j]t ,m).
For example, Zt can be either a building 3D map [3], wifi
signal [13], or object position [5], [6]. Also resampling can
differ on the definition of regions of high probability [8].

This work contributes to the literature on localization
by focusing on the update step. In particular, we use as
observations both the position of a set of landmarks and a
descriptor which depends on the relative pose between sensor
and landmarks, i.e., while we use information from class and
relative object pose, we do not explicitly use neither.



III. UPDATE STEP FOR LOCALIZATION
GLSOR-3D takes as observations object positions and

partial view descriptors. We highlight our contributions by
contrasting the impact on GLSOR-3D of using such obser-
vations, with other more traditional approaches using just
object positions or object position and class.

A. Update from landmark positions

When most objects or relevant features in the environment
are ambiguous, robots have to localize themselves using just
the landmark position, as proposed by the RoboCup SPL.

In this case, the environment map would be defined as a
tuple m= (S ,O) where: i) S represents the state space, i.e.,
the set of states available to the robot; ii) O = {o1, . . . ,oK}
is the set of K objects present in the scenario, and where
each object is represented by a vector ok = [xok ,yok ], with
the position in the global coordinate system.

At each time step, the robot collects a set of observations
Zt = {z1,t , . . . ,zNt ,t}, from each of the Nt ≤ K visible objects
at time instant t. In this model, observations correspond to
object positions in the robot coordinate system, z = T̃ ∈ R2.
For Nt = 1, we compute p(Zt = {T̃1,t}|s,m) by:

1) Estimating the position vector T1,t = RsT̃1,t in global
coordinates, where Rs is the rotation matrix computed
from the robot orientation θs ∈ s.

2) Computing p(T1,t |s,ok,m) from a Gaussian distribution
centered in the object o position in the environment
[xok ,yok ], and with variance σ2

T :

p(T1,t |s,ok,m) ∝ exp
{
−‖(xs,ys)+T1,t − (xok ,yok)‖2

(2σ2
T )

}
(4)

3) Computing p(Zt |s,m) = ∑ok∈O p(T1,t |s,ok,m), by
marginalizing over all objects in the map.

When Nt > 1, the observations are mutually exclusive, i.e.,
T1,t and T2,t cannot be both from o1. Thus, we account for
all ordered sets of Nt objects from the K objects in the map,
Γ(Nt). Each set of ordered objects, γ = {o1, . . . ,oNt} ∈ Γ(Nt),
corresponds to an assignment of observations to objects,
i.e., zn is attributed to the object in γn. Thus, GLSOR-3D
marginalizes over all γ ∈ Γ(Nt), and the third step becomes:

3) Computing p(Zt |s,m) = ∑γ∈Γ(Nt ) ∑
N
n=1 p(T̃n,t |s,γn,m).

B. Update from landmark position and class

Most algorithms use as observations the class and position
of either objects or features, [5], [7], [6]. Thus, observations
must also contain information on the object class in the form
of some descriptor, dn, as illustrated in Fig. 2. In this case
each observation zn becomes a tuple: zn = (T̃n,dn).

To accommodate the class estimation, the knowl-
edge map must be extended to contain object models,
m = (S ,O,D = {D1, . . . ,DK}), that allow a soft classifier
to compute p(d|Dc), for each object class c. Thus, each
element o ∈ O must also contain the object class, and
becomes a tuple defined as ok = (ck, [xk,yk]).

Assuming that when the robot state, s, is known, T̃n,t is
independent of the descriptor dn,t and that dn,t only depends
on the object class, we estimate the update probability by:

1-2) as in Section III-A;
3) estimate p(dn,t |Dck) for each object class;
4) marginalize over all γ ∈ ΓNt ;

p(Zt |s,m) = ∑
γ∈Γ(Nt )

Nt

∑
n=1

p(T̃n,t |s,γn,m)p(dn|Dc∈γn). (5)

Fig. 2. Data from each observation Z, namely a descriptor dn and a
translation vector Tn for each visible object.

C. GLSOR-3D update from landmark position, pose and class

GLSOR-3D uses information on the pose and object class
provided by a descriptor vector dn ∈ RL. Each object model
Dck ∈ D is a collection of descriptors indexed by the
view angles vok in the object intrinsic coordinate system.
Thus, when given a state in global coordinates, s, GLSOR-
3D first computes the equivalent in the object coordinate
system. The conversion between the two systems is defined
by the object orientation θo, which we include in each
ok = (ck, [x̃k, ỹk],θk) ∈ O.

Finally, given a soft classifier that estimates the probability
that a given descriptor d was generated from observing the
object o from the view angle v, p(d|Dc∈o,v), GLSOR-3D
estimates p(zt |s,ok,m) by:
1-2) as in Section III-A;

3) estimate the view angle v associated with position (x,y)s
and the object orientation θk:

v = arctan{(ys− yk)/(xs− xk)}−θk; (6)

4) estimate p(d|Dck,v) with the classifier;
5) marginalize over all the sets γ ∈ ΓNt , using Eq.5.
Thus, GLSOR-3D needs to estimate probability p(d|Dck,v)

using a partial view representation that depends not only on
the object class, but also on the view angle.

IV. PARTIAL VIEW REPRESENTATION

The PVHK descriptor, introduced in [1], is a vector d ∈RL

that represents any object partial view in an informative way,
and that depends on the observer view angle. Here we briefly
describe the descriptor, introduce our object models D and
our soft classification approach to estimate p(d|D).



A. PVHK descriptor

The gist of PVHK is to represent partial views by the
geodesic distance between a reference point in the object
surface and the ordered set of points in the partial view
boundary. The reference point is chosen systematically and
depends on the relative position between sensor and object.
As the distance between a point and the boundary uniquely
defines the surface, apart from isometric transformations, the
PVHK is unique for any given pair of object and view angle.
To handle the impact of noisy 3D data on the geodesic
distances, PVHK uses diffusive geometry concepts, which
are considerably more robust [14]. In particular, it relies on
the heat propagation, to obtain proxies for distances. The
propagation, illustrated in Fig. 3, considers an instantaneous
heat source at the reference point. By stopping the prop-
agation when temperature on all points is above a given
threshold, PVHK obtains a temperature profile correlated
with the desired geodesic distance, but also resilient to noise.

Fig. 3. Representation of an object with the PVHK descriptor. Heat
propagates from a source s and is measured at boundary points a, . . . ,d.

Thus, the PVHK descriptor is a vector d ∈ RL, whose
entry di is equivalent to the temperature on the boundary
point i. The boundary points are equally spaced in terms of
length over the boundary, e.g., for a square with side l, they
would be spaced so that the distance between consecutive
points would be 4l/L. We here use L = 80. Furthermore, the
reference point for the source is selected by first projecting
the partial view surface into the camera plane and then
finding the point closest to the center of the 2D projection.

The PVHK changes smoothly with the view angle, as il-
lustrated in Fig. 4. On Fig. 4(a), we illustrate the temperature
profile over the chair when the view angle slightly changes.
In the three images, red regions have higher temperatures
than the blue ones. The descriptors of the three partial
views are represented in the middle graph, and we can see
that while the shape of each curve is the same, there is a
translation associated with each descriptor. Finally on the
right, we represent, as rows in a matrix, the collection of
descriptors for the chair. Again, red corresponds to higher
values of the descriptor, and blue to lower values.

B. Soft Classification of pose and object class

The PVHK was first used in the context of recognition
from a sequence of view angles [8], where a particle filter
is also used. However, no localization is performed and
only a single object was considered at all times. We here
use the same approach to compare descriptors and estimate
probabilities. Namely, we establish the probability that a

(a) Descriptors from a sequence of view angles. (b) Chair dataset.

Fig. 4. The PVHK changes smoothly with the view angle. Fig. 4(a)
shows the heat profile changing smoothly between three consecutive view
angles. Fig. 4(b) represents a collection of descriptors, one per row, which
are ordered by view angles. In both figures, red correspond to higher
temperatures, and blue to colder ones.

descriptor d corresponds to an object class c and view angle
v, by computing the distance, ρ : RL×RL → R, between
d and the reference descriptor in the object model Dc,v.
Then, as in [8], we assume an exponential distribution on
the distances, as it has a smoother cut off distance than, e.g.,
the Gaussian distribution.

p(d|c,v) = exp{(−ρ(d,dc,v)/λ )/λ}. (7)

The normalization constant, λ , represents the average inner
distance between descriptors in the dataset.

We also use the distance function ρ proposed in [8],
i.e., we compare descriptors by comparing the shape of the
curves they define in graphics such as those in Fig. 4, where
temperature is plotted as a function of boundary length.
Thus, we first convert each vector d to a curve η , defined as
the set of points η = {[1/L,d1], [2/L,d2], ..., [1,dL]}. Then
we use the Modified Hausdorff Distance (H ) to establish
the distance ρ between sets: ρ(d,d′) = H (η ,η ′), where
H (η ,η ′)=min

{
∑x∈η infy∈η ′ ‖x− y‖2,∑x∈η ′ infy∈η ‖x− y‖2

}
.

V. EXPERIMENTAL SETUP

We validate our localization algorithm in a diversified
set of experiments, taking place in our office, using every
day objects such as sofas and chairs. We designed several
experiments in order to: a) show that GLSOR-3D effectively
estimates a correct final position by reducing errors with new
observations; b) show how the inclusion of multiple objects
leads to better estimations from the observations. c) show
the impact of the soft object recognition versus the use of
landmark position alone;

A. Data collection

To construct both object models and the environment
map, we use augmented reality markers [15]. These markers,
resembling QR codes, are easy to identify in a RGB image
and allow to estimate both the 3D position and orientation
of the observer with respect to the marker. The markers can
then be combined to define an exterior coordinate system,
where the observer can localize himself.

To create each object model, Dc, we placed a set of mark-
ers attached to each object, as illustrated in the photographs
in Fig. 5. We then acquired several partial views by moving
around the object, and computed the descriptors for each. The
matrices at the bottom of Fig. 5 represent the object datasets,



Fig. 5. Objects used for localization, in addition to the chair presented in Fig. 4. In the top row, images of the objects are visible while in the bottom
row the acquired descriptors are represented, ordered by θ . From left to right the objects are: brown chair, sofa, Trash can and robot.

with a descriptor per row and respective view angle, as
computed from the markers. In total we constructed 5 object
models: the four in Fig. 5 corresponding to a brown chair, a
sofa, a trash can and a robot; and the chair in Fig. 4(b). These
objects present strong similarities and symmetric shapes to
assess the GLSOR-3D robustness to ambiguous observations.

We used a second set of markers to construct a global
coordinate system. The markers attached to each object pro-
vide the respective pose in global coordinates, and allow the
easy creation of different environment maps, with different
object layouts. Namely, we created a total of 9 maps, from
where we gathered information over 22 different paths. Each
map differs with respect to the number of objects and their
distribution in the map: a) a single object - total of seven
paths, one per object, except the sofa with 3; b) pairs of
objects - total of six paths, two per each of three different
layouts; and c) all objects - total of seven paths.

The online data for the experiments was collected using
a hand-held Kinect camera. We estimated the odometry data
from changes in position assessed using markers, which was
then corrupted with Gaussian noise. Furthermore, observa-
tional evidence showed that the sensor had an error in the
object position vector of 15 cm, so we used σT = 15cm. To
estimative the robot state from the set of particles, GLSOR-3D
randomly chooses one percent of all the particles as anchors.
For each anchor, it computes the number of particles inside
a neighborhood of radius τ = 30cm and the one with most
neighbors is the expected state. Finally, each experiment used
J = 2000 particles.

B. Results

In Fig. 6 we represent a sequence of steps in the execution
of GLSOR-3D . Steps 2-3, show that initially particles are
scattered around two objects: 1 and 5, but as the robot moves
and more data is collected, the particles get centered around
the ground truth, as can be seen in the steps 4-7. The same
behavior is also noticeable in Fig. 7, where we can see the
error on both position and orientation decreasing with the
first observations, but then remaining constant.
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Fig. 6. Execution of the implemented algorithm. Only a sample of the
total particles are presented. Objects are numbered as: 1-trash can; 2-robot;
3-brown chair; 4-red chair; 5- sofa.

In Table I we compare the estimation errors obtained
with GLSOR-3D for different sets of objects. The results
show that for single objects, the descriptor does not always
identify the view angle due to geometric symmetries. This is
specially noticeable for the trash can and the robot examples,
which have roughly a square symmetry and thus ambiguous
observations. With object pairs, GLSOR-3D disambiguates



Fig. 7. Error on the estimation of both position and orientation. The mean
and the median are taken over all the experiments, including all the maps
layout and paths.

symmetries by leveraging on the view angle estimation from
both objects. In sets with all objects, observations either
capture just one or two objects at the same time. Therefore
the resulting error falls between the two previous.

TABLE I
FINAL LOCALIZATION ERRORS

Position (m) Angle (◦)
Objects Mean Median Mean Median
Single 0.2279 0.2057 7.4610 6.6865
Pairs 0.1271 0.1243 2.9535 2.5121

5 Obj. 0.1909 0.1949 4.3336 4.3128
All 0.1847 0.1586 5.0142 4.8695

To assess the impact of soft recognition, we ran the same
experiments using the algorithm proposed in SectionIII-A.
However, we use only the sets with multiple objects, as we
cannot estimate the position from the relative position to
a single object. As can be seen in Table II, errors greatly
increase when compared to Table I, as observations are still
fairly ambiguous. E.g., Fig. 8a) shows the two symmetric,
high probability regions resulting from the use of just two
landmarks. In experiments with more objects, the difficulty
in removing the initial ambiguity may lead to depletion of
particles in the correct position, resulting in a final erroneous
estimation (Fig. 8b). Finally, using only landmark positions
for localization, lead to a slower convergence of the particles,
(Fig. 9), and often results in higher estimation errors.
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Fig. 8. Examples of errors encountered when the descriptors were not used
for pose estimations.

VI. CONCLUSIONS

In this paper we presented a method for mobile robot
localization using multiple objects as landmarks while avoid-
ing explicit classification and avoiding registration against
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Fig. 9. Comparison between the particles distribution after 5 iterations
of GLSOR-3D (left) and the particles obtained when only the position is
used(right), highlighting the higher convergence rate, of GLSOR-3D .

TABLE II
FINAL LOCALIZATION ERRORS W/O DESCRIPTORS

Position (m) Angle (◦)
Objects Mean Median Mean Median
Single - - - -
Pairs 2.5232 3.1588 118.3304 174.0345

5 Obj. 1.1274 0.2332 26.9688 7.3373
All 1.7716 0.2894 69.1357 7.3522

complete 3D models for pose estimation. GLSOR-3D achieves
this by exploiting the PVHK descriptor and the Modi-
fied Hausdorff distance as tools to recognize and compare
the similarity between objects represented by their partial
views.The results presented empirically show that indeed
GLSOR-3D performs localization using multiple objects as
landmarks and that soft recognition of objects and pose
improve the localization considerably.
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