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Abstract 
This paper presents a two-stage crackle detection algorithm combining Empirical 

Mode Decomposition (EMD) and a simple energy peak detector. A discussion is 

presented of the main issues arising in the implementation of the EMD stage and 

the solutions adopted. The algorithm was implemented in MATLAB® and 

preliminarily tested on an annotated 10-second respiratory sound file, without any 

prior systematic training. Applying the energy peak detection to the intrinsic 

mode function of order 3 (IMF3) generated by the EMD stage, an 87% F 

performance index was achieved. 

1 Introduction 

The analysis of pulmonary sounds is an important means of 
diagnosing respiratory pathologies [1]. The aim is to detect artefacts, 
generally referred to as adventitious lung sounds (ALS), regarded as 
potential symptoms of lung disease. Signal processing and computing 
technologies can contribute to improve the diagnosis techniques based 
on stethoscopy, reducing ALS detection subjectivity. 

This paper addresses the automatic detection of crackles [2], an 

important category of ALS, related to pulmonary fibrosis, pneumonia 
and chronic bronchitis [3]. Crackles are short-duration (<20ms) 
nonstationary sounds, with a frequency range normally between 100 and 
2000 Hz. The energy ratio of crackles to normal respiratory sound is 
low, resulting in significant waveform distortion. The wide variation in 
magnitude, explosive nature and broad spectrum observed in crackle 

waveforms and the fact that they can overlap makes for an intricate 
signal processing challenge. 

Numerous detection methods have been proposed in the literature, 
applying a variety of algorithms (time-domain analysis, wavelet 
transforms, fractal dimension filtering, fuzzy logic, neural networks…) 
and often combining them in more or less complex ways [1]. However, 
with systematic validation still largely unaddressed, their practical 
applicability is very unclear; the challenge of reliable automatic crackle 
detection remains open. 

Huang et al. presented Empirical Mode Decomposition (EMD) as a 

new technique to analyse nonstationary and nonlinear signals [4]. This 
naturally suggested the possibility of applying it to crackle detection, an 
idea explored by Charleston-Villalobos et al. [5] and Hadjileontiadis [6]. 

In contrast to other methods as discussed in [4], EMD offers the 
advantages of being adaptive, local, intuitive and a posteriori. 

The core of EMD is an iterative decomposition process, known as 
sifting, whereby data is reduced into so-called Intrinsic Mode Function 
(IMF) components based on local properties.  

An EMD-based crackle detection algorithm will comprise two stages: 

1) Generation of the IMF components, which maintain the signal’s 
energy distribution and thus the physical meaning of the data; 

2) Filtering of the chosen IMFs to find crackle positions. 

In the work of Charleston-Villalobos et al. [5], visual inspection of 
the generated components (particularly IMFs 2 and 3) indicated a good 
match between the most prominent features and the corresponding 
signal annotation data. Although encouraging, these results were only 
qualitative, as stage 2 was not addressed i.e. no automatic method of 
detecting and counting crackles was implemented. The paper also 

acknowledged difficulties in telling crackles from basic respiratory 
sounds and the lack of reliable validation data. 

Hadjileontiadis [6] completed the algorithm by combining EMD and 
Fractal Dimension (FD) filtering. The FD filter stage analyses the 
temporal evolution of the generated IMF waveform complexity, and this 
information is used as a pointer to crackle positions. 

This paper explores an alternative path to overcoming the limitations 
of [5], avoiding the hybrid approach of [6], which seems overly 
complex. Instead, stage 2 is reduced to a simple energy peak detector 
(based on the premise that the most prominent peaks match crackle 

positions) and the focus is firmly placed on solving EMD  
implementation issues in order to fully expose the potential of the 
technique itself. 

2 The EMD algorithm 

EMD is an adaptive process that empirically separates the data set 
into IMFs, applying a time-varying filter. Instantaneous frequency and 
energy are the relevant global variables of EMD [4]. 

Each IMF contains an intrinsic oscillatory mode and the 
instantaneous frequencies can be defined anywhere in this function. The 
process of signal decomposition into IMFs is called sifting. To form an 
IMF, a time series must satisfy two conditions: 

1) Considering the whole data set, the number of local extrema must 
be equal to the number of zero crossings or differ from it by one;   

2) At any point, the mean of the upper and lower envelopes, defined 
by the local maxima and local minima, respectively, must be zero. 

The sifting process is necessary because “misbehaved” signals (such 
as crackles) may contain multiple instantaneous frequencies at a time. It 

involves subtracting the higher oscillation modes and iterating on the 
residual, as illustrated in the flowchart of Figure 1, until signal 
decomposition is complete. 

 

 

 

 

 

 

 

 

 

Figure 1: The Sifting process 

The end result is a representation of the original signal in terms of a 
set of N IMFs and a residue: 
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Equation 1: Expansion of a signal s(t) in terms of IMFs 

It should be stressed that the physical properties of a time series are 
maintained when it is expanded into its IMF components; the 
decomposition is complete, orthogonal, local and adaptive [4].   

3 EMD-based crackle detection 

The detection algorithm was developed in MatLab®. It takes a 

respiratory sound file as its input and generates an annotation file, 
recording the detected crackle endpoints sequentially. 

Stage 1 implements the sifting process (see Fig. 1), generating IMFs 
up to the order specified by the user. First, the local extrema (maxima 
and minima) and zeros of the input signal are obtained. The upper and 
lower envelopes of the signal are then obtained through interpolation 
and used to compute the mean. Subtracting this mean from the original 
signal yields the first IMF candidate, h1(t); if this new signal verifies the 

two conditions required (section 2), it forms an IMF and the sifting 
process continues, taking the residue as a new input signal. Otherwise, 
the process is repeated taking h1(t) as the input. This recursive procedure 
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terminates when the required number of IMF components and the 
respective residue are obtained, forming a complete expansion of the 
original signal.  

The following stage is a straightforward energy peak detector whose 
operation is illustrated in Fig. 2. It starts by squaring the IMF signal and 
applying a smoothing convolution filter. The position of the highest 
peak of the resulting signal is considered the midpoint of a crackle and 

used to split the signal into two segments. The procedure is then applied 
to each of them and repeated recursively in order to detect lower 
amplitude peaks down to a pre-defined energy threshold. 

 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Excerpt of respiratory sound (a) with corresponding IMF3 (b) 

and crackles indicated by detected IMF3 energy peaks (c). 

4 EMD implementation issues  

Important issues mentioned (but not explained in detail) in EMD-
related literature became apparent in the implementation of this 
algorithm. One of them was the end effect in the spline fitting, extremely 

notorious in the initial attempts to obtain IMFs. It causes wide variation 
at the edges of the signal, distorting the decomposition. Boundary 
conditions were implemented to attenuate this problem: initially, the 
first and last data points are considered both as minima and maxima, and 
the remaining extrema of the set are computed. Subsequently, the 
current values of those first and last minima/ maxima are updated if a 

result derived from the slope defined by the following/previous points is 
less/higher than the current value.[7]  

Another issue is related to the tolerance and threshold parameters of 
the sifting algorithm, which need to be adapted (fine-tuned) to the data 
set under analysis. In this case, the tolerance (parameter tol in Fig. 1) 
was empirically set, based on the maximum absolute value of the signal. 
Regarding the stopping criteria, the mean criterion proposed by Rilling, 
G. et al. [8] was applied. This technique, based on two thresholds for an 

amplitude near zero, considers small global fluctuations and at the same 
time large local excursions, preventing over iteration.  

Several tests led to the conclusion that running both IMF test 
conditions in the respiratory sound signals took too long and the results 
obtained by verifying only one of them were identical to those obtained 
when both were tested. Hence, in order to avoid over-sifting and 
excessive execution times, the algorithm only observes the mean 
criterion, which seems to be enough for these specific data sets.    

The final issue is the choice of the IMF to be used as input to the 
peak detector. Visually comparing each IMF with the reference sound 

data annotated by health professionals, IMF 3 and IMF 4 seemed to 
provide the best match. Lower and higher order IMFs appeared to 
contain mostly high frequency and basic respiratory sound noise, 
respectively. This only partially agrees with the observations of 
Charleston-Villalobos et al. [5]. 

5 Results  

Preliminary performance tests were carried out on a 10-second 
respiratory sound file annotated by a health professional, without prior 
training to optimise the algorithm’s parameters. By adjusting only 
the algorithm's energy peak detection threshold, an F index as high as 
92% ( harmonic mean of SE=94% and PPV=89%) was achieved. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graph showing the relation between the detection performance 
and the energy threshold 

6 Conclusions and Future Work  

This paper explored the application of EMD in automatic respiratory 
crackle detection systems. Outstanding EMD implementation issues and 

alternatives to solve them were analysed in this specific application 
context. A fully functional EMD-based automatic detection algorithm 
was developed. Highly promising results were achieved in pilot 
validation tests, calling for further, more systematic performance 
evaluation on more extensive, multi-annotated test sets. Moreover, 
numerous algorithm refinement possibilities can be envisaged, including 

parameter optimisation through training, pre-filtering and combination 
of different order IMFs and/or IMF derivatives. Since they are 
associated to different oscillation modes, different order IMFs might 
also be helpful in fine/coarse crackle classification.  
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